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RELATIVE INJECTIVITY AND FLATNESS OF COMPLEXES

Bo Lu AND ZHONGKUI Liu*

Abstract

A complex C is said to be FR-injective (resp., FR-flat) if Ext!(D,C) =0 (resp.,
Tor;(C, D) = 0) for any finitely represented complex D. We prove that a complex C is
FR-injective (resp., FR-flat) if and only if C is exact and Z,,(C) is FR-injective (resp.,
FR-flat) in R-Mod for all me Z. We show that the class of FR-injective complexes
is closed under direct limits and the class of FR-flat complexes is closed under direct
products over any ring R. We use this result to prove that every complex have FR-flat
preenvelopes and FR-injective covers.

1. Introduction

The homological theory of complexes of modules has been studied by many
authors such as Avramov, Enochs, Foxby, Garcia Rozas, Goddard, Jenda,
Oyonarte and Xu (see [2, 5-7, 10, 11, 13]). As we know, the concepts of
direct products, direct sums and direct limits play important roles in the inves-
tigations of the category of complexes of modules. For example, if C is a finitely
accessible category and A is a class of objects of C closed under direct limits and
pure epimorphic images, then A is covering; if C is a finitely accessible additive
category with products and A is a class of objects of C closed under products
and pure subobjects, then A is a preenveloping class [3]. So it is an important
question to investigate the closure of the class of some complexes (such as
injective complexes, flat complexes) under direct products, direct sums and direct
limits.

Injective and flat complexes play important roles in the studies of the
category of complexes. It is well known that the direct sum of any family of
injective complexes of left R-modules is injective if and only if R is left
Noetherian; the direct product of any family of flat complexes of right R-
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modules is flat if and only if R is left coherent. Thus, the class of injective
complexes (resp. flat complexes) is not closed under direct sums (resp. direct
products) in general.

Our main purpose in this paper is to introduce and investigate a generaliza-
tion of injective complex (resp. flat complex) of modules which is closed under
direct limits (resp. direct products) over any ring. We call it FR-injective com-
plex (resp. FR-flat complex). We show that a complex C is FR-injective (resp.,
FR-Aflat) if and only if C is exact and Z,,(C) is FR-injective (resp., FR-flat) in
R-Mod for all meZ. We prove that (1) a complex C of right R-modules is
FR-flat if and only if C* is FR-injective; (2) a complex C of left R-modules is
FR-injective if and only if C* is FR-flat. We also show that a ring R is left
Noetherian if and only if any FR-injective complex of left R-modules is injective
and R is left coherent if and only if any FR-flat complex of right R-modules is
flat.

The existence of (pre)envelopes and (pre)covers, not just in the setting of
the categories of modules but for more general abelian categories, such as the
category of complexes of modules which is one of the important categories where
this problem could be studied. In this paper, we show that (1) every complex of
R-modules has an FR-injective (resp. FR-flat) preenvelope; (2) every complex of
R-modules has an FR-flat (resp. FR-injective) cover.

2. Preliminaries

Throughout this paper, R denotes a ring with unity, R-Mod denotes the
category of R-modules and #(R) denotes the abelian category of complexes of
R-modules. A complex

-iclﬂco's_“)(j_lh...
of R-modules will be denoted by (C,d) or C.
We will use subscripts to distinguish complexes. So if {C }..; is a family of
complexes, C' will be
02 i I i ) i 0
~—>C1—>C0—>C71—>--~
Given a left R-module M, we use the notation D"(M) to denote the
complex

~-—>O—>MLd>M—>O—>--~

with M in the mth and (m — 1)th positions and set M = D°(M). We also use
the notation S™(M) to denote the complex with M in the mth place and 0 in the
other places and set M = S°(M).

Given a complex C and an integer m, >." C denotes the complex such
that (3" C), = Ci_m, and whose boundary operators are (—1)"d;_,,. The /th
homology module of C is the module H;(C) =Z;(C)/B;(C) where Z;(C) =
Ker(df) and B(C) =Im(S,). We set H(C) = H_,(C).
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Let C and D be complexes of left R-modules. We will use Hom'(C, D)
to denote the usual homomorphism complex of C and D, and let Hom(C, D)
=Z(Hom (C,D)). Then Hom(C,D) can be made into a complex with
Hom(C,D),, the abelian group of morphisms from C to X™"D and with
boundary operator given by f e Hom(C,D),, then 6,"(]"):C—>Z‘(”’_1)D
with 3,(f), = (=1)"6"f; for any leZ. And we put C* = Hom(C,Q/Z).
We note that the new functor Hom(C, D) will have right derived functors
whose values will be complexes. These values will be denoted Ext'(C, D). It is
easy to see that Ext'(C,D) is the complex

- — Ext/(C, """V D) — Ext/(C,£7"D) — Ext/(C, 2~ " VD) — ...

with boundary operator induced by the boundary operator of D.
Let C be a complex of right R-modules and D be a complex of left
R-modules, C ® D denotes the usual tensor product of C and D. We define

G (€ceDn
C® D to be B(C® D) with the maps
(C® D), (C®D), .
B,(C®D) By (CwDy “Er—o ey
(€@ D),

where x ® y is used to denote the coset in Then we get a complex.

