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Abstract

This is a continuation of our previous paper [4]. In the class of hyperbolic
manifolds in the sense of S. Kobayashi [3], we obtained in [4] an intrinsic character-
ization of bounded symmetric domains in C” from the viewpoint of the holomorphic
automorphism group. In connection with this, we give in this paper a structure
theorem on diffeomorphisms between Siegel domains of the first kind that preserve
the holomorphic automorphism groups. As an application, we obtain a well-known
fact [2] that two Siegel domains of the first kind are biholomorphically equivalent if and
only if they are linearly equivalent.

1. Introduction

Let M be a connected complex manifold and Aut(M) the group of all
biholomorphic automorphisms of M equipped with the compact-open topology.
Then one of the fundamental problems in complex geometric analysis is to
determine the complex analytic structure of M by its holomorphic automorphism
group Aut(M). Of course, this is impossible without any further assumptions
on M, since there exist many domains in C” that are not biholomorphically
equivalent although their holomorphic automorphism groups are isomorphic as
topological groups. However, in the class of hyperbolic manifolds in the sense
of Kobayashi [3], we obtained the following characterization of bounded sym-
metric domains by their holomorphic automorphism groups (cf. [4; Corollary 2]):
Let M be a connected hyperbolic manifold of dimension n and let D be a bounded
symmetric domain in C". Assume that Aut(M) is isomorphic to Aut(D) as
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topological groups. Then M is biholomorphically equivalent to D. Here it would
be natural to ask what happens when the domain D is a homogeneous bounded
(not necessarily symmetric) domains in C". In this paper, we study exclusively
Siegel domains of the first kind in conection with this question and establish the
following: (For the definition of Siegel domains of the first kind, see Section 1.)

THEOREM 1. Let Tq and T¢ be the Siegel domains of the first kind in C"
associated to convex cones Q and Q' in R", respectively. Let G(Tq) and G(Tgy')
be the identity components of Aut(Tq) and Aut(Tq), respectively. Assume that
there exists a real analytic diffeomorphism F :Tq — To with FG(Tq)F~! =
G(Tqy). Then, after replacing F by a suitable diffeomorphism of the form
g-F, oe G(Ty), if necessary, F can be written in the form

F(z) = Px+ U(y) + V=1V (y), z=x+V—-lye Tq,

where P € GL(n,R) and U : Q — R" is a real analytic mapping, and V : Q — Q' is
a real analytic diffeomorphism which satisfies the following:

(%) V(hy) = PhP~'V(y) for all he G(Q), y e Q,

where G(Q) is the identity component of the linear automorphism group GL(Q) of
the convex cone Q in R”".

As an immediate consequence of this theorem, we obtain the following well-
known fact (cf. [2], [5]):

COROLLARY. Let To and Tg be Siegel domains of the first kind in C".
Then Tq is biholomorphically equivalent to T if and only if there exists a
diffeomorphism V : Q — Q' having the form V(y) = Py, y € Q, with P € GL(n,R).

THEOREM 2. In the same notations as in Theorem 1, assume that there exists
a topological group isomorphism ® : G(Tq) — G(Tq') and assume further that one
of two Siegel domains T and Tgq is homogeneous. Then the other is also
homogeneous and @ induces a real analytic diffeomorphism F : Tg — T¢q/ such
that F(g-z) = ®(g) - F(z) for all g€ G(Tq) and all z€ To. In particular, after
replacing ® by a suitable topological group isomorphism of the form o®(-)o~!,
o€ G(Ty), if necessary, F can be expressed just as in Theorem 1. Moreover, the
restriction of @ to the identity component A(Tq) of the affine automorphism group
of Ta can be explicitly given by the following:

(#) F(g-z) = PhP~'"F(z) + Pa+ (I, — PhP ")a,, ze Tq,
for every element g = (h,a) € G(Q) x R" = A(Tq), where Pe GL(n,R) and I, is

the identity matrix of degree n, and a, is an element of R".

