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Abstract

We consider a stochastic ranking process, which is a mathematical model of the
ranking in the web page of online bookstores or posting web pages. We give a scaling
limit of tagged particle dynamics. In this limit the scaled tagged particles jumps to the
top of the list when its own Poisson clock rings and moves deterministically along a
curve otherwise. This curve is characteristic curve of a system of quasi linear PDE,
which is mentioned in [11, 14]. We also give a scaling limit of multi-tagged particle
dynamics, in which the motion of the particles are independent.

1. Introduction

We consider a stochastic ranking process or Poisson embedding of the move-
to-front rules, which is an algorithm for a self-organizing linear list of a finite
number of items. The list is updated in the following way. Each item has an
independent Poisson clock, whose rate depends on type of the item. If the
Poisson clock of the i-th item rings, then we move it to the top of the list and
accordingly each of the items located in front of the i-th item backwards
simultaneously by one rank; those behind do not move at all. In this paper,
we treat this process as an “interacting particle system”. We fasten a tag to a
“particle” (or tags to “particles”) and observe the motion of “tagged particle”
(or “tagged particles”). We give a scaling limit of tagged particle dynamics
as the number of the items tends to infinity. In this limit the scaled tagged
particle jumps to the top of the list when its own Poisson clock rings and moves
deterministically along a curve otherwise. This curve is characteristic curve of
a system of quasi linear PDE, which is mentioned in [11, 14]. We also give a
scaling limit of multi-tagged particle dynamics, in which the motion of the par-
ticles are independent.

The move-to-front rule is introduced by Tsetlin [24] and studied [5, 16, 19,
20, 21]. It is also studied as least-recently-used cashing [1, 2, 3, 6, 7, 8, 9, 10, 17,
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18, 22, 23]. Recently it is reintroduced and studied as a mathematical model of
the ranking in the web page of online bookstores or in the posting web pages [11,
12, 13, 14, 15].

The distribution of the scaling limit of tagged particle dynamics is dis-
cussed and obtained in [1, 9, 17] (as the scaling limit of search cost for the
move-to-front rules). Precisely, the stationary distribution is obtained [1, 9, 10,
17]. In [1, 9, 17] the distribution of stationary search cost for the move-to-front
rules is discussed and the scaling limit (a fluid limit) is obtained. Furthermore in
[1] the distribution of the scaling limit of general search cost and the indepen-
dence of the motion of the multi-tagged particle (propagation of chaos) is
obtained.

Let {v;;i e N} be independent Poisson random measures on [0,00) with
intensity w;(s) ds. We assume that the set of intensities is ﬁnite, i.e., there exists
K such that {w,,zeN} = {W1,wa,...,wk}. Let (xI¥,x¥,...x}) be a permuta-
tion of 1,2,...N. We define stochastic ranking process X N =@M xN, ..
X{) by

N

(1) —X,N+ZJ —) > Xi(s ))Vj(dSHL(l—Xi(s—))vi(dS)

where 1(4) is the indicator function of 4. We regard X;¥(7) and x/ as posi-
tions of the i-th particle at time ¢ and at time O respectively. Each particle has
an independent Poisson clock with intensity w;. If i-th particle’s Poisson clock
rings, then i-th particle jumps to the top. If a Poisson clock of a particle located
behind the i-th particle rings, then the i-th particle jumps backward by one
step.

We define the normalized position of XV by

Let us define [x] = [x]" and |x] = [x|" for xe[0,1] by

I ~1 ~1
[x}N:ﬁ, ijN:lT such that /e Z and ZT<xS

We define UY = (UM (x;5), UM (x;9),... UY (x;5)) by

() St e (0= ),

for k=0,1,2,...,N and

U (xys) = U (Lx]ss) + N = D{UN (Tx)9) = U (L))
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for 0<x<1 and x¢{0,1/N,2/N,...(N—1)/N,1}. Namely if xe {0,1/N,
2/N,...(N —1)/N,1} then U} (x,s) denotes the normalized number of scaled
particles in [x,1] at time s whose intensity is w;. If x¢{0,1/N,2/N,...
(N—1)/N,1} then it is given by linear interpolation of {U/"(0;s),
UN(1/N;s), UN(2/N;s), ..., UN((N = 1)/N;s), UM (1;5)}.