B,(C® D)

Given a complex C of left R-modules. Then we have two functors
—®C:%r— %z and Hom(C,—): g€ — %z, where %r (resp., r%) denotes
the category of complexes of right R-modules (resp., left R-modules). Since
— ® C: % — €z is a right exact functor, we can construct left derived functors,
which we denote by Tor(—, C).

General background materials can be found in [5] or [11].

Let C be an abelian category with enough projectives and injectives. Given
a class F of objects of C, write F+ = {C e Ob(C) |Ext!(F,C) =0 for all F e F}
and ' F = {C e Ob(C)|Ext'(C,F) =0 for all Fe F}. A pair (A,B) of classes
of objects of C is called a cotorsion pair (cotorsion theory) [7] if A" = B and
1B =A. Two simple examples of cotorsion pairs in the category of R-modules
are (Proj, R-Mod) and (R-Mod, Znj), where Proj (Znj) is the class of projective
(injective) R-modules. A cotorsion pair (A, B) is said to be hereditary [7] if the
following equivalent conditions are hold:

MIf 0—-L —-L—L"—-0 is exact with L'/LeB, then L” is also

in B;
2If 0-L' —-L—L"—0 is exact with L",Le A, then L' is also
in A;

(3) If Ext’(4,B) =0 for all i >1 and all Ae A, BeB.

Given a class F of objects of C. Following [9], a morphism ¢ : X — F of C
is called an F-preenvelope of X if F € F and Hom(F, F') — Hom(X,F’) — 0 is
exact for all F' € F. If, moreover, any f : F — F such that f¢ = ¢ is an auto-
morphism of F then ¢ : X — F is called an F-envelope of X. An F-precover
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and an F-cover of X are defined dually. It is immediate that envelopes and
covers, if they exist, are unique up to isomorphism, and that if F contains all
injective (projective) objects, then F-(pre)envelopes (F-(pre)covers) are always
injective (surjective). We say a class F of objects of C is (pre)enveloping if
every object of C has an F-(pre)envelope. Dually, we have the concept of a
(pre)covering class.

3. n-Presented complexes and some isomorphisms

In this section, we first introduce and study the concept of n-presented
complexes. Moreover, some isomorphisms are established which will be used to
prove the main results of this paper.

DeriNiTION 3.1 ([11, Definition 4.1.1]). A complex C is called finitely
generated if, in the case where we can writt C =), , D' with D'e %(R)
subcomplexes of C, there exists a finite subset J =1 such that C=>"._, D".

A complex C is called finitely presented if C is finitely generated and for
every exact sequence of complexes 0 — K — L — C — 0 with L finitely gen-
erated, K is also finitely generated.

Lemma 3.2 ([11, Lemma 4.1.1]). A4 complex C is finitely generated if and
only if C is bounded and C,, is finitely generated in R-Mod for all m e Z.

A complex C is finitely presented if and only if C is bounded and C,, is finitely
presented in R-Mod for all meZ.

It is clear that we have the following results:

Lemma 3.3. Let 0 > A — B— C— 0 be a short exact sequence of com-
plexes. Then the following statements hold:

(1) If A is finitely generated and B is finitely presented, then C is finitely
presented,

(2) If A and C are finitely presented, then so is B;

(3) If R is left coherent ring, and B, C are finitely presented, then so is A.

Recall that a complex P is said to be projective if P is exact and Z;(P) is
projective in R-Mod for all ie Z.

LemMA 3.4. Let C be a complex. Then the following statements are
equivalent:

(1) C is finitely presented,

(2) There exists an exact sequence 0 — L — P — C — 0 of complexes, where
P is finitely generated projective, and L is finitely generated,

(3) There exists an exact sequence P' — P — C — 0 of complexes, where
P° P! are finitely generated projective, and P, P} are free for all meZ.
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An R-module M is called n-presented if it has a finite n-presentation, i.e.,
there is an exact sequence

F,—F,_1— —>F—>F—->M-—0

in which each F; is finitely generated free.
Now, we extend the notion of n-presented modules to that of complexes and
characterize such complexes.

DerFiniTION 3.5, Let >0 be an integer. A complex C is said to be
n-presented if there is an exact sequence P" — P" ! — ... - Pl - PY - C -0
of complexes, where P’ is finitely generated projective, and P! is free for i =0,
1,...,n and all me Z.