In Section 1, we recall basic concepts on Siegel domains of the first kind in
C" and collect some preliminary facts on them. After that, our Theorems and
Corollary will be proven in Section 2. In the final Section 3, we study the linear
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equivalence problem for homogeneous convex cones in R” in connection with
our subject in this paper. In particular, we show that two homogeneous Siegel
domains of the first kind in C" with n < 3 are biholomorphically equivalent if
and only if the identity components of their holomorphic automorphism groups
are isomorphic as topological groups.

1. Preliminaries

For later purpose, in this section we shall recall some definitions and known
facts on Siegel domains introduced by Pyatetskii-Shapiro [6].

Throughout this paper, we use the following notation: Let z = (zy,...,2,)
be a point of C”. Then, writing z; = x; + v/ —1y; with x;, ;e R for 1 < j <n,
we set x = (x1,...,x,) and y = (y1,...,ys). Thus the point ze C" can be
expressed as z = x++v/—1y with x, yeR".

Let Q be a convex domain in R”. Then Q is called a convex cone if Q
contains no entire straight line and 1y € Q whenever y € Q and 4 > 0. Let Q be
a convex cone in R”. Then the domain Tq in C" defined by

To={x+V-1lyeC"|yeQ}

is called a Siegel domain of the first kind associated to the convex cone Q. It
is known [6] that every Siegel domain T is biholomorphically equivalent to a
bounded domain in C". Hence, its holomorphic automorphism group Aut(7q)
has the structure of a Lie group with respect to the compact-open topology by
a well-known theorem of H. Cartan and the Lie algebra g(7q) of all complete
holomorphic vector fields on T is canonically identified with the Lie algebra of
Aut(Tg). By the definition of Tg, the one-parameter groups {¢;},.r, {¥:},cr
defined by

¢z z+ta, Y,z (exXp )z

are contained in Aut(7q), where @ is an arbitrary element of R"”. Hence, the
following holomorphic vector fields on T are contained in g(7q):

0

Jj:==— (1<j<n) and G:Z;Z_fa—zj.

More precisely, we have the following:

STRUCTURE THEOREM (Kaup-Matsushima-Ochiai [2]). Let Tq be the Siegel
domain of the first kind in C" associated to a convex cone Q in R" and let g(Tq)
be the Lie algebra consisting of all complete holomorphic vector fields on Tgq.
Then we have:

(1) 6(Tq) =g_; + 9y + a;, where each g, consists of all vector fields in §(Tq)
whose components are homogeneous polynomials in zi,...,z, of degree 1+ 1 with
real coefficients. In particular, g_,, g,, respectively, consist of vector fields of the

form 377 a;d;, i (3071 aizj) O with aj,ai; € R for all j, k.
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(2) g, is the eigenspace of ad 0 for the eigenvalue /. and [g,,q,] < g,., for all
A, o.

(3) Let a(Tq)=9¢_,+ gy Then a(Tq) is the subalgebra of §(Tq) corre-
sponding to the subgroup Aff(Tq) of Aut(Tq) consisting of all affine transforma-
tions of C" leaving Tq invariant. And, g, is the Lie algebra of all X € g(Tq)
which are tangent to the real submanifold —1Q = {x + /=1y e Tq|x = 0}; and
hence g is identified with the Lie algebra of the group GL(Q) consisting of all non-
singular linear transformations of R" leaving Q invariant.

In this paper, we denote by A(Tq) and G(Q) the identity components of
Aff(Tq) and GL(Q), respectively. Then A4(7Tq) may be regarded as the Lie
group G(Q) x R" with the multiplication given by

(1.1) (hi,a1)(ha, a2) = (hihy, hiax + ay)

for (hj,a;) e G(Q) x R”, j=1,2, and the action of A(Tq) = G(Q2) x R" on Tq is
given by

(1.2) g-z=hx+a+vV-1lhy, z=x+V-1yeTg,

for all g = (h,a) € G(Q) x R" = A(Tq).