Let us consider the Cauchy problem for a system of quasi linear PDE

0 R K i p
(2) 5% 0) = —uy (o, 5) i (s) mzz:lum(x, )W) =10, ).

ur(0,1) = £1(0),

u(1,1) =0,

u(x,0) = fi(x),
for /=1,2,...,K where the initial functions f;, 1 </ < K are smooth and

decreasing, and satisfies that f; > 0 and E,ﬁ  f1(0) =1. In [13] it is proved that

this system of PDE has a unique global classical solution. From now on, we

denote by u(x,?) = (u1(x,1),...,ug(x,t)) the unique global solution of (2).
The following result is already proved in [11].

PrROPOSITION 1.1.  Assume that UV (x;0) — u(x,0) (N — o) uniformly in
x € [0,1] almost surely. Then the process UN(x;t) — u(x,t) (N — o) uniformly
in xel0,1] and t€[0,T] for all T with probability one.

We give a scaling limit of tagged particle dynamics.

TueoreM 1.2.  Assume that UM (x;0) — u(x,0) (N — o) uniformly in
1
x € [0, 1] almost surely, and NXIN — y1 (N — o) almost surely. Then the scaled

tagged particle motion Y{"(t) — Y () uniformly in t € [0, T] almost surely for all
T >0, where Y is the solution of

1

K 1
Yi(t)=y1 + ZL u(Y1(s—),s)w(s) ds — J Yi(s—)vi(ds).
[

0

Furthermore, assume that UM (x;0) — ug(x) (N — o0) uniformly in x € [0,1)

1 1 1
almost  surely, and for some L, <Nva,Nxév, . ,inv> = (V1, 2,y ¥L)
(N — o0) almost surely. Then the scaled tagged particle system (Y] (1),
YN (), ..., YN (@) — (Yi(2), Ya(2), ... Yi(2)) uniformly in t€[0,T] almost surely
for all T >0, where Y;, i=1,2,...,L are the solutions of

t

Kt
Yi(t) = y,-+zj w(Yi(s—), )wi(s) ds—J Yi(s—)vi(ds).

0
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The last equation expresses what is mentioned previously: a scaled particle
moves deterministically obeying the same ODE as for the corresponding char-
acteristic curve of the system of PDE (2) except for its successive Poisson epochs
at each of which it jumps to the top independently of the motion of the other
tagged particles.

2. Proof of the main results

2.1. Proof of the Proposition 1.1

As being mentioned in Introduction Proposition 1.1 is already proved in
[11]. Here we give another proof, where we derive PDE (2) directly from the
stochastic integral equation (1) by using It6 formula.

In order to define the characteristics of the quasi linear PDE

0 0
(e, ) + ale ) (1) = (x, )

for /=1,2,...,K, with some boundary conditions for f = (fi, f2,..., fkx), We
follow [4, Chap. 3]. In our case, a(x,t,u) = anle U (x, O)w(t) and hy(x,t,u) =
—uy(x,t)W;(¢). Let us consider the system of ODE

—z=a(z,t,v),

dt

%Ul = h/(Z, Z, U),

for [=1,2,...,K with initial condition

z(to) = yo, v(to) = f(»0)

where (19, o) and f(y) corresponds to the boundary conditions of PDE.

We assume that for each fixed (x,¢), there is an unique initial condition
(t0, yo) such that z(r) = x, entailing that our quasi linear PDE has an unique
global solution u;(x, 1) = vi(z(¢),1) (see [13]).

We extend U}Y(x;7) by
UN(0;1) if x <0,
UN(1;0) if x> 1,

UM (x;1) :{

for notational convenience. We define VV"(x;1) = (V" (x;0), V" (x;0), . ..
VY1) by

N 1 x+n/N
Vi () == —5 J UN(y;1) dy
2— Jx-n/N
N
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for 1 «n<« N. By the definition of UY, we have |UN (x;1) — UM (p;1)] < |x — y|
for all / and ¢. Therefore we have