Remark 3.6. (1) A complex C is n-presented if and only if C is bounded
and C,, is n-presented in R-Mod for all me Z;

(2) A complex C is n-presented if and only if there is an exact sequence of
complexes

0—-K'—-pP ' ...opl P L Cc—0

where P’ is finitely generated projective, P! is free for i=0,1,...,n— 1 and all
meZ, K" is finitely generated;

(3) A complex C is n-presented (rn > 1) if and only if there is an exact
sequence of complexes

0—-K—-P—C—0,

where K is (n— 1)-presented and P is finitely generated projective.

THEOREM 3.7. Let n>1 be an integer and 0 — K — P — C — 0 an exact
sequence of complexes. Then

(1) If P is n-presented and K is (n — 1)-presented, then C is n-presented,

(2) If K and C are n-presented, then so is P;

(3) If C is n-presented and P is (n — 1)-presented, then K is (n — 1)-presented.

Proof. 1t is similar to the proof of [12, Theorem 2.1.2] by Remark 3.6 (1).
O

Let 7 be a set. An R-module M is called /-graded if there exists a family
{M;},.,; of submodules of M such that M = @ie ;M. A Z-graded module is
simply called a graded module. General background about graded modules can
be found in [4].

LemmA 3.8. Let {C'},.; be a family of complexes, D a finitely generated
complex. Then Hom(D,P),_, C') = P, , Hom(D, C’) as complexes.

iel
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Proof. Firstly,

«: @ Hom' (D, C') — Hom (D, C‘)
iel

iel

is an isomorphism by x = (x*);.; — >, ., Hom'(D, ¢')(x Ziels"x", where x =
(x7);cr € ((—DlelHom'(D C"), =@, ., (Hom (D, C ), w1th x" e Hom' (D, C),
and ¢/ : C/ — @,_, C' is the natural embedding (see [4, Proposition 2.5.16]).

Secondly, we will show that Hom(D,P @,.;Hom(D, C"). We
define a morphism

iel l)

|@,E,HomD Ci)

m(D, C") —>Hom<D<—BC>

el iel

We claim that y is a graded isomorphism of graded modules with degree 0.
We first show that Hom(D @15 e @ Hom(D C') as graded modules.
Note that Hom(D, P, _, C’) Z(Hom' (D @IGIC Z(®P,., Hom'(D, C")) =
@,.; Z(Hom (D, C")) = P, ,Hom(D C) since D is ﬁmtely generated. And
Y= g, Hom(p,ci) 1S @ monomorphlsm since o is a isomorphism. So y is a
graded isomorphism of graded modules with degree 0. '

On the other hand, for any (x'),_; € (,., Hom(D, C%)),,

V(5®"E’Hﬂw’cj)(xi)iel = 0‘5@[6[@(&'0)@‘1’)@1 = “(5M(D’Ci>(xi))iel

= Z Hom(D, ¢")oHem(?: ) (x)

iel
1 ' I
_2 :8 15C — } :8'5C
iel iel

and

SHom(D:Bier €,y chy = GHOMD: @ier €y Fy  — sHomD:@ies € (Z gixi>

iel
! e CHi i
5@16[ (Zg > Zé@:e/ eix!
iel iel
—1)128[50()61
iel

Thus y is an isomorphism of complexes, and hence Hom(D,P),_, C') =
@,.;Hom(D, C").

LemmA 3.9. Let {C'},_; be a direct system of complexes, D a finitely
presented complex. Then Hom(D,lim C’) = lim Hom(D, C").
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Proof. Tt follows from Stenstrém [15, Chap. V, Proposition 3.4| since %(R)
is locally finitely generated in the sense of [15]. O

LemMA 3.10. Let {C'},_; be a family of complexes, D a finitely presented
complex. Then D® [[;.; C' = [[;c;(D® C') as complexes.

Proof. Firstly,
w: D@ [[C' = [[(p® C)
iel iel

is an isomorphism by x — ((D ® n')(x)),.;, where x=d® ce (D® [],.;C"),
and 7/ : [];,.; C" — C/ is the natural projection (see [4, Proposition 2.5.17).

