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Abstract

This is a continuation of our previous paper [4]. In the class of hyperbolic

manifolds in the sense of S. Kobayashi [3], we obtained in [4] an intrinsic character-

ization of bounded symmetric domains in Cn from the viewpoint of the holomorphic

automorphism group. In connection with this, we give in this paper a structure

theorem on di¤eomorphisms between Siegel domains of the first kind that preserve

the holomorphic automorphism groups. As an application, we obtain a well-known

fact [2] that two Siegel domains of the first kind are biholomorphically equivalent if and

only if they are linearly equivalent.

1. Introduction

Let M be a connected complex manifold and AutðMÞ the group of all
biholomorphic automorphisms of M equipped with the compact-open topology.
Then one of the fundamental problems in complex geometric analysis is to
determine the complex analytic structure of M by its holomorphic automorphism
group AutðMÞ. Of course, this is impossible without any further assumptions
on M, since there exist many domains in Cn that are not biholomorphically
equivalent although their holomorphic automorphism groups are isomorphic as
topological groups. However, in the class of hyperbolic manifolds in the sense
of Kobayashi [3], we obtained the following characterization of bounded sym-
metric domains by their holomorphic automorphism groups (cf. [4; Corollary 2]):
Let M be a connected hyperbolic manifold of dimension n and let D be a bounded
symmetric domain in Cn. Assume that AutðMÞ is isomorphic to AutðDÞ as
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topological groups. Then M is biholomorphically equivalent to D. Here it would
be natural to ask what happens when the domain D is a homogeneous bounded
(not necessarily symmetric) domains in Cn. In this paper, we study exclusively
Siegel domains of the first kind in conection with this question and establish the
following: (For the definition of Siegel domains of the first kind, see Section 1.)

Theorem 1. Let TW and TW 0 be the Siegel domains of the first kind in Cn

associated to convex cones W and W 0 in Rn, respectively. Let GðTWÞ and GðTW 0 Þ
be the identity components of AutðTWÞ and AutðTW 0 Þ, respectively. Assume that
there exists a real analytic di¤eomorphism F : TW ! TW 0 with FGðTWÞF �1 ¼
GðTW 0 Þ. Then, after replacing F by a suitable di¤eomorphism of the form
s � F , s A GðTW 0 Þ, if necessary, F can be written in the form

FðzÞ ¼ PxþUðyÞ þ
ffiffiffiffiffiffiffi
�1

p
VðyÞ; z ¼ xþ

ffiffiffiffiffiffiffi
�1

p
y A TW;

where P A GLðn;RÞ and U : W ! Rn is a real analytic mapping, and V : W ! W 0 is
a real analytic di¤eomorphism which satisfies the following:

VðhyÞ ¼ PhP�1VðyÞ for all h A GðWÞ; y A W;(*)

where GðWÞ is the identity component of the linear automorphism group GLðWÞ of
the convex cone W in Rn.

As an immediate consequence of this theorem, we obtain the following well-
known fact (cf. [2], [5]):

Corollary. Let TW and TW 0 be Siegel domains of the first kind in Cn.
Then TW is biholomorphically equivalent to TW 0 if and only if there exists a
di¤eomorphism V : W ! W 0 having the form VðyÞ ¼ Py, y A W, with P A GLðn;RÞ.

Theorem 2. In the same notations as in Theorem 1, assume that there exists
a topological group isomorphism F : GðTWÞ ! GðTW 0 Þ and assume further that one
of two Siegel domains TW and TW 0 is homogeneous. Then the other is also
homogeneous and F induces a real analytic di¤eomorphism F : TW ! TW 0 such
that Fðg � zÞ ¼ FðgÞ � FðzÞ for all g A GðTWÞ and all z A TW. In particular, after
replacing F by a suitable topological group isomorphism of the form sFð�Þs�1,
s A GðTW 0 Þ, if necessary, F can be expressed just as in Theorem 1. Moreover, the
restriction of F to the identity component AðTWÞ of the a‰ne automorphism group
of TW can be explicitly given by the following:

F ðg � zÞ ¼ PhP�1FðzÞ þ Paþ ðIn � PhP�1Þao; z A TW;ðaÞ
for every element g ¼ ðh; aÞ A GðWÞ � Rn ¼ AðTWÞ, where P A GLðn;RÞ and In is
the identity matrix of degree n, and ao is an element of Rn.

