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ON THE LINEAR INDEPENDENCE OF
THE SET OF DIRICHLET EXPONENTS

ARTOURAS DUBICKAS

Abstract
Given k >2 let ap,...,0 be transcendental numbers such that oy,...,04_; are
algebraically independent over Q and ox € Q(ay,...,a—1), but oy # (ax; +¢)/b for

some ie{l,...,k—1} and some a,beN, ceZ satisfying ged(a,b) = 1. We prove
that then there exists a nonnegative integer ¢ such that the set of so-called Dirichlet
exponents log(n + o;), where n runs through the set of all nonnegative integers for
j=1...;k—1 and n=¢q,q+1,q+2,... for j=k, is linearly independent over
Q. As an application we obtain a joint universality theorem for corresponding
Hurwitz zeta functions ((s,a1),...,{(s,0x) in the strip {seC:1/2 <R(s) <1}. In
our approach we follow a recent result of Mishou who analyzed the case k = 2.

1. Introduction
For any given complex number o ¢ {0,—1,—2,—3,...} we consider the set
2(a) := {log a,log(1 + a),log(2 + ), ...},

where log stands for the principal branch of the natural logarithm. The set Z(x)
is known as the set of Dirichlet exponents of the Hurwitz zeta function

C(S7 OC) = Zm _ Ze—s log(n-m),

n=0 n=0

where o is a real number in the interval (0,1). More generally, for each integer
¢ =0 let us denote
P4(a) := {log(q + «),log(q + 1 + a),log(q + 2 +x),...},

so that Zy(a) = D(x).
Recall that a (finite or infinite) set of complex numbers V is linearly
dependent over Q if there exist some m € N, distinct vy, ...,v, € V' and nonzero
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r,...,Im € Q such that Z/'i 177, = 0 and linearly independent otherwise. Ob-
viously, if « is a transcendental number then the set Z(«) is linearly independent
over Q. The set 9(u) for algebraic o have been studied by Cassels [3] (see
also [4] and [5]). The question if there is an algebraic number o for which the
set Z(a) is linearly independent over Q is still open (see [4], [5] and also [7], [12]).

A finite set of distinct complex numbers vy,...,v,, is algebraically dependent
over Q if there is a nonzero polynomial P(zy,...,z,) € Q|z1,...,z,] such that
P(vy,...,um) =0 and algebraically independent otherwise.

The main result of this note is the following:

THEOREM 1. Let k > 2 be an integer and let oy,...,0._1,0 be some tran-
scendental numbers.  Suppose that the numbers o, ..., 0,1 are algebraically inde-
pendent over Q and oy € Q(ouy, ..., 04_1), and suppose for each i=1,... .k —1 we

have oy # (ao; +¢)/b for a,beN, c e Z satisfying ged(a,b) = 1. Then there is
an integer q > 0 such that set of Dirichlet exponents

D(a)U---UD(og—1)U Dy (o)
is linearly independent over Q.

Following the result of Nesterenko [15], the numbers 7 and e” are algebrai-
cally independent over Q, so Theorem 1 can be applied to the numbers

oy = =3.14159..., oy :=e" =23.14069...,
a3 = ol + oy = 1 4 " = 33.01029. ...

Note that the condition oy # (ax; +¢)/b for integers a >0, b >0 and
¢ satisfying ged(a,b) =1 cannot be removed from Theorem 1. Indeed, if
o = (ao; + ¢)/b with some ie{l,...,k—1} and a, b, ¢ as above then there
exists d € N for which u := (bd + ¢)/a is a positive integer. Thus for each N e N
we have the identity

w+d+aN  aw+c+bd+aN)  oi+u+bN
w+d+aN—1) aw+c+bd+aN—a) oj+u+bN—1)

Consequently, the four logarithms log(ax +d + aN), log(ax +d + a(N — 1)),
log(o; +u+ bN), log(o; +u+b(N — 1)) are linearly dependent over Q, and
hence the set Z,(a;) U2, () is linearly dependent over Q for any g e N.

As an application of Theorem 1 we shall prove the following joint univer-
sality theorem for Hurwitz zeta functions. (Throughout, u(A4) stands for the
Lebesgue measure of the set 4 = R.)