Secondly, we will show that D ® [],.; C' = [[;.;(D® C"). Since we have
the following commutative diagram:

| epe)
<D ® Hc1> el ” 0
| |
(HD R Ci) (noe <) .
iel ] Bl([l;IID ® Ci)

ene)  (mrec)

where f;: is given by the assignment
B]<D®‘ HC") B]<HD®' Ci)
iel iel
d®c+B<D®' HC") —o(d®c) +B<HD®' C”)
iel iel

for any d @ ce (D® [[;.; C');, and let B be a graded homomorphism induced
by f,. Thus f is a graded isomorphism of graded modules with degree O.
Moreover,

B! <d ®c+B <D ® H cf)>

iel

=pO°(d)® ) = (6" (d) ® ¢) = (6”(d) @ '(¢));e
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and

iel

= ollies(POCY (a(d ®c)+ B (H D® cf> )

iel

5Hle(D®C1)ﬂ<d Rc+ B(HD ® Cl))

= ol P®g(d @ ¢) = (6 a(d @ ¢)),;.; = (0°(d) ® '(c))

iel"

Therefore, f is an isomorphism of complexes. O

THEOREM 3.11. Let n>1 be an integer, D an n-presented complex
and (C');.; a direct system of complexes. Then Ext"’l(D,lii)n Ch) =
lim Ext""'(D, C).

Proof. We do an induction on n. If n =1, then the result follows from
Lemma 3.9.

Let n=2 and D be an 2-presented complex. Then there exists an exact
sequence of complexes 0 — L — P — D — 0 with P finitely generated projec-
tive and L finitely presented. Thus there is a commutative diagram with exact
rOwS:

Hom(P,lim C') —— Hom(L,lim C') —— Ext'(D,lim C') —— 0

| | |

lim Hom(P,C') —— lim Hom(L, C') —— lim Ext'(D,C’") —— 0.

Since Hom(P,lim C’) = lim Hom(P, C') and Hom(L,lim C’) = lim Hom(L, C")
by Lemma 3.9, we have Ext'(D,lim C') = lim Ext'(D, C').

If n > 2, then it follows from the standard homological method. Therefore,
Ext""'(D,lim C') = lim Ext""'(D, C"). O

THEOREM 3.12. Let n>1 be an integer, D an n-presented complex and
(N*), s a family of complexes. Then Tor,_1([[,.;N* D)= [l,.; Tor,_1(N*, D).

Proof. We do an induction on n. If n =1, then the result follows from
Lemma 3.10.

Let n=2 and D be an 2-presented complex. Then there exists an exact
sequence of complexes 0 — L — P — D — 0 with P finitely generated projec-
tive and L finitely presented. Thus there is a commutative diagram with exact
rows:



RELATIVE INJECTIVITY AND FLATNESS OF COMPLEXES 351
0 —— Tor, (HN“,D) - <HN°‘)®L - (HN“)@P

oael oael oel

I1e

I

0 —— J[Tori(N*, D) —— [[V*®L) —— J](N*® P).

ael oael oael

Since (HaceIN%) ®L = HzeI(Ni ®L) and (HaeINa) ® P= HaeI(Na ®P) by
Lemma 3.10, we have Tor(([[,., N* D) = [[,.,; Tori(N* D).

__If n>2, then it follows from the standard homological method. Therefore,
Torn—l(HaeIN“7D) = HaeITor'l—1<N“’D)' O

Lemma 3.13 ([11, Lemma 4.2.2]). Let R and S be rings, L a complex of right
S-modules, K a complex of (R, S)-bimodules and P a complex of left R-modules.
Suppose that P is finitely presented and L is injective as complexes of right
S-modules. Then Hom(K,L) ® P~ Hom(Hom(P,K),L) as complexes. This
isomorphism is functorial in P, K and L.

THEOREM 3.14. (1) Let R and S be rings, n a fixed positive integer, A
an n-presented complex of left R-modules, B a complex of (R, S)-bimodules,
C an injective complex of right S-modules. Then Hom(Ext"~'(4,B),C) =
Tor,_1(Hom(B, C), 4).

(2) Let R and S be rings, n a fixed positive integer, A a complex of left
R-modules, B a complex of right (R, S)-bimodules, C an injective complex of right
S-modules. Then Ext"(4,Hom(B, C) ~ Hom(Tor,(B, 4), C).

Proof. (1) We do an induction on n. If n =1, then the result follows from
Lemma 3.13.

Let n=2 and A be an 2-presented complex. Then there exists an exact
sequence of complexes 0 — K — P — A4 — 0 with P finitely generated projective
and K finitely presented in ¥(R). Thus we have the commutative diagram with
exact rows by Lemma 3.13:

0 — Hom(Ext'(4, B),C) — Hom(Hom(K, B),C) — Hom(Hom(P, B), C)

| | |

0 — Tor,(Hom(B,C),4) —— Hom(B,C) ® K Hom(B, C) ® P.

Hence, Hom(Ext' (4, B), C) = Tor,(Hom(B, C), 4).

If n > 2, then it follows from the standard homological method. Therefore,
Hom(Ext"~'(4, B), C) = Tor,1(Hom(B, C), 4).