In Section 1, we recall basic concepts on Siegel domains of the first kind in
Cn and collect some preliminary facts on them. After that, our Theorems and
Corollary will be proven in Section 2. In the final Section 3, we study the linear
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equivalence problem for homogeneous convex cones in Rn in connection with
our subject in this paper. In particular, we show that two homogeneous Siegel
domains of the first kind in Cn with na 3 are biholomorphically equivalent if
and only if the identity components of their holomorphic automorphism groups
are isomorphic as topological groups.

1. Preliminaries

For later purpose, in this section we shall recall some definitions and known
facts on Siegel domains introduced by Pyatetskii-Shapiro [6].

Throughout this paper, we use the following notation: Let z ¼ ðz1; . . . ; znÞ
be a point of Cn. Then, writing zj ¼ xj þ

ffiffiffiffiffiffiffi
�1

p
yj with xj ; yj A R for 1a ja n,

we set x ¼ ðx1; . . . ; xnÞ and y ¼ ðy1; . . . ; ynÞ. Thus the point z A Cn can be
expressed as z ¼ xþ

ffiffiffiffiffiffiffi
�1

p
y with x; y A Rn.

Let W be a convex domain in Rn. Then W is called a convex cone if W
contains no entire straight line and ly A W whenever y A W and l > 0. Let W be
a convex cone in Rn. Then the domain TW in Cn defined by

TW ¼ fxþ
ffiffiffiffiffiffiffi
�1

p
y A Cn j y A Wg

is called a Siegel domain of the first kind associated to the convex cone W. It
is known [6] that every Siegel domain TW is biholomorphically equivalent to a
bounded domain in Cn. Hence, its holomorphic automorphism group AutðTWÞ
has the structure of a Lie group with respect to the compact-open topology by
a well-known theorem of H. Cartan and the Lie algebra gðTWÞ of all complete
holomorphic vector fields on TW is canonically identified with the Lie algebra of
AutðTWÞ. By the definition of TW, the one-parameter groups ffa

t gt AR, fctgt AR
defined by

fa
t : z 7! zþ ta; ct : z 7! ðexp tÞz

are contained in AutðTWÞ, where a is an arbitrary element of Rn. Hence, the
following holomorphic vector fields on TW are contained in gðTWÞ:

qj :¼
q

qzj
ð1a ja nÞ and q :¼

Xn
j¼1

zj
q

qzj
:

More precisely, we have the following:

Structure Theorem (Kaup-Matsushima-Ochiai [2]). Let TW be the Siegel
domain of the first kind in Cn associated to a convex cone W in Rn and let gðTWÞ
be the Lie algebra consisting of all complete holomorphic vector fields on TW.
Then we have:

(1) gðTWÞ ¼ g�1 þ g0 þ g1, where each gl consists of all vector fields in gðTWÞ
whose components are homogeneous polynomials in z1; . . . ; zn of degree lþ 1 with
real coe‰cients. In particular, g�1, g0, respectively, consist of vector fields of the
form

Pn
j¼1 ajqj ,

Pn
k¼1ð

Pn
j¼1 akjzjÞqk with aj; akj A R for all j, k.
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(2) gl is the eigenspace of ad q for the eigenvalue l and ½gl; gs�H glþs for all
l, s.

(3) Let aðTWÞ ¼ g�1 þ g0. Then aðTWÞ is the subalgebra of gðTWÞ corre-
sponding to the subgroup A¤ðTWÞ of AutðTWÞ consisting of all a‰ne transforma-
tions of Cn leaving TW invariant. And, g0 is the Lie algebra of all X A gðTWÞ
which are tangent to the real submanifold

ffiffiffiffiffiffiffi
�1

p
W ¼ fxþ

ffiffiffiffiffiffiffi
�1

p
y A TW j x ¼ 0g; and

hence g0 is identified with the Lie algebra of the group GLðWÞ consisting of all non-
singular linear transformations of Rn leaving W invariant.

In this paper, we denote by AðTWÞ and GðWÞ the identity components of
A¤ðTWÞ and GLðWÞ, respectively. Then AðTWÞ may be regarded as the Lie
group GðWÞ � Rn with the multiplication given by

ðh1; a1Þðh2; a2Þ ¼ ðh1h2; h1a2 þ a1Þð1:1Þ

for ðhj; ajÞ A GðWÞ � Rn, j ¼ 1; 2, and the action of AðTWÞ ¼ GðWÞ � Rn on TW is
given by

g � z ¼ hxþ aþ
ffiffiffiffiffiffiffi
�1

p
hy; z ¼ xþ

ffiffiffiffiffiffiffi
�1

p
y A TW;ð1:2Þ

for all g ¼ ðh; aÞ A GðWÞ � Rn ¼ AðTWÞ.
Now let us consider a real semi-simple Lie algebra s and its subalgebra t.

