S. CHEN, S. PONNUSAMY AND X. WANG
KODAI MATH. J.
36 (2013), 313-324

AREA INTEGRAL MEANS, HARDY AND WEIGHTED
BERGMAN SPACES OF PLANAR HARMONIC MAPPINGS

SHAOLIN CHEN, SAMINATHAN PONNUSAMY AND XIANTAO WANG*

Abstract

In this paper, we investigate some properties of planar harmonic mappings. First,
we generalize the main results in [2] and [10], and then discuss the relationship between
area integral means and harmonic Hardy spaces or harmonic weighted Bergman
spaces. At the end, coefficient estimates of mappings in weighted Bergman spaces
are obtained.

1. Introduction and main results

For each r € (0, 1], we denote by D, the open disk {z € C: |z| < r} and by D,
the open unit disk Dy. The harmonic Hardy space #7(D) with 0 < p < o0
consists of all complex-valued functions f harmonic in D (i.e. f.: =0 in D) for
which

2n
171 5= sup (o /)" < 0, D) = oz [ 7)1 .
0<r<l 2n 0
The classical analytic Hardy space over the unit disk D, denoted usually by
AP(D), is obviously contained in # (D). We refer to [5, 7] for many basic
analytic and geometric properties of univalent harmonic mappings, in particular.
In this paper, we call a complex-valued harmonic function as a harmonic
mapping. For a harmonic mapping f in D and 0 <r < 1, the generalized
harmonic area function A(r) of f is defined by (cf. [2])

) = A4lr.f) = | NP daCa),
where dA denotes the normalized Lebesgue measure on D,

Vi=(f.f) and |Vf|= (£ + A7)
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In particular, if f is analytic inzD, then we denote the analytic area function of f
by A(r) i= A(r, 1) = [y, 1//(2)* dA2).

In [10, 16], the authors discussed the relationship between (analytic) Hardy
spaces and area functions. The main result in [10, Theorem 1] is as follows.

THEOREM A. Let f be analytic in D. Then, if 1 < p <2,

(1) f e’ D)= J; AP (r) dr < oo,

while if p > 2,

(2) J; APP(r) dr < 0 = f € #P(D).

We refer to [6, 8, 9, 10, 12, 13, 14, 15, 16] for results related to the theory of
analytic Hardy spaces, whereas for the harmonic Hardy spaces, the readers may
refer to [2, 4, 11]. In the context of recent investigation and interest on harmonic
mappings, it is natural to ask whether Theorem A continues to hold in the setting
of planar harmonic mappings over the unit disk. In this note we show that the
answer is yes.

THEOREM 1. Let f be harmonic in D. Then, if 1 < p <2,
1
3) fe A (D)= J AP (r, ) dr < o,
0
while if p > 2,

(4) E APP(r, f) dr < o0 = f € #7 (D).

As an application of Theorem 1, we obtain the following result.

THEOREM 2. Let fe #F(D). If 1 < p <2, then lim, ., (1 —r) " 4;(r, )
=0.

Remark 1. Theorems 1 and 2 show that the factor (1—r)°®/2 in |2,
Theorem 3] and the one (1 — r)‘s(z*p P in [2, Theorem 4] are redundant. Later, it
was brought to our attention that [2, Theorem 3] and [2, Theorem 4] were proved
by Stevi¢ in 2004 [19] in a slightly different method of proof.

For a given real number o, we consider the weighted area measure
dA:(z) = (1= |z|*)* dA(z) on D (cf. [20]). For 0 <r<1 and 0 < p < o0, we
define

My f) = [ ). N i) "
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where f is harmonic in D and
A0 = | (o),
D,

We call M, ,(r, f), the area integral means of f on D,.
It is well known that the measure A4; is finite on D if and only if o > —1.
In the following, for « > —1, we normalize the measure dA4; by letting

dA,(z) = (1 +2)(1 — |2]*)* dA(z).
For a harmonic mapping f in D, we denote

A,(D,) = JD dA,(2),

where o > —1.
For o > —1 and 0 < p < oo, the weighted Bergman space A
all harmonic mappings f on D such that

(JD @I dAa(Z))l/p <o if pe(0,m),

sup |f(z)] < if p=o0.
zeD

P
h,o

(D) consists of

h
1/ Nor, =

Our next result provides the relationship between area integral means and
harmonic Hardy spaces or harmonic weighted Bergman spaces.

THEOREM 3. Suppose 1 < p < oo, o is real, and f is harmonic in D. Then,
we have the following:

(@) The function M, ,(r, f) is strictly increasing in [0,1) unless f is constant.

(b) For a> —1, M, ,(r,f) is bounded in [0,1) if and only iffeAia(D).

(c) For a < —1, M, ,(r,f) is bounded in [0,1) if and only if f € #} (D).

Our final result concerns the coefficient estimate on mappings in harmonic
weighted Bergman spaces.