(2) It  follows by similar  arguments since Hom(4 ® B,C) =~
Hom(4,Hom(B, C)) for any complex A, B and C. O
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Remark 3.15. It is not hard to see that
Hom (D,H cf> ~ [[Hom(D, ¢,
iel iel

DR D C'=DDC,

iel iel
Ext" <D,H C") = []Ext"(D,C),
iel iel

and

Tor, (@ cf,p) ~ @ Tor,(C', D)

oel oael

Tor,(lim N*, D) = lim Tor,(N*, D)

for a fixed positive integer n, any complex D, any family {C'};,.; of com-
plexes and direct system {N”}, _, by analogy with the proof of the above
results.

4. FR-injective complexes and FR-flat complexes

In the following, we use the word ‘““finitely represented” instead of
“2-presented” in R-Mod.

DeriNITION 4.1. We will say that a complex C is finitely represented (i.e.
2-presented) if there is an exact sequence of complexes 0 — K — P — C — 0 with
P finitely generated projective, K is finitely presented.

Let R be a ring. A left R-module M is said to be FR-injective if
Ext!(F,M) =0 for any finitely represented module F; a right R-module N is
called FR-lat if Tor;(N,F) =0 for any finitely represented module F. These
modules have been studied by Ding, Mao and Zhou (see [14, 16]). Note that in
[16], FR-injective (resp., FR-flat) is called (2,0)-injective (resp., (2,0)-flat).

We now want to define an FR-injective (FR-flat) complex. For such a
definition, we have two options. We could define such a complex by analogy
with the definition of FR-injective (resp., FR-flat) modules (i.e., Definition 4.2),
or we could use a modification of the definition of injective complexes (resp., flat
complexes). Recall that a complex C is called injective (resp., flat) if C is exact
and C,, is injective (resp., flat) for all m € Z. The following results (Theorem 4.9
and Theorem 4.10) will show that the two definitions are equivalent.

DErFINITION 4.2, (1) A complex C is called FR-injective if Ext!'(D,C) =0
for any finitely represented complex D;
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(2) A complex C is called FR-flat if Tor;(C, D) =0 for any finitely repre-
sented complex D.

Remark 4.3. (1) It is obvious that injective complexes are FR-injective and
flat complexes are FR-flat. However, the converse is not true in general. See
Example 4.12 or Theorem 4.11;

(2) It is clear that the class FR-injective complexes is closed under direct
products and the class of FR-flat complexes is closed under direct limits by
Remak 3.15;

(3) A complex C is FR-injective if and only if Ext!(F, C) = 0 for any finitely
represented complex F.

Proof. Here we only prove (3) of the Remark 4.3. Note that Ext'(F, C) is
the complex

- — Ext!(F, 2"V ) — Ext!(F, 27" C) — Ext!/(F,2~" V() — ...
and also is the complex
- — Ext!/(x"VF C) — Ext!(Z"F, C) — Ext! (" VF, C) — - ...

So if Ext!(F,C) =0, then Ext!(F,C)=0. Now we prove the converse. Let
Ext!(F,C) = 0 for any finitely represented complex F. Then Ext!(X"F,C) =0
since X™F is finitely represented for all m € Z. Therefore ml(F ,O)=0. O

ProposITION 4.4. Let R be a ring and 0 - A4 — B— C— 0 an exact
sequence of complexes. Then:

(1) If A and C are FR-injective, then so is B;

(2) If A and C are FR-flat, then so is B.

Proof. 1t is obvious by the definitions. O

ProposSITION 4.5. Let {B'},.;, and {C'}
R-modules. Then

(1) Tl;o; C" is FR-injective if and only if each C' is FR-injective;

(2) @,.,; B is FR-flat if and only if each B' is FR-flat.

e be families of complexes of

Proof. (1) It follows from the isomorphism Ext'(N,[],., C') =
[1,.; Ext'(N, C?), where N is a complex of R-modules.

(2) It follows from the isomorphism Tor (P, , B',N) = @,_, Tor|(B,N),
where N is a complex of R-modules. O

It is well known that a complex C is flat if and only if C™" is injective over
any ring R, and a ring R is left Noetherian if and only if a complex C of left
R-modules being injective is equivalent to that C* being flat.

Here we have the similar result over any ring R.
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THEOREM 4.6. Let R be a ring. Then

(1) A complex C of right R-modules is FR-flat if and only if C*t is FR-
injective;

(2) A complex C of left R-modules is FR-injective if and only if C*t is FR-
flat.

Proof. (1) Tt follows from the isomorphism Ext!(D, C*) = Tor(C,D)" for

any complex D.
(2) Note that Tor;(C™*, D) = Ext' (D, C*) for any finitely represented com-
plex C by Theorem 3.14. Hence C is FR-injective if and only if C*t is FR-flat.
O

ProrosITION 4.7. Let C be a complex of left R-modules. Then C is FR-
injective if and only if C,, is FR-injective in R-Mod for all m € Z. and Hom (F, C)
is exact for any finitely represented complex F.