Then t is said to be triangular if there exists a basis of s with respect to which
ad X is represented by an upper triangular matrix for every X A t. Clearly, any
triangular subalgebra is solvable. Let g be a real Lie algebra and t a solvable
subalgebra of g. Then t is said to be maximal triangular if it contains the radical
r of g and if t=r is a maximal triangular subalgebra of the semi-simple Lie algebra
g=r. We finish this section by recalling the following:

Lemma 1 (cf. [5; Lemmas 6 and 7]). Let g be a real Lie algebra and gðTWÞ
the Lie algebra consisting of all complete holomorphic vector fields on a Siegel
domain TW of the first kind in Cn. Then we have:

(1) Any two maximal triangular subalgebras of g are conjugate under an inner
automorphism of g.

(2) There exists a maximal triangular subalgebra t of gðTWÞ such that q A t
and t ¼ g�1 þ tV g0.

2. Proofs of Theorems and Corollary

We start with the following lemma, which will play an important role in the
proof of Theorem 1.

Lemma 2. Let TW be a Siegel domain of the first kind in Cn and let aðTWÞ ¼
g�1 þ g0 be the Lie algebra of A¤ðTWÞ, as in the Structure Theorem. Let a be
any abelian ideal of aðTWÞ. Then a is contained in the ideal g�1 of aðTWÞ. In
particular, g�1 is the unique maximal abelian ideal of aðTWÞ.
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Proof. Our proof is almost identical to that of [8; Lemma 4]. Although
there are overlaps with that, we carry out the proof in detail for the sake of
completeness and self-containedness.

We first observe that every element X of aðTWÞ can be written in the form

X ¼
Xn
j¼1

fjðzÞqj;ð2:1Þ

where every fjðzÞ is a polynomial of degree at most one, and that

½qi;X � ¼
Xn
j¼1

ðqi fjðzÞÞqj for 1a ia n:ð2:2Þ

Now, assuming to the contrary that aQ g�1, we would like to derive a
contradiction. To this end, note that

½g�1; a�H g�1 V a;ð2:3Þ

since g�1 and a are ideals of aðTWÞ. By setting l ¼ dimðg�1 V aÞ, the proof is
now divided into three cases as follows:

Case (a). l ¼ 0: By (2.3) we have ½qi; a� ¼ f0g for every 1a ia n. Thus,
taking any element X of a and writing X in the form (2.1), we have

qi fjðzÞ ¼ 0 for 1a ia n:

This combined with the fact gðTWÞV
ffiffiffiffiffiffiffi
�1

p
gðTWÞ ¼ f0g yields that every fjðzÞ is a

real constant. Accordingly, X A g�1 and aH g�1, a contradiction.

Case (b). 0 < l < n: Set k ¼ n� l. Then, by a change of linear coor-
dinates, if necessary, we may assume that

g�1 V a ¼ Rfqkþ1; . . . ; qng;

where the set on the right-hand side is the subspace of aðTWÞ spanned by qj,
k þ 1a ja n, over R. Thus

½qi; a�HRfqkþ1; . . . ; qng for 1a ia nð2:4Þ

by (2.3). Also, since a is abelian, we have

½qi; a� ¼ f0g for k þ 1a ia n:ð2:5Þ

Take any element X of a and write X in the form (2.1). It then follows from
(2.4) and (2.5) that

qi fjðzÞ ¼ 0 for 1a ia n; 1a ja k; and

qi fjðzÞ ¼ 0 for k þ 1a ia n; 1a ja n:
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Hence, every function fjðzÞ for 1a ja k reduces to a constant aj A C and every
function fjðzÞ for k þ 1a ja n is independent on zkþ1; . . . ; zn; accordingly, X has
the form

X ¼
Xk
j¼1

ajqj þ
Xn
j¼kþ1

fjðz1; . . . ; zkÞqj:

Moreover, the Structure Theorem says that aj A R for every 1a ja k, and so

X 0 :¼
Xn
j¼kþ1

fjðz1; . . . ; zkÞqj A aðTWÞ:

Therefore, applying [7; Sect. 3, Lemma 6] to the complete holomorphic vector
field X 0 on TW, we obtain that every fjðz1; . . . ; zkÞ also reduces to a real constant.
Thus X A g�1 and aH g�1, a contradiction.

Case (c). l ¼ n: Since g�1 H a in this case and since a is abelian, we have
½g�1; a� ¼ f0g. Thus, repeating the same argument as in the case (a), one can see
that aH g�1; a contradiction. Therefore the proof of the lemma is completed.

r

Remark. Let h be a subalgebra of aðTWÞ containing g�1 and let a be an
abelian ideal of h. Then, a glance at the proof of Lemma 2 tells us that aH g�1.
Therefore, g�1 is also the unique maximal abelian ideal of h.