Now let us consider a real semi-simple Lie algebra s and its subalgebra t.
Then t is said to be triangular if there exists a basis of s with respect to which
ad X is represented by an upper triangular matrix for every X €t. Clearly, any
triangular subalgebra is solvable. Let g be a real Lie algebra and t a solvable
subalgebra of g. Then t is said to be maximal triangular if it contains the radical
v of g and if t/r is a maximal triangular subalgebra of the semi-simple Lie algebra
g/r. We finish this section by recalling the following:

LemMA 1 (cf. [S; Lemmas 6 and 7]). Let g be a real Lie algebra and ¢(T¢)
the Lie algebra consisting of all complete holomorphic vector fields on a Siegel
domain Tq of the first kind in C". Then we have:

(1) Any two maximal triangular subalgebras of g are conjugate under an inner
automorphism of g.

(2) There exists a maximal triangular subalgebra t of §(Tq) such that 0 €t
and t=g_; +tNg.

2. Proofs of Theorems and Corollary

We start with the following lemma, which will play an important role in the
proof of Theorem 1.

LemMA 2. Let Tq be a Siegel domain of the first kind in C" and let a(Tq) =
g_; + gy be the Lie algebra of Aff(Tq), as in the Structure Theorem. Let a be
any abelian ideal of a(Tq). Then a is contained in the ideal g_, of a(Tq). In
particular, §_, is the unique maximal abelian ideal of a(Tgq).



DIFFEOMORPHISMS BETWEEN SIEGEL DOMAINS 303

Proof.  Our proof is almost identical to that of [8; Lemma 4]. Although
there are overlaps with that, we carry out the proof in detail for the sake of
completeness and self-containedness.

We first observe that every element X of a(7q) can be written in the form

20 X =Y 528,
=

where every fi(z) is a polynomial of degree at most one, and that

(2.2) 05, X] = (0:i(2)d; for 1 <i<n.

Jj=1

Now, assuming to the contrary that a ¢ g_;, we would like to derive a
contradiction. To this end, note that

(2.3) g 1,0 =g Na,

since g_; and a are ideals of a(7q). By setting / = dim(g_, Na), the proof is
now divided into three cases as follows:

Cask (a). /=0: By (2.3) we have [0;,a] = {0} for every 1 <i<n. Thus,
taking any element X of a and writing X in the form (2.1), we have

0ifi(z) =0 for 1 <i<n.

This combined with the fact g(7q) NV —1g(Tq) = {0} yields that every fj(z) is a
real constant. Accordingly, X €g_; and a = g_;, a contradiction.

Case (b). 0</<mn Set k=n—/. Then, by a change of linear coor-
dinates, if necessary, we may assume that

q_ Na= R{6k+1,...,0,,},

where the set on the right-hand side is the subspace of a(7q) spanned by ¢;,
k+1<j<n, over R. Thus

(2.4) [0i, 0] = R{Oks1,...,0,} for 1 <i<n
by (2.3). Also, since a is abelian, we have
(2.5) [0i,a] ={0} for k+1<i=<n.

Take any element X of a and write X in the form (2.1). It then follows from
(2.4) and (2.5) that

0ifi(z) =0 for 1<i<n 1<j<k and
0ifi(z) =0 fork+l<i<nl<j<n
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Hence, every function fj(z) for 1 < j < k reduces to a constant «; € C and every
function fj(z) for k 4+ 1 < j < n is independent on zj,1, ..., z,; accordingly, X has
the form

k n
X = Zocjéj + Z f}'(Zl,. .- 7Zk)(‘}j.
j=1

Jj=k+1

Moreover, the Structure Theorem says that «; € R for every 1 < j <k, and so

X' = z”: fi(z1, .. z)0; € a(Tq).

j=k+1

Therefore, applying [7; Sect. 3, Lemma 6] to the complete holomorphic vector
field X' on Tq, we obtain that every fi(zi,...,zx) also reduces to a real constant.
Thus X eg_, and a = g_;, a contradiction.

