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ON THE LINEAR INDEPENDENCE OF

THE SET OF DIRICHLET EXPONENTS

Artūras Dubickas

Abstract

Given kb 2 let a1; . . . ; ak be transcendental numbers such that a1; . . . ; ak�1 are

algebraically independent over Q and ak A Qða1; . . . ; ak�1Þ, but ak 0 ðaai þ cÞ=b for

some i A f1; . . . ; k � 1g and some a; b A N, c A Z satisfying gcdða; bÞ ¼ 1. We prove

that then there exists a nonnegative integer q such that the set of so-called Dirichlet

exponents logðnþ ajÞ, where n runs through the set of all nonnegative integers for

j ¼ 1; . . . ; k � 1 and n ¼ q; qþ 1; qþ 2; . . . for j ¼ k, is linearly independent over

Q. As an application we obtain a joint universality theorem for corresponding

Hurwitz zeta functions zðs; a1Þ; . . . ; zðs; akÞ in the strip fs A C : 1=2 < <ðsÞ < 1g. In

our approach we follow a recent result of Mishou who analyzed the case k ¼ 2.

1. Introduction

For any given complex number a B f0;�1;�2;�3; . . .g we consider the set

DðaÞ :¼ flog a; logð1þ aÞ; logð2þ aÞ; . . .g;
where log stands for the principal branch of the natural logarithm. The set DðaÞ
is known as the set of Dirichlet exponents of the Hurwitz zeta function

zðs; aÞ :¼
Xy
n¼0

1

ðnþ aÞs ¼
Xy
n¼0

e�s logðnþaÞ;

where a is a real number in the interval ð0; 1Þ. More generally, for each integer
qb 0 let us denote

DqðaÞ :¼ flogðqþ aÞ; logðqþ 1þ aÞ; logðqþ 2þ aÞ; . . .g;
so that D0ðaÞ ¼ DðaÞ.

Recall that a (finite or infinite) set of complex numbers V is linearly
dependent over Q if there exist some m A N, distinct v1; . . . ; vm A V and nonzero

642

2000 Mathematics Subject Classification. 11M35, 11J72.

Key words and phrases. Hurwitz zeta function, Dirichlet exponents, universality, linear inde-

pendence.

Received March 6, 2012; revised May 16, 2012.



r1; . . . ; rm A Q such that
Pm

j¼1 rjvj ¼ 0 and linearly independent otherwise. Ob-
viously, if a is a transcendental number then the set DðaÞ is linearly independent
over Q. The set DðaÞ for algebraic a have been studied by Cassels [3] (see
also [4] and [5]). The question if there is an algebraic number a for which the
set DðaÞ is linearly independent over Q is still open (see [4], [5] and also [7], [12]).
A finite set of distinct complex numbers v1; . . . ; vm is algebraically dependent
over Q if there is a nonzero polynomial Pðz1; . . . ; zmÞ A Q½z1; . . . ; zm� such that
Pðv1; . . . ; vmÞ ¼ 0 and algebraically independent otherwise.

The main result of this note is the following:

Theorem 1. Let kb 2 be an integer and let a1; . . . ; ak�1; ak be some tran-
scendental numbers. Suppose that the numbers a1; . . . ; ak�1 are algebraically inde-
pendent over Q and ak A Qða1; . . . ; ak�1Þ, and suppose for each i ¼ 1; . . . ; k � 1 we
have ak 0 ðaai þ cÞ=b for a; b A N, c A Z satisfying gcdða; bÞ ¼ 1. Then there is
an integer qb 0 such that set of Dirichlet exponents

Dða1ÞU � � �UDðak�1ÞUDqðakÞ

is linearly independent over Q.

Following the result of Nesterenko [15], the numbers p and ep are algebrai-
cally independent over Q, so Theorem 1 can be applied to the numbers

a1 :¼ p ¼ 3:14159 . . . ; a2 :¼ ep ¼ 23:14069 . . . ;

a3 :¼ a21 þ a2 ¼ p2 þ ep ¼ 33:01029 . . . :

Note that the condition ak 0 ðaai þ cÞ=b for integers a > 0, b > 0 and
c satisfying gcdða; bÞ ¼ 1 cannot be removed from Theorem 1. Indeed, if
ak ¼ ðaai þ cÞ=b with some i A f1; . . . ; k � 1g and a, b, c as above then there
exists d A N for which u :¼ ðbd þ cÞ=a is a positive integer. Thus for each N A N
we have the identity

ak þ d þ aN

ak þ d þ aðN � 1Þ ¼
aai þ cþ bðd þ aNÞ

aai þ cþ bðd þ aN � aÞ ¼
ai þ uþ bN

ai þ uþ bðN � 1Þ :

Consequently, the four logarithms logðak þ d þ aNÞ, logðak þ d þ aðN � 1ÞÞ,
logðai þ uþ bNÞ, logðai þ uþ bðN � 1ÞÞ are linearly dependent over Q, and
hence the set DqðaiÞUDqðakÞ is linearly dependent over Q for any q A N.