Proof of Theorem 1. For the sake of simplicity, we set D ¼ TW and
D 0 ¼ TW 0 for the given Siegel domains TW and TW 0 in Cn and denote by z ¼
ðz1; . . . ; znÞ, z 0 ¼ ðz 01; . . . ; z 0nÞ the coordinate systems of the ambiant spaces of D,
D 0 respectively. Also we denote the objects relative to D 0 by the corresponding
symbols of D with primes. So, for instance, q 0 stands for the vector field q 0 ¼Pn

j¼1 z
0
jq

0
j on D 0.

Now, assume that there exists a real analytic di¤eomorphism F : D ! D 0

satisfying the condition FGðTWÞF �1 ¼ GðTW 0 Þ. Then the di¤erential F� of F
induces a Lie algebra isomorphism F� : gðDÞ ! gðD 0Þ. Let t and t 0, respectively,
be the maximal triangular subalgebras of gðDÞ and gðD 0Þ satisfying the conditions
in (2) of Lemma 1. Then, by the assertion (1) of Lemma 1 there exists an ele-
ment s A GðD 0Þ such that s�ðF�tÞ ¼ t 0. Therefore, replacing F by s � F if nec-
essary, we may assume that F�t ¼ t 0. Then F�g�1 is now a maximal abelian
ideal of t 0; and consequently, F�g�1 ¼ g 0

�1 by Lemma 2.
Express the di¤eomorphism F : D ! D 0 as

FðzÞ ¼ Uðx; yÞ þ
ffiffiffiffiffiffiffi
�1

p
Vðx; yÞ; z ¼ xþ

ffiffiffiffiffiffiffi
�1

p
y A D;

where U : D ! Rn and V : D ! W 0 are real analytic mappings defined on D.
Since F�g�1 ¼ g 0

�1 as was shown above, there exists an element P A GLðn;RÞ
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such that
Fðzþ aÞ ¼ F ðzÞ þ Pa for all z A D; a A Rn

(think of a as column vectors), or equivalently

Uðxþ a; yÞ ¼ Uðx; yÞ þ Pa; Vðxþ a; yÞ ¼ Vðx; yÞ
for all x; a A Rn and all y A W. Obviously, these equalities imply that

Uðx; yÞ can be written in the form Uðx; yÞ ¼ PxþUðyÞ,ð2:6Þ
where U : W ! Rn is a real analytic mapping;

and

Vðx; yÞ is independent on the variable x; and hence, it inducesð2:7Þ
a real analytic di¤eomorphism, say again, V : W ! W 0.

Next we wish to prove that this V : W ! W 0 satisfies the condition (*) in the
theorem. To this end, put ŴW ¼ P�1ðW 0Þ, the image cone of W 0 under the non-
singular linear transformation of Rn induced by P�1 A GLðn;RÞ, and consider
the di¤eomorphism V̂V : W ! ŴW defined by V̂VðyÞ ¼ P�1VðyÞ for y A W. Once we
have shown that V̂VðhyÞ ¼ hV̂VðyÞ for all h A GðWÞ and all y A W, it is clear that
V : W ! W 0 satisfies the condition (*).

Thus, taking P�1F instead of F , if necessary, we may assume that P ¼ In,
the identity matrix of degree n. Accordingly, we have

F�ðqiÞ ¼ q 0
i for every 1a ia n:

Set ~qq ¼ F�ðqÞ. Then, since q A t and F�ðtÞ ¼ t 0 H aðD 0Þ, ~qq can be written in the
form ~qq ¼ ao þ Xo, where ao A g 0

�1 and Xo A g 0
0. Moreover, since ½qi; q� ¼ qi for

every 1a ia n, a simple computation shows that Xo ¼ q 0; so that ~qq ¼ ao þ q 0.
Here let us define the vector subspaces ĝg 0

0, ~gg 0
0 of gðD 0Þ by setting

ĝg 0
0 ¼ fY A gðD 0Þ j ½~qq;Y � ¼ 0g; ~gg 0

0 ¼ f½ao;X � þ X jX A g 0
0g:

Then it can be seen that F�g0 ¼ ĝg 0
0, ~gg

0
0 H ĝg 0

0 and ~gg 0
0 is linearly isomorphic to g 0

0 via
the natural correspondence. Thus

dim g0 ¼ dim F�ðg0Þ ¼ dim ĝg 0
0 b dim ~gg 0

0 ¼ dim g 0
0:

Interchanging the role of F and F �1 in the argument above, we obtain the
reverse inequality: dim g 0

0 b dim g0. Therefore

F�g0 ¼ ĝg 0
0 ¼ ~gg 0

0 and F�ðYÞ ¼ ½ao;X � þ X for every element Y A g0;

where X is an element of g 0
0 uniquely determined by the given Y . More

precisely, by considering the one-parameter groups generated by the complete
holomorphic vector fields Y A g0, X A g 0

0 and ½ao;X � A g 0
�1, respectively, it is easily

checked that X ¼ V�ðYÞ under the canonical identification g0 (resp. g 0
0) with

the Lie algebra of GLðWÞ (resp. GLðW 0Þ). As a result, we have shown that the
induced isomorphism F� : g0 ! ~gg 0

0 is given by

F�ðYÞ ¼ ½ao;V�ðYÞ� þ V�ðY Þ for Y A g0
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and, in particular, F�aðTWÞ ¼ aðTW 0 Þ. On the other hand, we here assert that

V�ðYÞ ¼
Xn
k¼1

Xn
j¼1

akjz
0
j

 !
q 0
k for every Y ¼

Xn
k¼1

Xn
j¼1

akjzj

 !
qk A g0:ð2:8Þ

Indeed, since V�ðY Þ A g 0
0, it can be expressed as

V�ðYÞ ¼
Xn
k¼1

Xn
j¼1

bkjz
0
j

 !
q 0
k with bkj A R for all k; j:

Since ½ql;Y � ¼
Pn

k¼1 aklqk ð1a la nÞ and ½ao;V�ðY Þ� A g 0
�1, it then follows

that

Xn
k¼1

aklq
0
k ¼ F�ð½ql;Y �Þ ¼ ½q 0

l;V�ðYÞ� ¼
Xn
k¼1

bklq
0
k

for every 1a la n; consequently, akl ¼ bkl for all k, l, as asserted. Clearly the
assertion (2.8) guarantees us that VðyÞ satisfies the condition (*) in Theorem 1;
thereby completing the proof of Theorem 1. r

Proof of Corollary. Assume that there exists a di¤eomorphism V : W ! W 0

of the form VðyÞ ¼ Py, y A W, where P A GLðn;RÞ. Then it is clear that the
non-singular linear transformation LðzÞ :¼ Pz of Cn gives a biholomorphic
equivalence between TW and TW 0 .

Conversely, assume that there exists a biholomorphic mapping F : TW ! TW 0 .
Of course, this F satisfies the condition FGðTWÞF �1 ¼ GðTW 0 Þ required in
Theorem 1. Hence, by the same reasoning as in the proof of Theorem 1,
we may assume that FðzÞ has the form described in Theorem 1. Then, since F is
holomorphic, it follows from the Cauchy-Riemann equations that VðyÞ has to be
of the form VðyÞ ¼ Pyþ yo, where yo is a constant vector in Rn. Moreover,
noting the fact that the dilations drðyÞ ¼ ry ðr > 0Þ in Rn belong to GðWÞ, we
conclude by (*) in Theorem 1 that yo ¼ 0; and hence, VðyÞ ¼ Py on W. This
completes the proof of Corollary. r

Proof of Theorem 2. We retain the notation in the proof of Theorem 1.
So D and D 0 denote the Siegel domains TW and TW 0 , respectively. Also we set
G ¼ GðDÞ and G 0 ¼ GðD 0Þ, for simplicity.

Now, assume that there exists a topological group isomorphism F : G ! G 0

as in Theorem 2. Then, since both the groups G and G 0 are Lie groups, F is
necessarily a Lie group isomorphism. We denote by dF : gðDÞ ! gðD 0Þ the Lie
algebra isomorphism induced by F.

Choose two points p A D and p 0 A D 0 arbitrarily and denote by K and K 0

the isotropy subgroups of G and G 0 at p and p 0, respectively. Without loss of
generality, we may assume that D is homogeneous; so that D can be represented
as the coset space D ¼ G=K and K is a maximal compact subgroup of G. On
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the other hand, K 0 is a compact subgroup of G 0. Under these situations, we
first show that D 0 is also homogeneous. For this purpose, choose a maximal
compact subgroup K̂K of G 0 containing K 0. Then, since any two maximal
compact subgroups of a connected Lie group are always conjugate under an
inner automorphism, we can find an element s A G 0 such that K̂K ¼ sFðKÞs�1.
Moreover, notice that the orbit G 0 � p 0 ¼ G 0=K 0 of G 0 passing through p 0 is a real
analytic submanifold of D 0. Thus

2nb dim G 0=K 0
b dim G 0=K̂K ¼ dim G=K ¼ 2n;

from which we have dim G 0=K 0 ¼ 2n and K 0 ¼ K̂K ; hence, the orbit G 0 � p 0 ¼
G 0=K 0 is open in D 0. Of course, the same is true for any point q 0 A D 0 with
q 0 0 p 0. Consequently, the connectivity of D 0 implies that D 0 ¼ G 0=K 0, that is,
D 0 is also homogeneous, as desired.

