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THE IDEALS OF THE HOMOLOGICAL GOLDMAN LIE ALGEBRA
Kazuki Topa

Abstract

We determine all the ideals of the homological Goldman Lie algebra, which reflects
the structure of an oriented surface.

1. Introduction

By a surface, we mean an oriented two-dimensional smooth manifold
possibly with boundary. It is well known that the first homology group and
the intersection form of a surface reflect the topological structure of the
surface. For example, they have information about the genus and the boundary
components of the surface.

To study them in detail, we consider a Lie algebra coming from them. We
call it the homological Goldman Lie algebra. Goldman introduced the Lie
algebra for study of the moduli space of GL;(R)-flat bundles over the surface
[G] p. 295-p. 297. We define the Lie algebra in more general setting. Let H be
a Z-module, i.e., an abelian group, which is not necessarily finitely generated, and
{(—,—>:Hx H—1Z, (x,y)— <x,y), an alternating Z-bilinear form. For ex-
ample, we consider that H is the first homology group, and {—,—) is the
intersection form of a surface. We define a Z-linear map u: H — Homgz(H,Z)
by u(x)(y) = {x,y>. Denote by Q[H] the Q-vector space with basis the set H;

Q[H] = {zn:ci[xi] |[neN,c eQ,x; eH},

i=1

where [—]: H — Q[H] is the embedding as basis. Here, we remark that
¢[x] # [ex] for any ¢# 1 and xe H. We define a Q-bilinear map [—,—]:
Q[H] x Q[H] — Q[H] by [[x],[y]] :=<x,y>[x+y] for x,ye H. It is easy to
see that this bilinear map is skew and satisfies the Jacobi identity [G] p. 295-
p. 297. The Lie algebra (Q[H],[—,—]) is called the homological Goldman Lie
algebra of (H,{—,—)). The Lie algebra Q[H] is equipped with a product
QUH] x QIH] — QIH], ([, [¥]) > [¥|[¥] = [x+ )] as a group ring. Then Q[H]
is a Poisson algebra.
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The homological Goldman Lie algebra is infinite dimensional and we can
define this Lie algebra only from algebraic information. So, it is interesting
in an algebraic context. The homological Goldman Lie algebra comes from
the first homology group and its intersection form. So, it is also interesting in
a geometric context. For example, the homological Goldman Lie algebra is
exactly the subalgebra of all Fourier polynomials in the Poisson algebra on the
symplectic torus if the surface is closed [G] p. 295-p. 297. Namely, the corre-
spondence (Y7 (a;A; + b;B;)] — exp(>_7, (a;pi + big;)) is an injective homomor-
phism of Poisson algebras, where ¢ is the genus of the surface, {4;, B;}/, a
symplectic basis of the first homology group of the surface, and {p;,¢:}{,
symplectic coordinates of R%. Moreover, we can consider a more complicated
Lie algebra coming from free loops and the intersection form. Take two
free loops o and f on the surface in general position. We define [o,f] :=
ZPGW e(p;a, Bo -, B, where e(p; o, f) is the local intersection number of « and
at p, and o-, f is the free homotopy class of the product in the fundamental
group with base point p. The bracket induces a well-defined operator in the free
module with basis the set of homotopy classes of free loops, and it is easy to
show that the bracket is skew and satisfies the Jacobi identity. We call this Lie
algebra the Goldman Lie algebra. We have a surjective Lie algebra homo-
morphism from the Goldman Lie algebra onto the homological Goldman Lie
algebra [G] p. 295-p. 297.

The purpose of this paper is to study the algebraic structure of the
homological Goldman Lie algebra. More precisely, we determine the ideals
of the homological Goldman Lie algebra. Here an ideal [) of a Lie algebra g is
a subspace of g with [g,h] = b, namely, [X,Y] €D for Xeg and Ye}h. In
particular, we will show the following. If the surface is closed, the number of
all the ideals of the homological Goldman Lie algebra is finite (see Corollary
4.4). In the forthcoming papers, we determine the minimal number of generators
of the Lie algebra [K], and compute its second cohomology [T].