As an application of Theorem 1 we shall prove the following joint univer-
sality theorem for Hurwitz zeta functions. (Throughout, mðAÞ stands for the
Lebesgue measure of the set AJR.)

Theorem 2. Let a1; a2; . . . ; ak, kb 2, be real transcendental numbers in the
interval ð0; 1Þ such that for some integers q1; q2; . . . ; qk b 0 the set of Dirichlet
exponents

Dq1ða1ÞUDq2ða2ÞU � � �UDqk ðakÞ
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is linearly independent over Q. For each j in the range 1a ja k let Kj be a
compact subset of the strip fs A C : 1=2 < <ðsÞ < 1g with connected complement
and let fjðsÞ be a continuous function on Kj which is analytic in the interior of Kj.
Then for any e > 0 we have

lim inf
T!y

1

T
m t A ½0;T � : max

1a jak
max
s AKj

jzðsþ it; ajÞ � fjðsÞj < e

� �
> 0:ð1Þ

The subject of ‘‘universality’’ for Dirichlet L-functions started with the
paper of Voronin [16], where he proved that for every positive number e and
every continuous non-vanishing function f ðsÞ in the disc jsja r, where 0 <
r < 1=4, which is analytic in jsj < r there exists a number t ¼ tðeÞ for which
maxjsjar jzðsþ 3=4þ itÞ � f ðsÞj < e. So certain shifts of zeta function are arbi-
trarily close to every analytic function. Later, this result have been extended to
other L-functions and it was shown that the set of those t for which the shift of
the L-function by it approximates f ðsÞ has positive density; see, e.g., [8], [9] for
some references on this. In particular, for the Hurwitz zeta function zðs; aÞ
it was shown that if a A ð0; 1=2ÞU ð1=2; 1Þ is either rational or transcendental
number then for any function f ðsÞ which is continuous in a compact set
KH fs A C : 1=2 < <ðsÞ < 1g with connected complement and analytic in the
interior of K we have

lim inf
T!y

1

T
m t A ½0;T � : max

s AK
jzðsþ it; aÞ � f ðsÞj < e

� �
> 0

for any given e > 0 (see [1], [6]).
Later, certain joint universality theorems when instead of one function f we

have several analytic functions f1; . . . ; fk and approximate them with some shifts
of zðs; ajÞ, j ¼ 1; . . . ; k, were obtained in [2], [11], etc. In particular, the joint
universality theorem which asserts the conclusion (1) of Theorem 1 under
assumption that all k transcendental numbers a1; . . . ; ak are algebraically inde-
pendent follows from the results of Nakamura in [14]. Laurinčikas proved the
same statement under weaker assumption that the set of Dirichlet exponents
Dða1ÞU � � �UDðakÞ is linearly independent over Q (see [10]). This corresponds to
the case q1 ¼ � � � ¼ qk ¼ 0 in Theorem 2.

The above mentioned result of Nakamura covers the case when the tran-
scendence degree trdegðQða1; . . . ; akÞ=QÞ of the field extension Qða1; . . . ; akÞ=Q
(i.e., the largest cardinality of an algebraically independent subset of Qða1; . . . ; akÞ
over Q) is equal to k. On the other hand, when kb 3 and 2a ra k � 1 the
next simple example

a1 :¼ a; a2 :¼ a=r; a3 :¼ ðaþ 1Þ=r; . . . ; arþ1 :¼ ðaþ r� 1Þ=r;
where a and aj, j ¼ rþ 1; . . . ; k, are algebraically independent transcendental
numbers in the interval ð0; 1Þ (so that trdegðQða1; . . . ; akÞ=QÞ ¼ k � ra k � 2),
shows that the first rþ 1 Hurwitz zeta functions are linearly dependent

rszðs; a1Þ ¼ zðs; a2Þ þ � � � þ zðs; arþ1Þ:

644 artūras dubickas



Therefore, no joint universality theorem holds for these k Hurwitz zeta func-
tions zðs; ajÞ, j ¼ 1; . . . ; k. Theorem 2 deals with the remaining case when the
transcendence degree of the field extension Qða1; . . . ; akÞ=Q is equal to k � 1.
The case k ¼ 2 was recently analyzed by Mishou [13]. We will follow his
approach. It seems likely that the conclusion (1) is true for any distinct tran-
scendental numbers a1; . . . ; ak A ð0; 1Þ for which trdegðQða1; . . . ; akÞ=QÞ ¼ k � 1.