Replacing F by the isomorphism sFð�Þs�1 if necessary, we may now assume
that K 0 ¼ FðKÞ. Hence we can define a real analytic di¤eomorphism F : D ¼
G=K ! G 0=K 0 ¼ D 0 by setting

FðgKÞ ¼ FðgÞK 0 for all g A G:

Clearly this F satisfies the condition

F ðg � zÞ ¼ FðgÞ � FðzÞ for all g A G; z A D;

accordingly, we have FGðDÞF �1 ¼ GðD 0Þ and F� ¼ dF. Therefore, by the same
reasoning as in the proof of Theorem 1, we may assume that

F�aðDÞ ¼ aðD 0Þ; F�ðtÞ ¼ t 0;ð2:9Þ
and

F has the form FðzÞ ¼ PxþUðyÞ þ
ffiffiffiffiffiffiffi
�1

p
VðyÞ as in Theorem 1.ð2:10Þ

Under these assumptions, our next task is to show that there exists the
relationship ðaÞ between F and F . We first verify this for every element h of
the subgroup GðWÞ of AðDÞ, that is, for g ¼ ðh; 0Þ A GðWÞ � Rn ¼ AðDÞ. To this
end, notice that FðAðDÞÞ ¼ AðD 0Þ by (2.9). Thus we can write

Fððh; 0ÞÞ ¼ ðwðhÞ;cðhÞÞ for every h A GðWÞ;
where w : GðWÞ ! GðW 0Þ and c : GðWÞ ! Rn are real analytic mappings. From
the relation F ððh; 0Þ � zÞ ¼ Fððh; 0ÞÞ � F ðzÞ and the action rule of AðDÞ (resp.
AðD 0Þ) on D (resp. D 0) given in (1.2), it then follows that

PhxþUðhyÞ ¼ wðhÞðPxþUðyÞÞ þ cðhÞ; VðhyÞ ¼ wðhÞVðyÞ:
These combined with (*) in Theorem 1 yield at once that

wðhÞ ¼ PhP�1; UðhyÞ ¼ PhP�1UðyÞ þ cðhÞ for all h A GðWÞ; y A W:

We now wish to prove that there exists a unique element ao A Rn such that

cðhÞ ¼ ðIn � PhP�1Þao for all h A GðWÞ:ð2:11Þ
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To prove this, recall the multiplication rule (1.1). Then

cðh1h2Þ ¼ Ph1P
�1cðh2Þ þ cðh1Þ for all h1; h2 A GðWÞ:ð2:12Þ

Take an arbitrary element r A R with 0 < r < 1 and consider the dilation
drðyÞ ¼ ry in Rn. Since dr belongs to the center of GðWÞ, it then follows
from (2.12) that

cðhÞ ¼ ð1� rÞ�1ðIn � PhP�1ÞcðdrÞ for all h A GðWÞ:
In particular, we have

cððdrÞkÞ ¼ ð1� rÞ�1ð1� rkÞcðdrÞ for all k ¼ 1; 2; . . . :

Since rk ! 0 as k ! y, this implies the existence of an element ao A Rn such
that ð1� rÞ�1cðdrÞ ¼ ao. Obviously, such an element ao is independent on the
choice of 0 < r < 1 and satisfies (2.11). Summarizing the above, we obtain the
following:

Fððh; 0Þ � zÞ ¼ PhP�1F ðzÞ þ ðIn � PhP�1Þao for h A GðWÞ; z A D:ð2:13Þ
Finally, take an arbitrary element g ¼ ðh; aÞ A AðDÞ. Then, since g � z ¼

ðh; 0Þ � zþ a, Fðzþ aÞ ¼ FðzÞ þ Pa on D, our relationship (a) is now an imme-
diate consequence of (2.13). Therefore the proof of Theorem 2 is completed.

r

3. Some comments

In connection with our fundamental question in this paper, we shall study
the linear equivalence problem for homogeneous convex cones in Rn.

Throughout this section, we always assume that TW and TW 0 are the homo-
geneous Siegel domains of the first kind associated to convex cones W and W 0 in
Rn, respectively. Therefore the linear automorphism groups GðWÞ and GðW 0Þ act
transitively on W and on W 0 (cf. [2]).