THEOREM 4. For 1 < p < oo, let f € A} (D) with

flz) = Zamzm + ZEmZ"’.
m=0 m=1
Then lao| < ||f llf,,va, and for m > 1,

4 hp
anl s o) < Wb mf{ 1 }
T

o<r<t | pm[] — poetl(2 — p)* 1) 1/p

In particular, if o« =0, then for m > 1,

Al fllo [ 2 " 2/p
|am|+|bm|s”f”b"°<+1) <1+pm> :
n pm 2
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Moreover, if « =0 and p = oo, then

40Ny
(5) ] + bl < =52

The estimate (5) is sharp and the only extremal functions are

_ 2l (1B
N 7 g 1—pzm)’

Sm(2)

where |y| =|p| =1, and m > 1.

2. Proofs of the main results

We begin this section with the following two basic lemmas which are useful
in the proof of Theorem 1.

LemMa B. Let a,be[0,00) and pe[l,0). Then we have
a’ +b” < (a+b)’ <2°"(a? + bP).
Lemma B is well-known (see for instance [18, Lemma 2.29]).
Lemma 1. Let [ be a complex-valued continuously differentiable function

defined on D and f = u+ iv, where u and v are real-valued functions. Then for
z=x+1iyeD,

(6) S22+ 1)) < [Vulx, )]+ [Volx, y);

where Vu = (uyx,uy,) and Vv = (vy,vy).

Proof. From the triangle inequality, it follows that

1 . . . 1 ) . 1
1| = z{ux —iuy + i(vy — ivy) }| < §{|ux — iuy| + |ox — ivy|} = §{|Vu| + |Vu|}
and
1 ) ) ) 1 . . 1
f:| = E{ux + iuy + i(vy + iv)) } < §{|ux — iuy| + |vx — ivy|} = §{|Vu| + |Vu|}

from which we easily obtain (6).
Finally, we remark that the equality sign in (6) does not always hold as the
function f(z) = z% + Z shows. O

Proof of Theorem 1. We first prove the implication (3). Let 1 < p <2 and
f=u+ive #'(D). Then u and v are real harmonic functions in D. By
Lemma B, we deduce that u,ve #/(D). Let Fi and F, be analytic functions
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defined on D such that Re Fy =u and Re F, =v. Riesz’ theorem (cf. [6,
Theorem 4.1]) shows that

/p
I, < (25) IRe il for k= 1.2

which, in particular, implies that F; € #7(D) for k =1,2. By the implication
(1) in Theorem A, it follows that

(7) Ll APP(r ) dr < oo for k=1,2.
By calculations, we see that for re (0,1),

®) A F) = | RGP aaE) = [ V)P da) =
and similarly,

O AdnF) = | IFEF dAE) = | Fe(x ) dA@) = Ao

T

The inequalities (7), (8), (9) and Lemmas B and 1 yield that

p/2

f:(2)?) dA (z)} dr

[ ae.na=| |, arer+

1r

5 p/2
<[] tre1+1a@) dA(z>] i

o LJp,
.

IA

5 p/2
(Vulx, )| + [Vo(x, ) dA(z)} dr
o L),

1r p/2

< 2(|Vu(x, ¥)|* + [Vo(x, ¥)]%) dA(z)] dr
o LJD,

< 20-1)/2 Ll [(L \Vu(x, y)|* dA (z))lj/2

" (JD [Voe, )17 dA<z>>p/2] dr
1

- 2<2ﬂ—1>/2j AP, Fy) + AP, Fy)) dir
0

< o0

which proves the implication (3).
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We next prove the implication (4). Let p>2 and f be harmonic in D.
Then f admits the canonical decomposition f = ¢+, where ¢ and  are
analytic in D with (0) =0. Then

| ter+wer) de = a1,

which implies
1 1

(10) J AP (r,¢) dr < oo and J APP(rh) dr < 0.
0 0

By the implication (2) in Theorem A and (10), we conclude that ¢,y € #7(D).
But then by the Minkowski inequality, we deduce that

2n

1/p
()" < (55 ] 00+ e ) ao)

< (L )7+ (),
which yields that | f]|, < c. O

Proof of Theorem 2. 1t is not difficult to see that
1 1 2/p
=020 < [ Ay dp e 1=y < ([ 400 a0)

By the implication (3) in Theorem 1, we conclude
1
J APP(r, f) dr < o0
0
from which we obtain that lim, i (1 —r)*?4,(r, ) = 0. O

LemMa 2. Suppose that f is harmonic on D and is constant in an open
neighborhood of the origin. Then f is constant throughout the unit disk D.

Proof.  As every harmonic function f in D admits the representation

o0

fz)=ao+ Zanz” + ignf”,
n=1

n=1

we may assume that f(z) = ao in D,, for some r € (0,1). But then the Parseval
relation, for 0 < p < r, gives

1

21 0
l? =52 [ 1re™) P a0 = laof + D (lf* + I
n=1

which obviously implies a, = b, =0 for all n > 1. Thus, f(z) =ay for zeD.
O
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Green’s theorem (cf. [2, 4, 17]) states that if ge C?(D), i.e., twice con-
tinuously differentiable on D, then

2n
(11) Z—IHJ g(re®) do = ¢(0) Jr%JD Ag(z) log

" d4(z), re(0,1).
0 zZ

LemMa 3. Let f be harmonic in D. Then, for p > 1, L(r, f) is a strictly
increasing function of r on (0,1) unless f is constant.