THEOREM 2. Let ay,00,...,0r, k> 2, be real transcendental numbers in the
interval (0,1) such that for some integers qi,q>,...,qx =0 the set of Dirichlet
exponents

9’11(“1)U@flz(az)u"'uqu(“k)
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is linearly independent over Q. For each j in the range 1 < j <k let K; be a
compact subset of the strip {s€ C:1/2 <R(s) <1} with connected complement
and let fi(s) be a continuous function on K; which is analytic in the interior of K.
Then for any ¢ >0 we have

N | .
(1) llﬂlgf T,u{r e[0,7]: lrggk igc}(§|é(s+ it,05) — fi(s)] < e} > 0.

The subject of ‘“‘universality” for Dirichlet L-functions started with the
paper of Voronin [16], where he proved that for every positive number ¢ and
every continuous non-vanishing function f(s) in the disc |s| <r, where 0 <
r < 1/4, which is analytic in |s] < r there exists a number 7 = t(¢) for which
maxi < |{(s +3/4 +it) — f(s)| <e. So certain shifts of zeta function are arbi-
trarily close to every analytic function. Later, this result have been extended to
other L-functions and it was shown that the set of those 7 for which the shift of
the L-function by it approximates f(s) has positive density; see, e.g., [8], [9] for
some references on this. In particular, for the Hurwitz zeta function ((s,a)
it was shown that if ae (0,1/2)U(1/2,1) is either rational or transcendental
number then for any function f(s) which is continuous in a compact set
Kc{seC:1/2<R(s) <1} with connected complement and analytic in the
interior of K we have

1
li;nipf ?,u{re [0, T] :malg(|C(s+ir7ac) - fs)] < 6} >0

for any given ¢ > 0 (see [1], [6]).

Later, certain joint universality theorems when instead of one function f we
have several analytic functions fj,..., f;y and approximate them with some shifts
of {(s,o;), j=1,...,k, were obtained in [2], [11], etc. In particular, the joint
universality theorem which asserts the conclusion (1) of Theorem 1 under
assumption that all & transcendental numbers «;,...,q; are algebraically inde-
pendent follows from the results of Nakamura in [14]. Laurincikas proved the
same statement under weaker assumption that the set of Dirichlet exponents
D(o)U---UD(0) is linearly independent over Q (see [10]). This corresponds to
the case ¢ =+ = ¢, =0 in Theorem 2.

The above mentioned result of Nakamura covers the case when the tran-
scendence degree trdeg(Q(ay,...,0r)/Q) of the field extension Q(uy,...,0)/Q
(i.e., the largest cardinality of an algebraically independent subset of Q(a, ..., o)
over Q) is equal to k. On the other hand, when £ >3 and 2 <r <k —1 the
next simple example

op =0, op:=oa/r, oz:=(a+1)/r... 0. = (a+r—1)/r,

where o and o;, j=r+1,...,k, are algebraically independent transcendental
numbers in the interval (0,1) (so that trdeg(Q(aoi,...,0)/Q) =k —r <k —2),
shows that the first r+ 1 Hurwitz zeta functions are linearly dependent

rl(s,00) = {(s,00) + - - +L(8, o41).
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Therefore, no joint universality theorem holds for these & Hurwitz zeta func-
tions {(s,0;), j=1,...,k. Theorem 2 deals with the remaining case when the
transcendence degree of the field extension Q(ay,...,0r)/Q is equal to k — 1.
The case k=2 was recently analyzed by Mishou [13]. We will follow his
approach. It seems likely that the conclusion (1) is true for any distinct tran-
scendental numbers oy, ..., 0 € (0,1) for which trdeg(Q(oy,...,0)/Q) =k — 1.

2. Proof of Theorem 1

Recall that if P(z1,...,z,) = Sy pizit - -zin € Clz1, ..., 2], where i=
(i1,...,in) and p; € C\{0}, is a nonzero polynomial then its leading coefficient
is the coefficient p; for z{' - - - z/» such that the vector j = (ji,..., jn) is the largest
lexicographically among all vectors i = (iy, ..., i,) with maximal sum i + - - - + iy,
=deg P. For instance, the leading coefficient of the polynomial P(z;,z;) =
z} + 22125 + 323 — 21z is equal to 2.

Lemma 3. Suppose that for m e N two nonzero polynomials with integer
coefficients P(zy,...,zy) with positive leading coefficient and Q(zi,...,zy), not
both constants, are relatively prime. Then there exist infinitely many positive
integers t for which

(2) P(zi,.. zm) +10(z21, . zm) = A[ [Tz + a9).
iel j
where I is a nonempty subset of the set {l,...,m}, A is a nonzero integer and

a;j e NU{0} (where a; are not necessarily distinct), if and only if there are
ie{l,...,m}, a,beN, ceZ, ged(a,b) =1 for which P(zy,...,zy) = az; + ¢ and
O(z1,...,zm) = b.