Cask (¢). ¢/ =mn: Since g_; < a in this case and since a is abelian, we have
[3_1,a] = {0}. Thus, repeating the same argument as in the case (a), one can see
that a = g_;; a contradiction. Therefore the proof of the lemma is completed.

U

Remark. Let b be a subalgebra of a(Tq) containing g_, and let a be an
abelian ideal of h. Then, a glance at the proof of Lemma 2 tells us that a = g_;.
Therefore, g_; is also the unique maximal abelian ideal of .

Proof of Theorem 1. For the sake of simplicity, we set D = To and
D’ = Tq for the given Siegel domains Tg and Ty in C" and denote by z =
(z1,...,2n), 2 = (2{,...,z,) the coordinate systems of the ambiant spaces of D,
D’ respectively. Also we denote the objects relative to D’ by the corresponding
symbols of D with primes. So, for instance, 0’ stands for the vector field ¢’ =
>oi12j0; on D'

Now, assume that there exists a real analytic difftomorphism F: D — D’
satisfying the condition FG(Tq)F~! = G(Tq). Then the differential F, of F
induces a Lie algebra isomorphism F, : g(D) — g(D’). Let t and t’, respectively,
be the maximal triangular subalgebras of g(D) and g(D’) satisfying the conditions
in (2) of Lemma 1. Then, by the assertion (1) of Lemma 1 there exists an ele-
ment ¢ € G(D') such that o,(F.t) =t'. Therefore, replacing F by o - F if nec-
essary, we may assume that F,t=1. Then F.g , is now a maximal abelian
ideal of t'; and consequently, F.g_, =g¢’, by Lemma 2.

Express the diffeomorphism F: D — D’ as
F(z)=U(x,»)+V-1V(x,y), z=x+V-lyeD,

where U:D — R" and V :D — Q' are real analytic mappings defined on D.
Since F.,g_; =g’ , as was shown above, there exists an element P e GL(n,R)



DIFFEOMORPHISMS BETWEEN SIEGEL DOMAINS 305

such that
F(z4+a)=F(z)+ Pa for all zeD,aeR"

(think of a as column vectors), or equivalently
Ukx+a,y)=U(x,y)+Pa, V(x+ay)=V(x,y)

for all x,aeR" and all ye Q. Obviously, these equalities imply that

(2.6) U(x, y) can be written in the form U(x, y) = Px+ U(y),

where U :Q — R” is a real analytic mapping;
and

(2.7)  V(x,y) is independent on the variable x; and hence, it induces
a real analytic difftomorphism, say again, V : Q — Q’.

Next we wish to prove that this V' : Q — Q' satisfies the condition (x) in the
theorem. To this end, put Q = P~(Q’), the image cone of Q' under the non-
singular linear transformation of R” induced by P~'e GL(n,R), and consider
the diffeomorphism V' : Q — Q defined by V(y) = P~'V(y) for ye Q. Once we
have shown that V(hy) = hV(y) for all he G(Q) and all y € Q, it is clear that
V:Q — Q' satisfies the condition (x).

Thus, taking P~'F instead of F, if necessary, we may assume that P = I,
the identity matrix of degree n. Accordingly, we have

F.(0;)= 0! for every 1 <i<n.