2. Proof of Theorem 1

Recall that if Pðz1; . . . ; zmÞ ¼
P

i piz
i1
1 � � � zimm A C½z1; . . . ; zm�, where i ¼

ði1; . . . ; imÞ and pi A Cnf0g, is a nonzero polynomial then its leading coe‰cient
is the coe‰cient pj for z

j1
1 � � � z jm

m such that the vector j ¼ ð j1; . . . ; jmÞ is the largest
lexicographically among all vectors i ¼ ði1; . . . ; imÞ with maximal sum i1 þ � � � þ im
¼ deg P. For instance, the leading coe‰cient of the polynomial Pðz1; z2Þ ¼
z41 þ 2z1z

4
2 þ 3z52 � z1z2 is equal to 2.

Lemma 3. Suppose that for m A N two nonzero polynomials with integer
coe‰cients Pðz1; . . . ; zmÞ with positive leading coe‰cient and Qðz1; . . . ; zmÞ, not
both constants, are relatively prime. Then there exist infinitely many positive
integers t for which

Pðz1; . . . ; zmÞ þ tQðz1; . . . ; zmÞ ¼ A
Y
i A I

Y
j

ðzi þ aijÞ;ð2Þ

where I is a nonempty subset of the set f1; . . . ;mg, A is a nonzero integer and
aij A NU f0g (where aij are not necessarily distinct), if and only if there are
i A f1; . . . ;mg, a; b A N, c A Z, gcdða; bÞ ¼ 1 for which Pðz1; . . . ; zmÞ ¼ azi þ c and
Qðz1; . . . ; zmÞ ¼ b.

Proof. For m ¼ 1 the lemma was proved by Mishou in [13]. Our proof is
di¤erent from that given in [13] and works for any m A N.

The lemma is trivial in one direction. If Pðz1; . . . ; zmÞ ¼ azi þ c and
Qðz1; . . . ; zmÞ ¼ b with a, b, c as above then there are infinitely many t A N
for which cþ btb 0 and a j ðcþ btÞ. For each of those t the representation (2)
for the polynomial

Pðz1; . . . ; zmÞ þ tQðz1; . . . ; zmÞ ¼ azi þ cþ bt ¼ aðzi þ ðcþ btÞ=aÞ

holds with A ¼ a, I ¼ fig and
Q

jðzi þ aijÞ ¼ zi þ ðcþ btÞ=a.
Assume now that P;Q A Z½z1; . . . ; zm�, not both constants, are relatively

prime, and the leading coe‰cient of P is positive. Assume that there exist
infinitely many positive integers t for which (2) holds with A ¼ AðtÞ A Znf0g and
aij ¼ aijðtÞ A NU f0g. It is clear that the coe‰cients of the polynomial

Rtðz1; . . . ; zmÞ :¼ AðtÞ
Y
i A I

Y
j

ðzi þ aijðtÞÞð3Þ
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on the right hand side of (2) all have the form utþ v with some integers u, v lying
in a finite set V . By the condition of the lemma, the nonzero coe‰cients of
Rt=AðtÞ are all positive. So if two nonzero coe‰cients, say riðtÞ for zi11 � � � zimm
and rjðtÞ for z

j1
1 � � � z jm

m , of the polynomial Rt are unbounded then riðtÞ ¼ utþ v
and rjðtÞ ¼ u 0tþ v 0 with some integers u; u 0 0 0. It follows that the modulus of
their quotient jriðtÞ=rjðtÞj is bounded in terms of t. The fact that the quotient
of two unbounded coe‰cients of Rt must be bounded will be used below several
times.