Now assume that there exists a topological group isomorphism F : GðTWÞ !
GðTW 0 Þ. It then follows from Theorems 1 and 2 that there exists a real analytic
di¤eomorphism V : W ! W 0 satisfying the condition (*): VðhyÞ ¼ PhP�1VðyÞ
for all h A GðWÞ and all y A W. Once it is shown that this V : W ! W 0 is the
restriction to W of some linear transformation of Rn or there exists a non-singular
linear transformation l : Rn ! Rn such that lðWÞ ¼ P�1ðW 0Þ, TW is necessarily
biholomorphic to TW 0 . Taking this into account, we would like to clear up the
following:

Question. Under the assumption that there exists a real anlytic di¤eomor-
phism V : W ! W 0 satisfying the condition (*), does there exist a non-singular
linear transformation L : Rn ! Rn such that LðWÞ ¼ W 0?

Although this cannot be achieved in full generality at this moment, we first
give the following Fact 1. And, after that, we will come back to this question.

308 akio kodama and satoru shimizu



In order to state Fact 1, we need a preparation. Let L be any homogeneous
convex cone in Rn. Then it is known that there is a GðLÞ-invariant Riemannian
metric gL on L that is naturally constructed by means of its characteristic
function jL (cf. [9]). This metric is called the canonical metric on L and the
characteristic function jL has the property:

jLðhyÞ ¼ jLðyÞ=detðhÞ for all h A GðLÞ; y A L:ð3:1Þ
In these notations, we have the following:

Fact 1. The di¤eomorphism V : W ! W 0 is an isometry with respect to the
canonical metrics gW and gW 0 .

Indeed, by (3.1) and (*) we have

jW 0 ðVðhyÞÞ=jWðhyÞ ¼ jW 0 ðVðyÞÞ=jWðyÞ for all h A GðWÞ; y A W:

Hence the homogeniety of W tells us that jW 0 ðVðyÞÞ coincides with jWðyÞ, up to
a positive constant factor. From this, we can check easily that V : ðW; gWÞ !
ðW 0; gW 0 Þ is, in fact, an isometry, as desired. r

Let us return to the question above. Since W and W 0 are homogeneous
convex cones in Rn, there exist maximal triangular subgroups T and T 0 of GðWÞ
and of GðW 0Þ that act simply transitively on W and on W 0, respectively (cf. [9]).
Let t be the Lie algebra of T and choose a basis fX1; . . . ;Xng for t. Without
loss of generality, we may assume that every element of T can be represented as
an upper triangular matrix with respect to the coordinate system ðy1; . . . ; ynÞ of
the ambiant space Rn of W. Thus the complete vector field Xj on W has the
form

Xj ¼
Xn
k¼1

pjkðyÞ
q

qyk
for 1a ja n;ð3:2Þ

where pjkðyÞ are homogeneous polynomials in yk; ykþ1; . . . ; yn of degree one with
real coe‰cients for 1a ja n, 1a ka n.

Consider now the function PðyÞ on Rn and the subset A of Rn defined by

PðyÞ ¼ det

p11ðyÞ p12ðyÞ � � � p1nðyÞ
p21ðyÞ p22ðyÞ � � � p2nðyÞ

..

. ..
. ..

.

pn1ðyÞ pn2ðyÞ � � � pnnðyÞ

0
BBBB@

1
CCCCA for y A Rnð3:3Þ

and

A ¼ fy A Rn jPðyÞ ¼ 0g:
Note that, for any point yo A Rn, the orbit T � yo of T passing through yo is
a real analytic submanifold of Rn of dimensiona n. Then A is nothing but
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the set consisting of all points yo A Rn with dim T � yo < n. In particular, A and
its complement X :¼ RnnA in Rn are invariant under the T-action on Rn.
Moreover, since PðyÞ is a real homogeneous polynomial of degree n by (3.2)
and (3.3), A is a real algebraic subset of Rn invariant under the symmetry
s0 : y 7! �y in Rn at the origin o. Notice that PðyÞ can be expressed as PðyÞ ¼
ynQðyÞ, where QðyÞ is a real homogeneous polynomial of degree n� 1. Thus,
the coordinate hyperplane fyn ¼ 0g is contained in A.