Proof. For m =1 the lemma was proved by Mishou in [13]. Our proof is
different from that given in [13] and works for any m € N.

The lemma is trivial in one direction. If P(z,...,z,) =az;+c¢ and
O(z1,...,z;m) = b with a, b, ¢ as above then there are infinitely many 7€ N
for which ¢+ bt > 0 and a|(c + bt). For each of those ¢ the representation (2)
for the polynomial

P(zi,... zm) +10(z1, ... 2m) = azi + ¢+ bt = a(z; + (¢ + bt) /a)

holds with 4 =a, I ={i} and [[;(z; +ay) = z; + (¢ + b1) /a.

Assume now that P,Q € Z[z,...,zy,], not both constants, are relatively
prime, and the leading coefficient of P is positive. Assume that there exist
infinitely many positive integers ¢ for which (2) holds with 4 = A(¢) € Z\{0} and
aj = a;(t) e NU{0}. It is clear that the coefficients of the polynomial

(3) Ri(z1,. . zm) = AW [[ ][z + as(0))

iel |
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on the right hand side of (2) all have the form uz + v with some integers u, v lying
in a finite set V. By the condition of the lemma, the nonzero coefficients of
R;/A(1) are all positive. So if two nonzero coefficients, say ri(¢) for z{' ---zn
and rj(7) for z{'---z/n, of the polynomial R, are unbounded then r;(r) = ur + v
and ri(t) = u’t + v’ with some integers u,u’ # 0. It follows that the modulus of
their quotient |r;(¢)/rj(¢)| is bounded in terms of ¢#. The fact that the quotient
of two unbounded coefficients of R; must be bounded will be used below several
times.

Now we shall prove that all the zeros —a;(f) of the polynomial R, given
in (3) are unbounded in terms of 7. For a contradiction assume that a;(#) for
some fixed pair i, j is bounded and assume without restriction of generality
that i =m. Then 0 < a,,;(¢) < K for certain K e N. Since a,,(f) can only take
K +1 values, we must have a,,(t) =a* for some fixed a* €{0,1,...,K} and
infinitely many ¢ e N. Thus the factor z, + a* occurs in all those polynomials
R, = P+ tQ defined in (2) corresponding to those 7. Then the polynomial

R,(Zl, ey Zm—1, —a*) = P(Zl, ey Zm—1, —a*) + lQ(Zl, ey Zm—1, —a*)

is zero identically. Thus Q(zy,...,z,_1,—a*) must be the zero polynomial.
It follows that P(zy,...,z,-1,—a*) is also the zero polynomial. Hence
O(z1,...,zy) and P(zy,...,z,) are both divisible by the same factor z, + a*,

a contradiction. This proves that all the zeros —a;(¢) of R, in (3) are un-
bounded, i.e. a;(t) — oo as t — co. Since A(t) € Z\{0}, in view of (3) it follows
that all the nonzero coefficients of R, are also unbounded except possibly for the
leading coefficient A(t).

Next, if the leading coefficient A(f) is unbounded then A(f) and
A0 [Lic,[[a4(7) are two unbounded coeflicients of R,, which is impossible,
because their quotient [];, [I;a;(7) tends to infinity as ¢ — oo. (Recall that,
by the fact established above, the quotient of two unbounded coefficients of R,
must be bounded.) So A(r) is bounded. Hence the leading coefficient A(¢) of
R, = P+ tQ must be that of P. This yields 4(¢) = a, where a > 0 is the leading
coefficient of P.

Suppose next that for infinitely many ¢ € N the product

Rzt zm) = a [ [ [ + as(2)

iel j

contains exactly r > 2 not necessarily distinct factors with the same i, say
zi+ai(t),...,z; + ay(t). Put B= B(t) for the constant term of the polynomial
Rt(Zl7 S ,Zr)/ H;:I(Zi + Cl,:/(l)). Then both B(l) H;:l Cl,:/(l) and B(l) Z]):l a,j(t)
are the coefficients of the polynomial R, corresponding to its constant term
and the term for z{~!, respectively. They are both unbounded, so their quotient
171 a;(2)/ 35— a;(t) must be bounded. This is not the case, because all a;(1)
are unbounded, so the product of r > 2 terms []/_, @;() divided by their sum

>i—1a;(t) tends to infinity as ¢ — oo.