Proof. By (11), we have

b ) =3 [ AFEI) daco)

=] [(5-1)rerserE + e

" |f(z>|”|v7<z>|2} dA(2)

> pJD‘(Ifz(Z)I + LD ()7 dA(z)

>0

which implies I,(r, /) is increasing on r in (0,1). Moreover, the last inequality
implies that d—Ip(r,f) =0 if and only if f is constant in D,. But then, in this
r

case, Lemma 2 shows that f is constant on D. O

Proof of Theorem 3. We first prove (a). Since

(12) |, e asze = [ 200227100 do

we see that

(13) d

— P dA;(z) = 2r(1 — ) L(r, f).
&S] e ane =2 -2y

r

Simple calculations gives
d

(14) A, (D) =2r(1 — )%

By (12), (14) and Lemma 3, we have

10 f) — M2 f) = —— u%zp(z, f)]A;‘(D,) di > 0,
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which implies

(15) j S dAZ () < A; D)L f).

-

By Lemma 3, we know that the equality holds in (15) for some r only when f" is
constant. By (13), (15) and computations, we conclude that

d . N
d ) = A;:(D,.)EID, |f (27 dA;(z) = [p, 1£(2)] dAa(Z)EAa (D,)
dr e A:2(D,)

(1 - ) [A; (D)L, f) = [p, 1S (2] dA;(2)]

a 4:2(D,)

> 0.

Hence, the function M, ,(r, f) is strictly increasing on re[0,1) unless f is
constant.

Next we prove (b). We assume that o« > —1 and M, ,(r, /) is bounded.
Then by (a), we have

(16) tim || 1r@F daa)| = | rer e,

which implies f € 4} (D). On the other hand, if f € 4 ,(D), then the bound-

h,o

edness of M, ,(r, f) follows from (16).
In order to prove (c), we need some additional care.

CLam 1. Suppose that o < —1, 1 < p < o0, and that f is harmonic in D.
Then

|, e ase) = sup {L S da3(2) | < 0o £ =0

re(0,1)
Proof. Fix pe(0,1) so that p <r < 1. Then (a) yields that

Jo, I/ ()1 dA;(z)

It is not a difficult task to see that A4}(D,) — co and

|, rorae = | rerage asr—i-

)

which gives M, ,(p, f) = 0 for each p € (0,1). Therefore, f = 0 and the proof of
the claim is finished. O
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Finally, we prove (c). We assume that « < —1, 1 < p < oo and f is not
identically zero. Then A4}(D,) — oo as r — 1— and so Claim 1 implies

gTLuvwwma=vavmxa=w

By (a) and calculations, we get

sup MY, (r, f) = lim MY, (r. )

0<r<1

o, @I = 21" dA()
m N
= fp, (1= 127)7 dA(2)

2r(1 — r2)°‘i T f(re™) do
lim 21
- 2r(1 —r2)”
= lim J,(r, /) = 1717

and the proof of the theorem is complete. O

Proof of Theorem 4. 1Tt is not difficult to show that for p e [l, ), |f|’ is
subharmonic in D. Then for ze D and re[0,1 —|z|), we have

» 1 2n 0 ) »
17 < 52| Irte <21 ao,

Integration gives

7 pl—|z|
=@ @ < S [ [ -y e re o
0

T 0

h
|bl’,m)p’

SJV@VMm%ﬂV
D
which implies

Hf |l])/’l’vg(
[ =z 2 = 2P

(17) VACHI[ES

For {eD and re (0,1), let F({) = f(#)/r. Then

© 0
a = oM
F(C) = 70 + ZAmCm + Z BmC 17
m=1 m=1
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where A, = a,,r"™"! and B,, = b,,r"!. Hence for { €D,
h
(WAL
IF(O)] < M(r).

BT E

By (17), we see that |ag| < ||f|\,]fp'1. It follows from [1, Lemma 1] that for
m>1, '

4M
A +18] < 220

1 /’l]

. 1
Olnfl m a1 atlyl/p [
T <r<blpm[] — petl (2 — )"

If « =0, then

4111 1 T AR 2p
g < W = Wlha 2y ()
T 0<r<1 rm(l _ r) /P T pm 2

Since
m 2/p
1im(i+1> (1+@> —1,
p—o\ pm 2

h
417l o
p—

we conclude that
(18) |am| + |bm| <

Thus, for p = co, the estimate (18) is sharp. By the subordination in the proof
of [3, Theorem 1], we know that the only extreme functions are

‘ 2 hx 1 m
o) = 0 i (10g 1) (g = ),

whose values are confined to DHfH[h% .= {z:|z2| < ||f||,},’x70}. O
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