1 x+n/N
G) Vs — UN o) < —nj U (yi1) — U () dy <
ZN x—n/N 2N

forall 1 </<K, xeR, t>0.
We note that

2 UM (a():9) = NP ([=(6)T:9) — U (L2005 90,

due to the definition of UY, especially linear interpolation. We also note
that

) =N{U([2(9)15) = UM (=()):9)}

N

Zl wi = wi) 1YV (s) = |2(5)])

Jj=1
1(/-th particle is located between z(7) — 1 and z(¢)).
Increment of ¥,\""(z(¢);) is divided into following five factors; (i) due to
dz 0 N.n ..
x 7 o V" (z(1); 1) dt, (ii) due
to jump of a particle located behind z(¢) + N (in the sense of normalized position)

increment of z(#) and increment of V,N‘”(z(t); 7) is

-1
when one of the /-th type particle is located between z(r) + al and z(1) +%
for —n < x <n and increment of V]N Mz(1);0) s N’ (iif) the error of (ii) which
is caused by the linear interpolation at the edge of mollifier and the order of the

N

. 1 . . . .
error is 0<nN>’ (iv) due to jump of /-th type particle located behind z() +
and increment of V,N Mz(0); 1) s —%, (v) due to jump of /-th type particle

located behind z(7) +% for —-n<x<n-—1 and increment of V,N’"(z(t);t) is
n—+x
2nN *

V(050

Therefore by using It6 formula, we have

_ /N, . N,n l Jt% _ i N,n Yo
= V) + 070+ 0(3) + | G elopian) ds

- J ﬁvx_"_nN{UlN(Lz@—)J # o) = U (161 + 505 ) |
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X XN: 1 <YjN(s—) > z(s—) +])\Cf> w;(s—) ds

=1
_ J:O %]Zl: 1(w; = wi) ( jN(s—) > z(s—) +%> w;(s—) ds
t N n
J %Z Z 1(w; = w1 (YjN(s—) = |z(s—)] +%> wi(s—) ds,
14 j=1 x=—n

where MIN " is martingale term defined by

w0 == [ i 3 v (1 ) = 0 (=01 + 5 ) §
. Z 1(76) > 260+ 3 ) (@)
- j %E_N;uwj - wm(nN(s—) > ) + 30 ) ()

J ISP PLy = i (1(62) = L=s-)] + ) ()

j=1 x=-n

and v;(ds) = v;(ds) — w;(s—) ds.
Since w; = S, 1(w; = W))W, for all j, by using the definition of UV we
have

N K N 1
Zﬁ =) > x)wj(s ):ZZI(W,-: W) 5 1Y (s=) > x)wi(s—)

2

By using this identity and the definition of V,N " we have

FEOR))

_ N Non 1 J'% N9 Ny
= V" (yosto) + M, (l)+0(n + t()dt(s )6xV’ (z(s—);5—) ds

JI 2ln z”: N{ UIN(LZ(S—)J +%;S—> - U,N<[z(s_)1 +%;S_>}

X=—n
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_ L VNI (25— ); 5 )i (s—) ds

403

We recall that

Hence we have

%Vm 5);s 2nYZnN{U1( s)] + %s)—U,N(Lz(S)JJr%;S)}.

By the definition of z, we have

We also recall that

V0 = U ()] < 5
N
By using these two identities and inequality, we have

vz (1) 1)

= Vi (osto) + M) + 0@
- J,tzlrzZN{ UzN((Z(Sﬂ +;§;s) - U,N<LZ(S)J +;;s>}

{mz:vm 7 o ZVnI;/n . )Wm(S—)"FO(%)}dS
—JIVﬁ”@@—%S—Wﬁ@—)dﬁ

to

We set WV (x,1) :=supy | UM (x,5) — vi(x,s)|.