Now we shall prove that all the zeros �aijðtÞ of the polynomial Rt given
in (3) are unbounded in terms of t. For a contradiction assume that aijðtÞ for
some fixed pair i, j is bounded and assume without restriction of generality
that i ¼ m. Then 0a amjðtÞaK for certain K A N. Since amjðtÞ can only take
K þ 1 values, we must have amjðtÞ ¼ a� for some fixed a� A f0; 1; . . . ;Kg and
infinitely many t A N. Thus the factor zm þ a� occurs in all those polynomials
Rt ¼ Pþ tQ defined in (2) corresponding to those t. Then the polynomial

Rtðz1; . . . ; zm�1;�a�Þ ¼ Pðz1; . . . ; zm�1;�a�Þ þ tQðz1; . . . ; zm�1;�a�Þ

is zero identically. Thus Qðz1; . . . ; zm�1;�a�Þ must be the zero polynomial.
It follows that Pðz1; . . . ; zm�1;�a�Þ is also the zero polynomial. Hence
Qðz1; . . . ; zmÞ and Pðz1; . . . ; zmÞ are both divisible by the same factor zm þ a�,
a contradiction. This proves that all the zeros �aijðtÞ of Rt in (3) are un-
bounded, i.e. aijðtÞ ! y as t ! y. Since AðtÞ A Znf0g, in view of (3) it follows
that all the nonzero coe‰cients of Rt are also unbounded except possibly for the
leading coe‰cient AðtÞ.

Next, if the leading coe‰cient AðtÞ is unbounded then AðtÞ and
AðtÞ

Q
i A I

Q
j aijðtÞ are two unbounded coe‰cients of Rt, which is impossible,

because their quotient
Q

i A I

Q
j aijðtÞ tends to infinity as t ! y. (Recall that,

by the fact established above, the quotient of two unbounded coe‰cients of Rt

must be bounded.) So AðtÞ is bounded. Hence the leading coe‰cient AðtÞ of
Rt ¼ Pþ tQ must be that of P. This yields AðtÞ ¼ a, where a > 0 is the leading
coe‰cient of P.

Suppose next that for infinitely many t A N the product

Rtðz1; . . . ; zmÞ ¼ a
Y
i A I

Y
j

ðzi þ aijðtÞÞ

contains exactly rb 2 not necessarily distinct factors with the same i, say
zi þ ai1ðtÞ; . . . ; zi þ airðtÞ. Put B ¼ BðtÞ for the constant term of the polynomial
Rtðz1; . . . ; zrÞ=

Qr
j¼1ðzi þ aijðtÞÞ. Then both BðtÞ

Qr
j¼1 aijðtÞ and BðtÞ

Pr
j¼1 aijðtÞ

are the coe‰cients of the polynomial Rt corresponding to its constant term
and the term for zr�1

1 , respectively. They are both unbounded, so their quotientQr
j¼1 aijðtÞ=

Pr
j¼1 aijðtÞ must be bounded. This is not the case, because all aijðtÞ

are unbounded, so the product of rb 2 terms
Q r

j¼1 aijðtÞ divided by their sumPr
j¼1 aijðtÞ tends to infinity as t ! y.
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The only remaining possibility is that Rtðz1; . . . ; zmÞ ¼ a
Q

i A I ðzi þ aiðtÞÞ for
infinitely many t A N. In case jI jb 2 we see that the constant coe‰cient of
Rt is equal to a

Q
i A I aiðtÞ and the coe‰cient for zl , where l A I , is equal to

a
Q

i A Inflg aiðtÞ. They both are unbounded, because jI jb 2. But their quotient
alðtÞ is also unbounded, a contradiction.

It follows that jI j ¼ 1 and thus Rtðz1; . . . ; zmÞ ¼ aðzi þ aiðtÞÞ for some
i A f1; . . . ;mg and infinitely many t A N. From Pþ tQ ¼ Rt ¼ azi þ aaiðtÞ we
conclude that Pðz1; . . . ; zmÞ ¼ azi þ c, where a A N, c A Z and Qðz1; . . . ; zmÞ ¼
b0 0. Then

Pþ tQ ¼ azi þ cþ tb ¼ aðzi þ ðcþ tbÞ=aÞ
has the required form only when b > 0 and a divides cþ bt for infinitely many
t A N. From the equality at1 � bt ¼ c, where t1 A Z, we see that such positive
integers t exist if and only if gcdða; bÞ divides c. However, if gcdða; bÞ > 1
and gcdða; bÞ j c then the polynomials P ¼ azi þ c and Q ¼ b are divisible by
gcdða; bÞ > 1, and so they are not relatively prime. Consequently, we must
have gcdða; bÞ ¼ 1. Hence Pðz1; . . . ; zmÞ ¼ azi þ c for some i A f1; . . . ;mg and
Qðz1; . . . ; zmÞ ¼ b with a; b A N, c A Z and gcdða; bÞ ¼ 1, as claimed in the
statement of the lemma. r