Proof. (=) Suppose that (C,J) is FR-injective and let
(1) 0-Cpn>X—-G—0

be an extension in R-Mod, where G is a finitely represented module. We will
show that the sequence (1) splits.

By the factor theorem (see [1, Theorem 3.6]), we have the following
commutative diagram:

Cn_1 —— Coker(d,;) —— 0
£
CmfZ

where 7 : Cp,—1 — Coker(d,,) is the natural epimorphism. We form the pushout
o m . . .
of C,, > X and C,, = C,,_ to obtain a commutative diagram:

0 C, X G 0
T
0 Cp ! P G 0
n g
Coker(d,,) = Coker(d,,)
0 0

So we have the commutative diagram:
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0 — Cm+2 l—d> Cm+2 — 0
Oms2 Oms2
0 —— Gt —25 Gyt —— 0
5m+l ‘1(5m+1
0 Cy - X G 0
L
0 —— Cpy —— P G 0
Om—1 Og

and can form the complex

W= = Cupr— Cps1 =X =P — Cpy— -
Thus we have an exact sequence of complexes
(2) 0—-C—W-—D"(G)—0.

Since G is a finitely represented module, we may deduce from Remark 3.6 that
D™(G) is a finitely represented complex. By our hypothesis the sequence (2)
splits in the category of complexes and so the sequence (1) splits in the category
of modules. Therefore C,, is an FR-injective module.

For a finitely represented complex F we have that Hom'(F, C) is exact if and
only if for each m, each morphism of complexes

f:F—>X"C

is homotopic to 0. This is equivalent to the requirement that for each m and
each morphism of complexes

f:F—X7"C,
the sequence
0—-X"C—-M(f) =2 'F-0
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splits, or, equivalently, for each m and each morphism of complexes
f:F—-X"C
the sequence

0> C—=YX"M(f)—=X"'F-0

splits where M(f) denotes the mapping cone of f. Since F is finitely repre-
sented, so is 2" 'F. By hypothesis, Ext' (X" 'F,C) =0. Hence the sequence
0— C—X"M(f)— " 'F - 0 splits and Hom'(F, C) is an exact complex.

(«). Suppose C,, is an FR-injective module for all m € Z and Hom'(F, C) is
exact for every finitely represented complex F. An exact sequence

0-C—->W-—->F—0

of complexes with F finitely represented splits at the module level. So this
sequence is isomorphic to

0—-C—->M(f)— F—D0,

where f : Z!'F — C is a morphism of complexes. Since Hom' (X!'F, C) is exact,
the sequence

0-C—->M(f)—F—0
splits by [11, Lemma 2.3.2], so
0-C—-W-—-F—=0
also splits. ]

ProrosITION 4.8. Let C be an exact complex of left R-modules such that
Z,(C) is FR-injective in R-Mod for all t € Z. Then Hom (F, C) is exact for any
finitely represented complex F.

Proof. If F is a finitely represented complex, then F is bounded by Remark
3.6. Hence we can assume that F has the following form:

= 0—=F,—-F, 41— —Fh—->F—-F—0—---.

Now consider the complex

Hom'(F, C) = - -- 24 T] Hom(F;, Gors) 2= [ Hom(Ey, Grrorr) 24 -
ieZ ieZ
It is enough to show that Ker(d, i) < Im(d,) for each meZ. Let ge
Ker(d,—1). Then &,-1(9) = (05 1.9 — (=1)" g, 10F),.,=0. In the fol-
lowing procedure we are going to construct a morphism [ satisfying f e
Hom (F, C),, = [[;ez Hom(F;, Cisi)  and  6,(f) = 05 fr — (=1)"fim10)),c7 =
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(91);ez- Since g, =0 for t<—1, we take f;=0 if +<—1. If t=0, then
C 190=0, and so Im gy = Ker(6$ |) =Im(0S). Since Z,(C) is FR-injective
and Fp is a finitely represented module, there exists a homomorphism fy : Fop —

C,, such that 5,7czfo =go. That is, the diagram
Fo

fo l
9o
4

0 —— Zm(C) Cn Zm—l(C) — 0

sC
‘)m

commutes.
If =1, then 05(g1 — (—=1)" fo0F) =05g1 — (=1)"'6S foof =0, and so

m
Im(g; — (=1)" '/0F) = Ker(95). Set hy = g1 — (=1)""'fp6F . Since Z,,11(C)
is FR-injective and F| is a finitely represented complex, we have the following

commutative diagram.

F

5 l
et h
&

0 — Zm+1(C) — Lml T) Zm(c) — 0.
m—1
That is, g; :5,5_1 fi— (—l)mfoéfF . Repeating this procedure, we deduce that
felmd, and J,(f) =g. O

THEOREM 4.9. Let C be a complex of left R-modules. Then C is FR-
injective if and only if C is exact and Z,(C) is FR-injective in R-Mod for all
meZ.