ON THE LINEAR INDEPENDENCE OF THE SET OF DIRICHLET EXPONENTS 647

The only remaining possibility is that R(zi,...,zm) = a[[;,(zi + ai(t)) for
infinitely many e N. In case |I| >2 we see that the constant coefficient of
R; is equal to a]],.;ai(t) and the coefficient for z;, where /e, is equal to
all;epqy @i(t). They both are unbounded, because |I| > 2. But their quotient
a;(r) is also unbounded, a contradiction.

It follows that |I| =1 and thus R/(zy,...,z,) = a(z; + a;(t)) for some
ie{l,...,m} and infinitely many e N. From P+ Q= R, = az; + aa;(t) we
conclude that P(zy,...,z,) =az;+c¢, where aeN, ceZ and Q(zi,...,zy) =
b #0. Then

P+tQ=azi+c+th=a(z;+ (c+th)/a)

has the required form only when » > 0 and « divides ¢ + bt for infinitely many
teN. From the equality at; — bt = ¢, where t; € Z, we see that such positive
integers ¢ exist if and only if ged(a,b) divides ¢. However, if ged(a,b) > 1
and gcd(a,b)|c then the polynomials P =az;+c¢ and Q =b are divisible by
ged(a,b) > 1, and so they are not relatively prime. Consequently, we must

have ged(a,b) =1. Hence P(zy,...,zy) =az;+c for some ie{l,...,m} and
O(z1,...,zm) =b with a,beN, ceZ and gcd(a,b) =1, as claimed in the
statement of the lemma. O

Now we can give the proof of Theorem 1. Assume that the set
D(a)U---UD(ag—1)U Dy (o)
is linearly dependent over Q. Since the sets Z(o;)U---U Z(o—1) and Z,(ax) are

both linearly independent over Q, writing oy = P(oy,...,06—1)/O(ct1, .., 0k—1)
with two relatively prime polynomials P, Q in Z[z,...,zx—1] we must have
(4) H H(oc,- +ny)" = H(P(:xl, oy 0m1) /00,y og—1) )"

iel "j J

for some 7<{l,...,k—1}, n;n eNU{0}, n >¢q and u;,u; € Z\{0}. Of
course, P and Q are not both constants, because o is transcendental. Also,
without restriction of generality, by multiplying both P and Q by —1 if necessary,
we may assume that the leading coefficient of P is positive.

Since the numbers o, ...,0_; are algebraically independent, the equality (4)
must be the identity, namely,

() TG +n)" = [](PGr, - 20/ Q1, -y zir) + )™

iel j b

Note that the polynomials P+n;,Q and P4 mQ with n; # n; can have only
constant common factor, since P and Q are relatively prime. Hence selecting
any n; > ¢ on the right hand side of (5) we see that the corresponding polynomial
P(zi,...,zk-1) + n;0(z1, ..., zx—1) must be a constant multiplied by certain pro-
duct Hiell (zi + mi)™, where I =1, n; e NU{0} and v;eN. However, by
Lemma 3, this is impossible for ¢ large enough whenever (P, Q) # (az; + ¢, b)
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with a, b, ¢ as in Lemma 3. This completes the proof of Theorem 1, since
the condition of the theorem and that of the lemma which exclude the case
P(zi,...,zg1) =azi+c¢, Qz1,...,zk—1) = b, where ie{l,...,k—1}, a,beN,
c€Z and ged(a,b) =1, are the same.

3. Proof of Theorem 2
Assume that the set of Dirichlet exponents
Dg () U---U Dy, (o)
is linearly independent over Q. Evidently, its subset
Do) U---UZy(oy),
where ¢ := max;<;j<r ¢, is llnearly independent over Q too. Take a maximal
subset M| of the finite set U D(4))\Z4(2;)) for which the set
@1 = M1 U @q(al) U--- U@q(ock)

is linearly independent over Q. This means that each of the gk — | M| remaining
logarithms log(n + a;) ¢ 21, where 0 <n<g—1and 1 <j <k, is a linear com-
bination with rational coefficients of some elements of Z;. (Of course, the
choice of the set M) is not necessarily unique.)