Now we can give the proof of Theorem 1. Assume that the set

Dða1ÞU � � �UDðak�1ÞUDqðakÞ
is linearly dependent over Q. Since the sets Dða1ÞU � � �UDðak�1Þ and DqðakÞ are
both linearly independent over Q, writing ak ¼ Pða1; . . . ; ak�1Þ=Qða1; . . . ; ak�1Þ
with two relatively prime polynomials P, Q in Z½z1; . . . ; zk�1� we must haveY

i A I

Y
j

ðai þ nijÞuij ¼
Y
j

ðPða1; . . . ; ak�1Þ=Qða1; . . . ; ak�1Þ þ njÞujð4Þ

for some I J f1; . . . ; k � 1g, nij; nj A NU f0g, nj b q and uij ; uj A Znf0g. Of
course, P and Q are not both constants, because ak is transcendental. Also,
without restriction of generality, by multiplying both P and Q by �1 if necessary,
we may assume that the leading coe‰cient of P is positive.

Since the numbers a1; . . . ; ak�1 are algebraically independent, the equality (4)
must be the identity, namely,Y

i A I

Y
j

ðzi þ nijÞuij 1
Y
j

ðPðz1; . . . ; zk�1Þ=Qðz1; . . . ; zk�1Þ þ njÞuj :ð5Þ

Note that the polynomials Pþ njQ and Pþ nlQ with nj 0 nl can have only
constant common factor, since P and Q are relatively prime. Hence selecting
any nj b q on the right hand side of (5) we see that the corresponding polynomial
Pðz1; . . . ; zk�1Þ þ njQðz1; . . . ; zk�1Þ must be a constant multiplied by certain pro-
duct

Q
i A I1

ðzi þ nisÞvis , where I1 J I , nis A NU f0g and vis A N. However, by
Lemma 3, this is impossible for q large enough whenever ðP;QÞ0 ðazi þ c; bÞ
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with a, b, c as in Lemma 3. This completes the proof of Theorem 1, since
the condition of the theorem and that of the lemma which exclude the case
Pðz1; . . . ; zk�1Þ ¼ azi þ c, Qðz1; . . . ; zk�1Þ ¼ b, where i A f1; . . . ; k � 1g, a; b A N,
c A Z and gcdða; bÞ ¼ 1, are the same.

3. Proof of Theorem 2

Assume that the set of Dirichlet exponents

Dq1ða1ÞU � � �UDqk ðakÞ
is linearly independent over Q. Evidently, its subset

Dqða1ÞU � � �UDqðakÞ;
where q :¼ max1a jak qj, is linearly independent over Q too. Take a maximal
subset M1 of the finite set 6k

j¼1
ðDðajÞnDqðajÞÞ for which the set

D1 :¼ M1 UDqða1ÞU � � �UDqðakÞ

is linearly independent over Q. This means that each of the qk � jM1j remaining
logarithms logðnþ ajÞ B D1, where 0a na q� 1 and 1a ja k, is a linear com-
bination with rational coe‰cients of some elements of D1. (Of course, the
choice of the set M1 is not necessarily unique.)

Fix an integer mb q such that each of the logarithms logðnþ ajÞ B D1 is
expressible in the form

logðnþ ajÞ ¼
Xk

r¼1

Xm�1

i¼0

cj;n; r; i logði þ arÞ

with cj;n; r; i A Q. (Some of the coe‰cients cj;n; r; i can be zeros.) Therefore, by
increasing q to m if necessary and adding more logarithms to the set M1 we
may assume that each logðnþ ajÞ which is not in the set