Proof. (=). Suppose that C is an FR-injective complex. Since H'(C) =
Ext!(S'"/(R), C) for all i e Z and S'~/(R) is finitely represented, then C is exact.
We only need to prove that Ext'(G,Z,(C)) =0 for every finitely represented
module G. Consider the exact sequence

0—-—K—-P—-G—0

with P a finitely generated projective module and K a finitely presented module.
It yields an exact sequence of complexes

0— S"K)— S"(P)— S"(G) — 0.
By the hypothesis Ext!(S”(G),C) =0. So
Hom(S" (P), C) — Hom(S"(K), C) — 0

is exact.
Let /: K — Z,(C) be an R-homomorphism. We define o, : K — C, by
o, = Af where A is the inclusion map and o; =0 for j# m. In this way we
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obtain a morphism of complexes o : S"™(K) — C. Then there exists a morphism
B :S8™(P) — C such that the diagram

S™(K) —— S™(P)

C
commutes. Hence we have the commutative diagram

K —— P

o o
g

Cm

and 0,0, =0, which implies that Im f,, < Ker(d,,). So we define g: P —
Ker(d,,) by g =p,. Thus the sequence

Hom(P,Z,,(C)) — Hom(K,Z,,(C)) — 0

is exact.
On the other hand, we have an exact sequence

Hom(P,Z,,(C)) — Hom(K, Z,,(C)) — Ext'(G,Z,,(C)) — 0.

Therefore, Ext'(G,Z,,(C)) =0 and we have established our result.
(«<). Since C is exact we have an exact sequence

0— Zm(C) - Cm - Zm—l(C) —0

for each meZ. Now Z,,(C) and Z,,_;(C) are FR-injective which implies that
C,, 1s FR-injective. The result now follows from Propositions 4.7 and 4.8.

O

THEOREM 4.10. Let C be a complex of left R-modules. Then C is FR-flat if
and only if C is exact and Z,(C) is FR-flat in R-Mod for all m e Z.

Proof. (=). Since C is FR-flat, C* is FR-injective. Then C™ is exact and
Zy(CH) = Z,m,l(C)+ is FR-injective in R-Mod by Theorem 4.9. And so C is
exact and Z,(C) is FR-flat in R-Mod for all m e Z.

(«<). Let C be exact with Z,,(C) FR-flat in R-Mod for all me Z. Then
C* is exact and Z,,(C)" =B_,(C*) = Z_,,1(C*) is FR-injective in R-Mod for
all meZ. Thus C*' is FR-injective by Theorem 4.9. Hence C is FR-flat by
Theorem 4.6. O

As we know, the direct limit of injective complexes need not be injective and
the direct product of flat complexes is not necessarily flat in general. Here we
give an interesting result which establishes the transfer of the FR-injectivity to the
direct limit and the FR-flatness to the direct product.
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THEOREM 4.11. The following are true for any ring R.

(1) Every direct limit of FR-injective complexes of left R-modules is FR-
injective;

(2) Every direct product of FR-flat complexes of right R-modules is FR-
Slat;

Proof. (1) Since lim Ext'(F,C’) = Ext!(F,lim C’) for any finitely repre-
sented complex F and any direct system {C'}._, of complexes of left R-modules
by Theorem 3.11, then every direct limit of FR-injective complexes of left R-
modules is FR-injective.

(2) Since Tor([[N* F) = [[ Tor(N* F) for any finitely represented com-
plex F and any family {N*},_, of complexes of right R-modules by Theorem
3.12, then every direct product of FR-flat complexes of right R-modules is FR-
flat. O

Example 4.12. If R is not Noetherian, then we can form a direct limit
lim M; of injective R-modules {M;},.; which is not injective, but is necessarily
FR-injective. Hence Do(ligl M;) is an FR-injective complex but is not an injec-
tive complex by Theorem 4.9.

It is clear that if R is left Noetherian then the class of FR-injective left
R-modules coincides with the class of injective left R-modules and if R is left
coherent then the class of FR-flat left R-modules coincides with the class of flat
left R-modules.

COROLLARY 4.13. Let R be a ring. Then the following conditions are
equivalent:

(1) R is left Noetherian;

(2) A complex C of left R-modules is FR-injective if and only if C is injective.

Proof. (1) = (2). It follows from Theorem 4.9 since a complex C is injec-
tive if and only if C is exact and Z,(C) is injective in R-Mod for all m e Z.
(2) = (1). It follows from Theorem 4.11 and the fact that a ring R is left
noetherian if and only if every direct limit of injective left R-modules is injective.