To state our result, let us prepare some notations. For xe H, we de-
note X:=x+keru. The Lie algebra Q[H] is a graded Lie algebra of type
H := H /ker 1 [B] Chapter IT §11. Namely, we have Q[H] =P._;Q[x] and
[QI¥, Q¥ = Q¥ Ty, Here Qx| = {0, c/lx] € Q[H][neN.¢; € Q x; € x}.
The ker u-degree is the degree induced by grading of type H. For X € Q[x], we
denote deg X = X.

For xe H, we define T(x):Q[H] — Q[H] by T(x)([y]) =[x+ y|, where
yeH. The map T : H — GL(Q[H]) induces an action of H on Q[H|. For
¥.yeH and ¥ eQy], we have [[x], ¥] = <x, T(x)(¥) = <x, D[] Y.

Let A be a subgroup of H, and V a subspace of Q[H]. We say that V is
A-stable if T(A)(V) < V.

Our main theorem is the following.

THEOREM 1.1 (Classification of the ideals of the homological Goldman
Lie algebra). For any ideal Yy of Q[H]|, there exists a unique pair (Vy,V)
such that
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(1) Vo and V are subspaces of Q0] = Q[ker 4,

(2) V is ker p-stable, and
where T(x)(V) := T(x)(V), which is well-defined by (2). If u=0, we define
V =0.

Conversely, if a pair (Vy, V) satisfies (1) and (2), then the subspace by of Q[H|
defined by (3) is an ideal of Q[H].

This means that any ideal of Q[H] is a graded Lie algebra of type H.
The author sincerely thanks the referee for his/her many helpful suggestions.

2. Preparations for our main theorem

LemMa 2.1 (Key lemma). If xi,...,x, € H\ker u, there exists ze€ H that
satisfies {x1,zy #0,..., and {x,,zy # 0.

Proof. We prove this by induction on n. It is clear in the case n=1.
Consider the case n > 1. By the inductive assumption, we can take ue H
satisfying (x;,uy #0 for i=1,....,.n—1. If {(x,,u) #0, the element u is a
desired one. Suppose <{x,,uy =0. We can choose v e H such that {x,,v) # 0,
since X, ¢ ker u. We shall prove that

zi=u (L [ ud] 4 [, ud])o
is a desired one. We have
<xn72> = (1 + \<x1,u>| +---+ |<xn,1,u>|)<xn,v> 75 0

For k <n, {xi,z) = {xp,uy #0 if {x,v> =0.
If {xp,v) #0, we also have {x;,z) # 0, because

|<Xk,Z>| = (1 + |<X1,I/l>‘ +eee |<X,1_],M>|)|<Xk,1)>| - |<Xk,u>| > 0. ]
Let h be an ideal of Q[H]. Then we have

ProposITION 2.2 (Decomposition of an ideal with respect to ker u-degree).

b= D (HNQLX])

XeH

Proof. 1Tt is clear that the sum X(hNQ[x]) is a direct sum and b includes
@:.7(bNQ[x]). Let X eh\{0}. Since X ebh = Q[H] = P._; Q[x], there ex-
ist n>1, x;e H and X; e (Q[¥;])\{0} for i=1,...,n such that X; #X; if i # j
and X =X +---+ X,,. It suffices to show X;el) for all i=1,... n.

Step 1. If X;#0 for all i=1,...,n, then Xy €l for all ke {l,...,n}.
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We show this case by induction on n, the number of the non-zero
components.

Cramm. Suppose n> 1. For any ke{l,...,n}, there exist c,...,c, €Q
such that (1) ¢ #0, (2) there exists some je{l,...,n} with ¢;=0, and (3)
aXi+--+c X, b

Proof of Claim. We may assume k= 1. First we consider the case
{x2,x1) #0. Set

Y = ad([-xa)ad () (X) = 3 oo 5003+ 12D,

Since {xp,x1>{—Xx2,x1 +x32) #0, {x,x> =0, and Y €}, this claim holds.