By using (3), (4), we
have
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W (z(t), 1) < W (yos to) + | MV (1)) + 0(1) " O(N)

for l «xn«N.
By using (4), it is standard to estimate the martingale term M,N (1) by

sup MN n( )
re[zo T]

<AEM[M"y ) = L) {%ZN;{% nn1<YN ) > z(s )+N>

1 X=—

N

310y =t (1 = =65+

It is easy to see that the absolute value of the expression in the large braces is at
most 1. Hence we have

I/\
=0

v 41
sup M NNZ: M/,

te[lo, T]

for some constant C.
We conclude that

S EWNET). T i vt ]+6I<TC+0<1)+O<N)

I=1

+ J 6(K +1)S B (2(s),5)n(s) s,

fo =1
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for 1 «n« N. By using Gronwall’s inequality, we have

> EW(=(1),0)7)

=1
X KC 1 n .

for some constant C' and 1 «n <« N. Note that C’ is independent of (o, ).
We also note that z depends on the boundary condition (yo,%). Since
UN(yo; t0) — vi(yo, 2o) uniformly in (yo, %), we have UN(z(1);t) — w(z(2),¢)
in L?> uniformly in ¢e€[ty, 7] and uniformly in (yo,#). If we take A4 =
([0,1]NQ x {0})U ({0} x [0, T] N Q), which is a countable subset of the bound-
ary of [0,1] x [0, T], then it is easy to see that B = {(z(2),1);t € [to, T), (yo, t0) €
A} is a dense subset of [0,1] x [0,7]. By taking subsequence, we have
UN(x;1) — w(x, 1) uniformly in (x,t)eB a.s. Since U} and u; are non
increasing and continuous functions of x, we have U/N(x;t) — u(x, ) uniformly
in 1€[0,7] and x€[0,1] as.. O

2.2. Proof of the Theorem 1.2
It is easy to see that Y¥ has an expression

=N Y ,l NS— NS— WilS— A)
yi+j21joN1<Y,< ) > Y (=) (s-) d

_ Jt YN (s=)vilds) + M (0
0

N
—~ =37 1f s=) > Y¥(s—))¥;(ds) and ¥;(ds) =

vi(ds) — wj(s—) ds. Since w; =Y 5,1 w/ = w;)w; for all j, by the definition of
U", we have

where yN =

—

) > Y (s=))w(s—)

zN:l (wj =w;)—= 1 (YjN(s—) > YN (s=))wi(s—)
1 j=1

I
Mw

—
Il

UM (TY (s=)Ts ) wr(s—).

I
M~

\
Il
-

Therefore we have
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Kt
Y0 =t + 3 [ UMY 6o s (s ds
=170

4 Jl YiN(S—)Vi(dS) + M,‘N(t)'
0

We define Z¥ (1) := YN(t) — Yi(¢), then we have

1

FAOEICARSOEDY Jt{UzN(inN(S—ﬂ;S—) — wi(Yi(s—),s—=)}wi(s—) ds

=170

- J ZN (s—)wi(s—) ds + MN (1) — J ZN (s—)v,(ds)
0 0

Since U} (x;5) — u(x,s) uniformly in xe[0,1], s€[0,7] as. and € C!,
(UM TV (s=)Ti5=) = w(Yi(s=),5-)]
= (Y (s=),5=) = w(Yi(s=),5) + o(1)]
< CI1Z (s-)| + o(1),

where constant C is given by

iul(x7 l)

C= sup p

x€0,1],1€(0,T],1€{1,2,...,K}

)

and o(1) — 0 as N — oo. It is standard to see that [, Z¥(s)¥:(ds) and M} (7)
are martingales and

E (JZZ;V(S)TJ,‘(dS)>2‘| = JtE[Z;\](s)z]yvi(S) ds,
0 0
B0 = E| 3 [ 10765 > 7 6ot ds]
)

Since y» — y;, by using Cauchy-Schwarz inequality we have

T T K
E| sup ZN(r)* 30(1)+(K+4)C2J E[ZN (s—)7] dsJ <Zw,(s) ds>
tel0,7) 0 0 \73
T T
+ (K + 4)J E[ZN (s—)7] dsJ wi(s—)? ds
0 0
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1 leN:
+4(K+4)—J — ) wi(s—)ds
NJo N

T

+4(K+4) J E[zY (s—)z]w,-(s—) ds
0
T
go(l)—i—C’J E| sup ZN(u)*| ds.
0 uel0,s]

for some constant C’. By using Gronwall’s inequality, we have

E| sup ZN(0)?| <o(1)(1 + C'TeCT),

tel0,T)
ie, Y¥ =Y, in L?> and uniformly in re[0,7]. By taking subsequence,
YN — Y; uniformly in 7€[0,7] a.s.. O
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