O

COROLLARY 4.14. Let R be a ring. Then the following conditions are
equivalent:

(1) R is left coherent;

(2) A complex C of right R-modules is FR-flat if and only if C is flat.

Proof. Note that a ring R is left coherent if and only if every direct product
of flat right R-modules is flat. Then the result is clear by Theorem 4.10 and
Theorem 4.11 since a complex C is flat if and only if C is exact and Z,,(C) is flat
in R-Mod for all me Z. Ul
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Recall from [11] that a exact sequence 0 — S — C — C/S — 0 in ¥(R)
is pure if 0 — Hom(P,S) — Hom(P, C) — Hom(P,C/S) — 0 is exact for any
finitely presented complex P. In this case, S is said to be a pure subcomplex of
C and C/S is said to be a pure quotient complex of C.

PrOPOSITION 4.15.  The class of all FR-injective complexes and the class of all
FR-flat complexes are closed under pure subcomplexes and pure quotient com-
plexes.

Proof. Let B be a pure subcomplex of an FR-injective complex 4 and D a
finitely represented complex. Then we have the exact sequence

0 — Hom(D, B) — Hom(D, A) — Hom(D, A/B) — 0.

Thus Ext!(D,B) =0 since Ext'(D,A) =0. Therefore, B is FR-injective.

Let S be a pure subcomplex of an FR-flat complex C. Then the pure exact
sequence 0 — S — C — C/S — 0 induces the split exact sequence 0 — (C/S)™
— Ct — St — 0. Thus S* is FR-injective since C* is FR-injective by Theorem
4.6. So S is FR-flat by Theorem 4.6 again.

Let C be a pure quotient complex of an FR-injective complex 4. Then we
have an exact sequence 0 — K — 4 — C — 0. Then C* is FR-flat by Theorem
4.6. So C is FR-injective by Theorem 4.6 again. It is easy to see that the class
of all FR-flat complexes is also closed under pure quotient complexes. O

Lemma 4.16 ([3]). (1) Let C be a finitely accessible category and A a class of
objects of C closed under direct limits and pure epimorphic images. Then A is
covering.

(2) Let C be a finitely accessible additive category with products and A a class
of objects of C closed under products and pure subobjects. Then A is pre-
enveloping.

THEOREM 4.17. The following are true for any ring R.

(1) Every complex of left R-modules has an FR-injective preenvelope;
(2) Every complex of right R-modules has an FR-flat cover;

(3) Every complex of left R-modules has an FR-injective cover;

(4) Every complex of right R-modules has an FR-flat preenvelope.

Proof. It follows from Theorem 4.11, Proposition 4.15, Lemma 4.16 and
Remark 4.3 since #(R) is finitely accessible in the sense of [3]. O

In the following, FZ (resp. F.#) denotes the class of all FR-flat complexes
(resp. FR-injective complexes). Then (LF.7,F.#) and (F#,FZF ') are cotor-
sion theories for the category of complexes without any conditions.

THEOREM 4.18. The following are equivalent for a ring R:
(1) (*F4,FF) is a hereditary cotorsion theory;
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(2) (FF,FF™*) is a hereditary cotorsion theory;

(3) Ext’(D,C) =0 for any finitely represented complex D and any FR-
injective complex C of left R-modules;

(4) Tory(B,D) =0 for any finitely represented complex D and any FR-flat
complex B of right R-modules.

Proof. (1)=(2) Let 0 - 4 — B— C — 0 be an exact sequence of com-
plexes with B and C FR-flat. Then we have an induced exact sequence 0 —
Ct —- Bt — 4" — 0. Since B* and C* are FR-injective by Theorem 4.6, so
is At by (1). Hence A is FR-flat. Therefore, (F#,FF ") is a hereditary
cotorsion theory.

(2)= (1) Let 0 > 4 — B— C — 0 be an exact sequence of complexes with
A and B FR-injective. Then we get an exact sequence 0 — C* — BT — AT —
0. By Theorem 4.6, A" and B* are FR-flat, and so C" is FR-flat by (2).
Hence C is FR-injective by Theorem 4.6 again. Therefore, (*1F.7, F.9) is a
hereditary cotorsion theory.

(1) = (3) It follows from [11, Theorem 1.2.10].

(3)=(1) Let 0 = 4 — B— C — 0 be an exact sequence of complexes with
A and B FR-injective. For any finitely represented complex D, we have the
exact sequence

0 = Ext'(D, B) — Ext'(D, C) — Ext*(D, 4) = 0

Then Ext'(D,C) =0, and so C is FR-injective.

(2) = (4) For any FR-flat complex of right R-modules N, there is an exact
sequence 0 — K — P — N — 0 with P projective. Then K is FR-flat by (2), and
so Tory(N, D) = Tor|(K,D) =0 for any finitely represented complex D.

(4) = (2) Similar to (3) = (1). O
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