Second we consider the other case, i.e., {(x2,x;>=0. Since ¥ # 0, X3 # 0,
and X] # X3, by Lemma 2.1, we can choose ze€ H that satisfies {x;,z) # 0,
{x,zy #0, and {x; —x2,z> #0. Set

Y = ad([x; — 2])ad([z])ad([-z])ad([z — x2])(X)

=) Lz = xa, X)) =2, %+ 2 — Xa )<z, X — X200 — 2,%; — X2 + 2D X,
i=1

Since (z=x2,x1){~2,x1 + 2 = x2)<z,X1 = X2){X2 — z,X1 — X2 +z) # 0,
{z,x3 —x3) =0, and Y e, this claim holds. O

Proof of Step 1. Induction on n. If n=1, X; =X e€l). Suppose n> 1.
For any ke{l,...,n}, we can take cj,...,c, €Q as in Claim. By the as-
sertions (2) and (3) of Claim, we can apply the inductive assumption to
aXi+---+c¢,X,. Then we have ¢ X el. By the assertion (1) of Claim,
we have X €l). This completes the induction and proves Step 1. O

SteP 2. If X; =0 for some i=1,... n, then Xjeb forall j=1,...,n

Proof of Step 2. The index i with X; =0 is unique since X; # 0 if j # i.
We can assume i=1. If n=1, we have X; = X el. Suppose n>1. Since
X2 #0,..., and X, # 0, by Lemma 2.1, there exists ze€ H such that {(x,z) #
0,..., and 25 # 0. Set Y= ad([—=])ad([=]) (X) = X7, <z, )<~ %+ 25X,
Smce {z,x1> =0, we have Y = E _<z,x;){—z,x; + z)X;. Thus we can apply
Step 1 to Y, so we have (z, x,>< z,x;+zyX;eb for all j=2,...,n Since
{z,xj){—z,x;+z) #0, we obtain X;eb for all j=2,...,n Moreover, X =
X—-X,—--—X,€eh.

This proves Step 2. ]

Step 1 and Step 2 complete the proof Proposition 2.2. O
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ProposITION 2.3 (Homogeneity of an ideal). For x,y e H\ker p,
T(=x)(bNQ[x]) = T(-»)(hbN Q[y])
Proof. Let X'eT(—x)(hNQ[x]). Then there exists X e hNQ[x] with
X' =T(—x)(X). Since X'=T(—y)(T(y—x)(X)) and degT(y—x)(X)=
y—x+Xx =y, it is sufficient to prove T(y — x)(X) €b.

By x, y € H\ker u and Lemma 2.1, we can choose z € H with {x,z) # 0 and
{y,zy #0. We obtain T(y —x)(X) el) because

ad([—=])ad ([y))ad ([—x])ad([2])(X) = ((z,x)<p, 29) Ty = x)(X).
We can prove the other inclusion by replacing the role of x and y. O
COROLLARY 2.4 (ker p-stability of an ideal). For x € H\ker u and v € ker 4,
T(w)(T(=x)(hNQ[x])) = T(-x)(bNQ[x]), rhat is, T(v)(hNQ[X]) =bhNQ[x].
Proof. We apply Proposition 2.3 to x and x—v. Then
T(=x)(bNQ[X]) = T(=(x —v))(bNQKx=7]) = T()(T(-x)(bNQ[x])). [

3. Proof of Theorem 1.1

Proof Existence: When £ =0, 0=H. So we can define Vo =10 and
V' =0. Assume u#0. Then we can choose xq € H\ker u.
By Proposition 2.2, we have

b= D (HNQIX]).

XeH

Let V5 :=bHNQ[0] and V := T(—x0)(hNQ[Xp]). By Corollary 2.4, V is ker u-
stable. For all y e H\ker u, we have

bNQ] =TT (=) (BNQI)) = T((T(=x0)(HN Qo)) = T(¥)(V)

by Proposition 2.3. So we obtain

b=Ve@® D TE)

TeA\{0}
Uniqueness: We assume that (Vy, V) and (Wy, W) satisfy (1), (2), and

Ve @ TEV) =me @ TEW).

Fe H\{0} Te H\{0}
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Then we obtain

Vo = Q0] N (Vo ® P T(»‘c)(V))

Te /\{0}

=Q[0]N (Wo@ @D T(x)(W)) = W.