Set d = F,(d). Then, since d et and F,(t) =t = a(D’'), d can be written in the

form 0 =a, + X,, where a, €g’, and X, € g;. Moreover, since [0;,0] = 0; for

every 1 <i<n, a simple computation shows that X, = d’; so that 0 =a, + 0'.
Here let us define the vector subspaces g, g, of g(D’) by setting

8 ={Yea(D)|[0,Y]=0}, & ={laoX]+X|Xegq}.
Then it can be seen that F.g, = §/, 8, < g, and g/, is linearly isomorphic to g, via
the natural correspondence. Thus
dim g, = dim F,(g,) = dim §, > dim g, = dim gj).
Interchanging the role of F and F~!' in the argument above, we obtain the
reverse inequality: dim gj > dim g,. Therefore
F.gp=6,=8, and F.(Y)=[a,, X]+ X for every element Y € g,

where X is an element of g; uniquely determined by the given Y. More
precisely, by considering the one-parameter groups generated by the complete
holomorphic vector fields Y € g,, X € g and [a,, X] € g |, respectively, it is easily
checked that X = V,(Y) under the canonical identification g, (resp. g}) with
the Lie algebra of GL(Q) (resp. GL(Q')). As a result, we have shown that the
induced isomorphism F, : g, — g; is given by

F(Y) =la,, Vi(Y)]+ V(YY) for Yeg,
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and, in particular, F,a(Tq) = a(Tg/). On the other hand, we here assert that

(2.8) V(Y Z(Zak/ ) . for every Y = i(iakaj> Ok € 9y

k=1 \j=1

Indeed, since V.(Y) € g, it can be expressed as

<Z by;z ) with by € R for all k, j.

Since [0/, Y] =Yy ar0x (1 </ <n) and [a,, V.(Y)] €g’,, it then follows
that

Sl = Fullon Y]) = 00 Vo(V) = 3 bt
k=1

k=1

for every 1 </ < n; consequently, ay, = by, for all k, /, as asserted. Clearly the
assertion (2.8) guarantees us that V(y) satisfies the condition (x) in Theorem 1;
thereby completing the proof of Theorem 1. O

Proof of Corollary. Assume that there exists a difftomorphism 7 : Q — Q'
of the form V(y) = Py, y € Q, where Pe GL(n,R). Then it is clear that the
non-singular linear transformation L(z):= Pz of C" gives a biholomorphic
equivalence between T and Tgq.

Conversely, assume that there exists a biholomorphic mapping F : To — Tq.
Of course, this F satisfies the condition FG(Tq)F~' = G(Tqy) required in
Theorem 1. Hence, by the same reasoning as in the proof of Theorem 1,
we may assume that F(z) has the form described in Theorem 1. Then, since F is
holomorphic, it follows from the Cauchy-Riemann equations that 7(y) has to be
of the form V(y) = Py + y,, where y, is a constant vector in R”. Moreover,
noting the fact that the dilations J,(y) =ry (r>0) in R” belong to G(Q), we
conclude by (x) in Theorem 1 that y, =0; and hence, V(y) = Py on Q. This
completes the proof of Corollary. O

Proof of Theorem 2. We retain the notation in the proof of Theorem 1.
So D and D’ denote the Siegel domains Tg and T, respectively. Also we set
G = G(D) and G’ = G(D’), for simplicity.

Now, assume that there exists a topological group isomorphism @ : G — G’
as in Theorem 2. Then, since both the groups G and G’ are Lie groups, @ is
necessarily a Lie group isomorphism. We denote by d® : g(D) — g(D’) the Lie
algebra isomorphism induced by ®.

Choose two points pe D and p’ € D' arbitrarily and denote by K and K’
the isotropy subgroups of G and G’ at p and p’, respectively. Without loss of
generality, we may assume that D is homogeneous; so that D can be represented
as the coset space D = G/K and K is a maximal compact subgroup of G. On
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the other hand, K’ is a compact subgroup of G’. Under these situations, we
first show that D’ is also homogeneous. For this purpose, choose a maximal
compact subgroup K of G’ containing K’. Then, since any two maximal
compact subgroups of a connected Lie group are always conjugate under an
inner automorphism, we can find an element ¢ € G’ such that K = ¢®(K)o .
Moreover, notice that the orbit G’ - p’ = G'/K’ of G’ passing through p’ is a real
analytic submanifold of D’. Thus

2n > dim G'/K’' > dim G'/K = dim G/K = 2n,

from which we have dim G'/K’ =2n and K'=K; hence, the orbit G- p’ =
G'/K' is open in D’. Of course, the same is true for any point ¢’ € D’ with
q' # p’. Consequently, the connectivity of D’ implies that D’ = G'/K’, that is,
D’ is also homogeneous, as desired.