Now, as in the proof of Theorem 1, we put ŴW ¼ P�1ðW 0Þ and consider the
di¤eomorphism V̂V : W ! ŴW defined by V̂VðyÞ ¼ P�1VðyÞ for y A W. It then
follows from the assertion (*) that

V̂VðhyÞ ¼ hV̂VðyÞ for all h A T ; y A W:ð3:4Þ

Therefore, T acts simply transitively on the convex cone ŴW as well as on W.
Under this situation, our question above can be restated as follows:

Does there exist a non-singular linear transformation

L : Rn ! Rn satisfying LðWÞ ¼ ŴW?

To investigate this, it should be remarked that both the cones W and ŴW
are connected components of the complement X of A in Rn and that T acts
transitively on each connected component of X. Taking this into account, we
define a real algebraic subgroup A of GLðn;RÞ by

A ¼ fh A GLðn;RÞ j hðAÞ ¼ Ag:

Then A acts on the open subset X of Rn as a Lie transformation group and the
identity component Ao of A leaves each connected component of X invariant.
Therefore, T is an algebraic subgroup of Ao and hence Ao also acts transitively
on each connected component of X. Observe here that the quotient group
ÂA :¼ A=Ao acts naturally on the set X consisting of all connected components
of X. Thus, if this ÂA-action on X is transitive, one may conclude that W is
linearly equivalent to ŴW. It is not clear whether this is true or not, in general.
However, at least in the case where na 3, we can give an a‰rmative answer to
the question as follows:

Fact 2. Let W and ŴW be homogeneous convex cones in Rn with na 3 and
assume that there exists a real analytic di¤eomorphism V̂V : W ! ŴW satisfying the
condition (3.4). Then there exists a non-singular linear transformation L : Rn !
Rn such that LðWÞ ¼ ŴW.

Since this is clear when na 2, we consider the case of n ¼ 3. Recall that
the real algebraic set A is invariant under the symmetry s0ðyÞ ¼ �y in R3 and
the coordinate hyperplane fy3 ¼ 0g is contained in A. Thus, in order to show
Fact 2, we may assume that both the cones W and ŴW are contained in the half
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space fy3 > 0g. Now, put

P ¼ fðy1; y2; y3Þ A W j y3 ¼ 1g and P̂P ¼ fðy1; y2; y3Þ A ŴW j y3 ¼ 1g;

the cross-sections of W and ŴW by the hyperplane fy3 ¼ 1g, and consider the
subgroup T1 of T consisting of all elements h having the form

h ¼
h11 h12 h13

0 h22 h23

0 0 1

0
B@

1
CA:

Then P and P̂P are convex domains in the hyperplane fy3 ¼ 1g and clearly they
contain no entire straight line. Moreover, T1 is a two-dimensional Lie group
acting simply transitively on P as well as on P̂P as an a‰ne transformation group.
On the other hand, it is known (cf. [9]) that any two-dimensional a‰ne homo-
geneous convex domain not completely containing any straight line is a‰nely
equivalent to either

R2
þ :¼ fðx; yÞ A R2 j x > 0; y > 0g or E :¼ fðx; yÞ A R2 j y > x2g

and further any maximal triangular group acting simply transitively on R2
þ is

abelian, while that on E is not. Consequently, P and P̂P have to be a‰nely
equivalent, that is, there exists an a‰ne transformation h : fy3 ¼ 1g ! fy3 ¼ 1g
such that hðPÞ ¼ P̂P. Making use of this h, we can now define a mapping
L : W ! ŴW by the following:

LðyÞ ¼ y3 � hðy1=y3; y2=y3; 1Þ for y ¼ ðy1; y2; y3Þ A W:

Then it is an easy matter to see that L gives a linear equivalence between W and
ŴW; thereby completing the proof of Fact 2. r

As an immediate consequence of Fact 2, we obtain the following:

Fact 3. Let TW and TW 0 be the homogeneous Siegel domains of the first kind
associated to convex cones W and W 0 in Rn with na 3. Then TW is biholomor-
phically equivalent to TW 0 if and only if there exists a topological group isomor-
phism F : GðTWÞ ! GðTW 0 Þ.

Indeed, if there exists a topological group isomorphism F : GðTWÞ ! GðTW 0 Þ,
then by the proof of Theorem 2 there exists a real analytic di¤eomorphism
V̂V : W ! ŴW satisfying the condition (3.4). Hence W and W 0 are linearly equiv-
alent by Fact 2; and accordingly, TW and TW 0 are biholomorphically equivalent.
The converse is obvious; completing the proof of Fact 3. r

Finally it should be remarked that Fact 3 also comes from our previous
result stated in the introduction. In fact, it is well-known that every homoge-
neous bounded domain in Cn with na 3 is symmetric by a result of E. Cartan
[1]; and hence, our previous result [4; Corollary 2] also implies Fact 3.
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