%e H\{0}

If u=0, then ¥ =0= W by definition. Suppose u #0. Take X;e H\{0}.
We obtain V' = W because

T(xo)(V)Q[m]ﬂ(Vo@ P T(x)(V))

e H\{0}

— QlxilN (Wo@ ® T(x)(W)) — T(x)(W).
Te[\{0}
Converse: Assume that (Vy, V) satisfies (1) and (2), and let [) be the subspace of
Q[H] defined by (3).
For X e Q[H] and Y € Vj, we have [X,Y]=0¢€l since Y eV, = Q[0).
For xe H, ve V and y € H\ker u, we define Z := [[x], T(y)(v)]. We have
Z={x,y>T(x+ y)(v) since ve V= Q0. If x+y#0, ZeT(x+y)(V)<h.
If x+y=0, we have Z=0¢€l because 0 = <{x+ y, y> =<{x,y). Hence, we
obtain [Q[H],b] = b. O

4. Corollaries
Lemma 4.1. For X e Q[H|, X =0 if and only if X*=0.

Proof. Tt is enough to show the lemma for X e C[H] since Q[H] = C[H].
We can take a finitely generated subgroup 4 of H with X € C[4]. Hence we
may assume H is a finitely generated abelian group. Then there exist a finitely
generated free abelian group F and a finite abelian group 7 with H =~ F x T.
Since the group T is a finite abelian group and C is algebraically closed, we have
an isomorphism C[T] =~ C*7 of C-algebras [S] p. 48, Proposition 10. We may
assume H is free because

C[H] = C[F] ®¢ C[T] = C[F] ®c C*T ~ (C[F))*".

Let H=2". Then we have an isomorphism C[H]— C[Z{',...,Z%!] of C-
algebras by [(x1,...,x,)] — Z;"---ZY for x; e Z. The Laurent polynomial ring
C[z',...,Z*"] is an integral domain. Hence the lemma holds. O
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ProPOSITION 4.2. Let by be an ideal of Q[H], and (Vy,V) the pair of b in
Theorem 1.1. Then, Yy is abelian if and only if V =0.

Proof. Suppose V' =0. Then, since h = Vy = Qlker #], b is abelian.
Conversely, suppose V' # 0. Then, since u # 0, there exist x, y € H with
{x,y>#0. Take Ze V\{0}. Then, L) is not abelian, since T(x)(Z),
T(3)(Z) eb and [T(x)(Z), T(»)(Z)] = x, T (x+ »)(Z%) #0 by Lemma 4.1.
Ul

We define the descent sequences Q[ ]"’) and Q[ Jomy bY QH|Y =
Q[H]yy = [QH],Q[H]], Q[H]"™ =[Q[H]" "V, QH]" V], and Q[H],, =
[Q[H], Q[H],,_)], respectively. We can calculate the center 3(Q[H]), the derived
subalgebra [Q[H], Q[H]| and the descent sequences Q[H|"™ and Q[ Jmy (m > 0);

3(Q[H]) = Qlker 1,  [Q[H],Q[H]] = Q[H\ker s, and Q[H]" Q[ Jmy =
Q[H\ker u]. In particular, we can decompose Q[H] into the center and the
derived Lie algebra; Q[H] = Q[ker y] ® Q[H\ker u] = 3(Q[H]) ® [Q[H], Q[H]].
Moreover, we have the abelianization of Q[H]; Q[H] b — Q[H]/[Q[H],Q[H]] =~
Qlker 4.

We say {—,—) is non-degenerate if ker u = 0.

Example 4.3. Let ¥ be a surface with #ny(0%X) < 1. We consider H =
H|(X,Z) and the intersection form {(—,—» on H. Then, H is a free Z-module,
and (—,—) is a non-degenerate alternating Z-bilinear form.

COROLLARY 4.4. If {—,—) is non-degenerate and H # 0, all the ideals of
Q[H] are

0, Q[0], Q[H\0], and Q[H].

_ Proof. Since {—,—) is non-degenerate, ker u = 0. So all the subspace of
QO are 0 and QJ0], and they are ker u-stable.
Since T'(x)(Q[0]) = QJx], we obtain this Corollary. O

Remark 4.5. We can define the homological Goldman Lie algebra R[H]
over an arbitrary commutative ring R instead of Q. We can prove all the results
in this paper for R[H] if R is a commutative ring including Q except for Lemma
4.1. Lemma 4.1 holds if R is an ideal domain.
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