Replacing @ by the isomorphism ¢®(-)o~" if necessary, we may now assume
that K’ = ®(K). Hence we can define a real analytic diffeomorphism F: D =
G/K — G'/K' = D’ by setting

F(gK) = ®(g)K' for all g€ G.

-1

Clearly this F satisfies the condition
F(g-z)=®(g)-F(z) for all ge G, z€ D;

accordingly, we have FG(D)F~! = G(D') and F, = d®. Therefore, by the same
reasoning as in the proof of Theorem 1, we may assume that

(2.9) F.a(D) = a(D"), F.(t) =1t
and
(2.10) F has the form F(z) = Px+ U(y) + vV—1V(y) as in Theorem 1.

Under these assumptions, our next task is to show that there exists the
relationship (#) between ® and F. We first verify this for every element / of
the subgroup G(Q) of A(D), that is, for g = (1,0) € G(Q) x R" = A(D). To this
end, notice that ®(4(D)) = A(D’) by (2.9). Thus we can write

®O((h,0)) = (x(h),¥(h)) for every he G(Q),

where y: G(Q) — G(Q') and  : G(Q) — R” are real analytic mappings. From
the relation F((h,0)-z) = ®((h,0))- F(z) and the action rule of A(D) (resp.
A(D")) on D (resp. D’) given in (1.2), it then follows that

Phx + U(hy) = x(h)(Px + U(y)) + ¥(h),  V(hy) = x()V ().
These combined with (%) in Theorem 1 yield at once that
x(h) = PhP~', U(hy) = PhP'U(y) +y(h) for all he G(Q), y e Q.
We now wish to prove that there exists a unique element a, € R” such that

(2.11) W(h) = (I, — PhP Ya, for all he G(Q).
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To prove this, recall the multiplication rule (1.1). Then
(212) lp(hlhz) = Ph1P71W(h2) + l//(h]) for all /’l],hz € G(Q)

Take an arbitrary element re R with 0 <r <1 and consider the dilation
o-(y)=ry in R". Since o, belongs to the center of G(Q), it then follows
from (2.12) that

Y(h) = (1 —r) "' (I, — PhP~")W(5,) for all he G(Q).
In particular, we have
() ) =1 =r 1= rF)W(s,) for all k=1,2,....

Since ¥ — 0 as k — oo, this implies the existence of an element a, € R” such
that (1 —r)""y(J,) = a,. Obviously, such an element a, is independent on the
choice of 0 < r < 1 and satisfies (2.11). Summarizing the above, we obtain the
following:

(2.13)  F((h,0)-z) = PhP~'F(z) + (I, — PhP"")a, for he G(Q), ze D.

Finally, take an arbitrary element g = (h,a) € A(D). Then, since ¢g-z =
(h,0)-z+4+a, F(z+a) = F(z) + Pa on D, our relationship (#) is now an imme-
diate consequence of (2.13). Therefore the proof of Theorem 2 is completed.

O

3. Some comments

In connection with our fundamental question in this paper, we shall study
the linear equivalence problem for homogeneous convex cones in R”.

Throughout this section, we always assume that 7o and T are the homo-
geneous Siegel domains of the first kind associated to convex cones Q and Q' in
R”, respectively. Therefore the linear automorphism groups G(Q2) and G(Q’) act
transitively on Q and on Q' (cf. [2]).