Fix an integer m > ¢ such that each of the logarithms log(n+ o) ¢ 2 is
expressible in the form

._‘

m—

k
log(n + o) :ZZC,,,,,lOgl+OC,)

r=1 i=0

with ¢;,,;€Q. (Some of the coefficients ¢;, ,; can be zeros.) Therefore, by
increasing ¢ to m if necessary and adding more logarithms to the set M; we
may assume that each log(n + o;) which is not in the set

D= MU Do) U+ -U Dy (),
where
M = M, U{log(q+o1),...,log(m—14+0a;)}U---
U {log(q + o), ..., log(m — 1 + o)},

is a linear combination of at most km logarithms of the set M. Obviously, there
exists a positive integer / such that for each log(n + o) ¢ Z we have the repre-
sentation

(6) flog(n+o) =Y ¢ log(i+a)

log(i+o,) e M

with ¢; , € Z.
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Let K; be the sets and let f;(s) be the functions described in Theorem 2.
Fix ¢ >0. Let K be a simply connected compact subset of the strip {se C:
1/2 < R(s) < 1} such that the union U K; is included in the interior of K. By

Mergelyan’s theorem (see Lemma 5 in [13]) there exist polynomials with complex
coefficients p;(s), j=1,...,k, such that

(7) [nax max|f; [fi(s) = pi(s)] <e.

By Gonek’s lemma (see Lemma 7, (29) and (30) in [13]), there is a large positive

integer v > m such that for each sufficiently large integer ¢ and each j=1,...,k
we have
1 exp(2nil,, ;)
P = L ey T 2w |

0<n<v v<n<t

with some 8, ; € R. Selecting 6, ; = 0 for n =m, ..., v, we can rewrite the above
inequality in the form

1 exp(2ni0, ;)
p/() Z W_ Z W <é&

0<n<m m<n<t

® may

For 0 >0 let Br(d) be a set of those 7€ [T,2T] for which
|—(z/2n) log(n + o) — 0, ]| <0 when m<n<t 1<j<k
and
||—(z/2m) log(n+ o;)|| <6 when log(n + «;) € M.

Observe that in view of (6) the second inequality implies that for each sufficiently
small J there is a positive constant ¢y (which depends on /, M and the coefficients
¢ir in gm — M| equalities (6)) such that

©) [|=(z/27) log(n + )|l < cod
foreachn=0,1,...,m—1and each j=1,... k. Since the logarithms involved

in the definition of Bz(d) are linearly independent over Q, by Kronecker’s
theorem (see Lemma 6 in [13]), the Lebesgue measure of the set Br(J) satisfies

(10) w(Br(8)) ~&iT as T — oo, where & := (20)K=mtDHM]
For each j=1,...,k and each 7€ Br(d) we have
Z exp(2ni0,,ij)_ Z | i
(n+oy)* (n+ o)

m<n<t m<n<t

max
sekK

whenever 0 is small enough. Similarly, by (9), we obtain

1 1
2 a2

max e
0<n<m 0<n<m (I’l+06])

sekK

<é
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when J is small enough. Combined with (8) this gives

pi(s) — Z ﬁ

OSHSt(n t o

(11) max max < 3e.

I<j<k sekK

The next two inequalities are standard and can be obtained by considering
the second moments of the involved functions. Firstly, for any pair of positive
numbers &, & and a set

i }

1

(12) Ar(ez):= {r € [T,2T] : max max|{(s+ it,05) — Z

1<j<k SEK/- 0<n<: (n —+ O(j)‘H_iT
we have
.. Ar(e,
(13) ll;nmf MT—I(fZ)) >1—g

for each sufficiently large z (see Lemma 9 in [13]). Secondly, let Cr(d) be a
subset of Br(d) for which the inequality

(14) max max
1<j<k sekK

1
— | <é
<n<:z (l’l + qi)s+w

holds uniformly for z > ¢ Then (see Lemma 11 in [13] and (10)) for each
sufficiently large ¢ we have
T—w T 2 T—w T 2

Hence selecting & = ¢;/4 in (13) we obtain
(Ar(e,2) N Cr(0) _ &

.
11;1:1;1f T > 1

for each sufficiently large z. Finally, for 7 € A7(e, z) N Cy(d) combining (7), (11),
(12), (14) we find that

é’f‘é‘k r};&};c [C(s + it,05) — fi(s)] < Te.

This completes the proof of Theorem 2.
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