Now assume that there exists a topological group isomorphism @ : G(7q) —
G(Tq’). Tt then follows from Theorems 1 and 2 that there exists a real analytic
diffeomorphism ¥V : Q — Q' satisfying the condition (x): V(hy) = PhP~'V(y)
for all he G(Q) and all ye Q. Once it is shown that this V' : Q — Q' is the
restriction to Q of some linear transformation of R” or there exists a non-singular
linear transformation #:R” — R” such that /(Q) = P~1(Q'), Tq is necessarily
biholomorphic to To. Taking this into account, we would like to clear up the
following:

QuesTION.  Under the assumption that there exists a real anlytic diffeomor-
phism ¥V :Q — Q' satisfying the condition (x), does there exist a non-singular
linear transformation L :R” — R” such that L(Q) = Q"?

Although this cannot be achieved in full generality at this moment, we first
give the following Fact 1. And, after that, we will come back to this question.
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In order to state Fact 1, we need a preparation. Let A be any homogencous
convex cone in R”. Then it is known that there is a G(A)-invariant Riemannian
metric ga on A that is naturally constructed by means of its characteristic
function ¢, (cf. [9]). This metric is called the canonical metric on A and the
characteristic function ¢, has the property:

(3.1 oa(hy) = pa(y)/det(h) for all he G(A), y e A.

In these notations, we have the following:

Fact 1. The diffeomorphism V : Q — Q' is an isometry with respect to the
canonical metrics go and gg.

Indeed, by (3.1) and (%) we have

9o (V(hy))/9a(hy) = 0o (V(¥))/9a(y) for all he G(Q), yeQ.

Hence the homogeniety of Q tells us that ¢q (V' (y)) coincides with ¢ (), up to
a positive constant factor. From this, we can check easily that 7 : (Q,gqo) —
(Q',gq) is, in fact, an isometry, as desired. O

Let us return to the question above. Since Q and Q' are homogeneous
convex cones in R”, there exist maximal triangular subgroups 7 and T’ of G(Q)
and of G(Q') that act simply transitively on Q and on Q’, respectively (cf. [9]).
Let t be the Lie algebra of T and choose a basis {X,...,X,} for t. Without
loss of generality, we may assume that every element of 7 can be represented as
an upper triangular matrix with respect to the coordinate system (y1,..., y,) of
the ambiant space R” of Q. Thus the complete vector field X; on Q has the
form

n a )
(3.2) Xj:ijk(y)— for 1 <j<mn,
=1 OV
where pj(y) are homogeneous polynomials in yi, Vi1, ..., y» of degree one with

real coefficients for 1 < j<n, 1 <k <n.
Consider now the function P(y) on R” and the subset .7 of R" defined by

pu(y) p(y) - puw(y)
pa(y) pn(y) - puw(y)

(3.3) P(y) = det ) ) ) for yeR”
Pnl(y) an(y) T pnn(y)

and
o/ ={yeR"|P(y) =0}.

Note that, for any point y, € R”, the orbit T -y, of T passing through y, is
a real analytic submanifold of R" of dimension <n. Then ./ is nothing but
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the set consisting of all points y, € R” with dim 7' - y, < n. In particular, .o/ and
its complement 2 := R"\.«/ in R”" are invariant under the T-action on R”.
Moreover, since P(y) is a real homogeneous polynomial of degree n by (3.2)
and (3.3), ./ is a real algebraic subset of R” invariant under the symmetry
gp: y— —y in R” at the origin 0. Notice that P(y) can be expressed as P(y) =
ynQ(»), where Q(y) is a real homogeneous polynomial of degree n — 1. Thus,
the coordinate hyperplane {y, =0} is contained in .</.

Now, as in the proof of Theorem 1, we put Q=P (Q) and consider the
diffeomorphism ¥V : Q — Q defined by V(y) =P 'V(y) for yeQ. It then
follows from the assertion (*) that

(3.4) V(hy) =hV(y) for all he T, yeQ.

Therefore, T acts simply transitively on the convex cone Q as well as on Q.
Under this situation, our question above can be restated as follows:

Does there exist a non-singular linear transformation

L:R" — R" satisfying L(Q) = Q?

To investigate this, it should be remarked that both the cones Q and Q
are connected components of the complement 2 of </ in R"” and that T acts
transitively on each connected component of %. Taking this into account, we
define a real algebraic subgroup 4 of GL(n,R) by

A=1{he GL(n,R) | h(/) = o/}

Then A4 acts on the open subset 2 of R” as a Lie transformation group and the
identity component A° of A leaves each connected component of 2 invariant.
Therefore, T is an algebraic subgroup of 4° and hence A° also acts transitively
on each connected component of #. Observe here that the quotient group
A:=4 /A° acts naturally on the set X consisting of all connected components
of Z. Thus, if this A action on X is transitive, one may conclude that Q is
linearly equlvalent to Q. It is not clear whether this is true or not, in general.
However, at least in the case where n < 3, we can give an affirmative answer to
the question as follows:

FacT 2. Let Q and Q be homogeneous convex cones in R" with n <3 and
assume that there exists a real analytic diffeomorphism V : Q — Q satisfying the
condition (3.4). Then there exists a non-singular linear transformation L :R" —
R" such that L(Q) = Q.

Since this is clear when n <2, we consider the case of n = 3. Recall that
the real algebraic set ./ is invariant under the symmetry oy(y) = —y in R? and
the coordinate hyperplane {y; = 0} is contained in ./. Thus, in order to show
Fact 2, we may assume that both the cones Q and Q are contained in the half
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space {y; > 0}. Now, put

P={(y1,y,3)€Q|p3=1} and P={(y1,y2,3)€Q|y; =1},

the cross-sections of Q and by the hyperplane {y; = 1}, and consider the
subgroup 7 of T consisting of all elements /# having the form

hit hi his
h=1 0 hxn hy
0 0 1

Then P and P are convex domains in the hyperplane {y3 =1} and clearly they
contain no entire straight line. Moreover, T is a two-dimensional Lie group
acting simply transitively on P as well as on P as an affine transformation group.
On the other hand, it is known (cf. [9]) that any two-dimensional affine homo-
geneous convex domain not completely containing any straight line is affinely
equivalent to either

R :={(x,)eR?|x>0,y>0} or €:={(x,»)eR|y>x}

and further any maximal trlangular group acting simply transitively on R2 is
abelian, while that on € is not. Consequently, P and P have to be afﬁnely
equivalent, that is, there exists an affine transformation 7 : {y3; =1} — {y3 =1}
such that #(P) = P. Making use of this 5, we can now define a mapping
L:Q — Q by the following:

L(y) = y3-n(y1/y3, 2/¥3,1) for y = (y1,»2,13) €Q.

Then it is an easy matter to see that L gives a linear equivalence between Q and
Q; thereby completing the proof of Fact 2. O

As an immediate consequence of Fact 2, we obtain the following:

Fact 3. Let Tg and T be the homogeneous Siegel domains of the first kind
associated to convex cones Q and Q' in R" with n <3. Then Tq is biholomor-
phically equivalent to Tq if and only if there exists a topological group isomor-
phism @ : G(Tq) — G(Ty).

Indeed, if there exists a topological group isomorphism @ : G(Tq) — G(Tq),
then by the proof of Theorem 2 there exists a real analytic d1ffeomorph1sm
V:Q — Q satisfying the condition (3.4). Hence Q and Q' are linearly equiv-
alent by Fact 2; and accordingly, T and Ty are biholomorphically equivalent.
The converse is obvious; completing the proof of Fact 3. O

Finally it should be remarked that Fact 3 also comes from our previous
result stated in the introduction. In fact, it is well-known that every homoge-
neous bounded domain in C" with n < 3 is symmetric by a result of E. Cartan
[1]; and hence, our previous result [4; Corollary 2] also implies Fact 3.
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