D :¼ M UDmða1ÞU � � �UDmðakÞ;
where

M :¼ M1 U flogðqþ a1Þ; . . . ; logðm� 1þ a1ÞgU � � �
U flogðqþ akÞ; . . . ; logðm� 1þ akÞg;

is a linear combination of at most km logarithms of the set M. Obviously, there
exists a positive integer l such that for each logðnþ ajÞ B D we have the repre-
sentation

l logðnþ ajÞ ¼
X

logðiþarÞ AM
ci; r logði þ arÞð6Þ

with ci; r A Z.
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Let Kj be the sets and let fjðsÞ be the functions described in Theorem 2.
Fix e > 0. Let K be a simply connected compact subset of the strip fs A C :
1=2 < <ðsÞ < 1g such that the union 6k

j¼1
Kj is included in the interior of K . By

Mergelyan’s theorem (see Lemma 5 in [13]), there exist polynomials with complex
coe‰cients pjðsÞ, j ¼ 1; . . . ; k, such that

max
1a jak

max
s AKj

j fjðsÞ � pjðsÞj < e:ð7Þ

By Gonek’s lemma (see Lemma 7, ð29Þ and ð30Þ in [13]), there is a large positive
integer n > m such that for each su‰ciently large integer t and each j ¼ 1; . . . ; k
we have

max
s AK

pjðsÞ �
X

0an<n

1

ðnþ ajÞs
�

X
nanat

expð2piyn; jÞ
ðnþ ajÞs

�����
�����< e

with some yn; j A R. Selecting yn; j ¼ 0 for n ¼ m; . . . ; n, we can rewrite the above
inequality in the form

max
s AK

pjðsÞ �
X

0an<m

1

ðnþ ajÞs
�

X
manat

expð2piyn; jÞ
ðnþ ajÞs

�����
�����< e:ð8Þ

For d > 0 let BTðdÞ be a set of those t A ½T ; 2T � for which

k�ðt=2pÞ logðnþ ajÞ � yn; jka d when ma na t; 1a ja k

and

k�ðt=2pÞ logðnþ ajÞka d when logðnþ ajÞ A M:

Observe that in view of (6) the second inequality implies that for each su‰ciently
small d there is a positive constant c0 (which depends on l, M and the coe‰cients
ci; r in qm� jMj equalities (6)) such that

k�ðt=2pÞ logðnþ ajÞka c0dð9Þ
for each n ¼ 0; 1; . . . ;m� 1 and each j ¼ 1; . . . ; k. Since the logarithms involved
in the definition of BTðdÞ are linearly independent over Q, by Kronecker’s
theorem (see Lemma 6 in [13]), the Lebesgue measure of the set BT ðdÞ satisfies

mðBT ðdÞÞ@ e1T as T ! y; where e1 :¼ ð2dÞkðt�mþ1ÞþjMj:ð10Þ
For each j ¼ 1; . . . ; k and each t A BT ðdÞ we have

max
s AK

X
manat

expð2piyn; jÞ
ðnþ ajÞs

�
X

manat

1

ðnþ ajÞsþit

�����
�����< e

whenever d is small enough. Similarly, by (9), we obtain

max
s AK

X
0an<m

1

ðnþ ajÞs
�

X
0an<m

1

ðnþ ajÞsþit

�����
�����< e
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when d is small enough. Combined with (8) this gives

max
1a jak

max
s AK

pjðsÞ �
X

0anat

1

ðnþ ajÞsþit

�����
�����< 3e:ð11Þ

The next two inequalities are standard and can be obtained by considering
the second moments of the involved functions. Firstly, for any pair of positive
numbers e, e2 and a set

ATðe; zÞ :¼ t A ½T ; 2T � : max
1a jak

max
s AKj

zðsþ it; ajÞ �
X

0anaz

1

ðnþ ajÞsþit

�����
�����< e

( )
ð12Þ

we have

lim inf
T!y

mðAT ðe; zÞÞ
T

> 1� e2ð13Þ

for each su‰ciently large z (see Lemma 9 in [13]). Secondly, let CTðdÞ be a
subset of BTðdÞ for which the inequality

max
1a jak

max
s AK

X
t<naz

1

ðnþ ajÞsþit

�����
�����< eð14Þ

holds uniformly for z > t. Then (see Lemma 11 in [13] and (10)) for each
su‰ciently large t we have

lim inf
T!y

mðCTðdÞÞ
T

>
1

2
lim
T!y

mðBTðdÞÞ
T

¼ e1

2
:

Hence selecting e2 ¼ e1=4 in (13) we obtain

lim inf
T!y

mðAT ðe; zÞVCTðdÞÞ
T

>
e1

4

for each su‰ciently large z. Finally, for t A ATðe; zÞVCT ðdÞ combining (7), (11),
(12), (14) we find that

max
1a jak

max
s AKj

jzðsþ it; ajÞ � fjðsÞj < 7e:

This completes the proof of Theorem 2.
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(2008), 169–187.

[11] A. Laurinčikas and K. Matsumoto, The joint universality and the functional independence

for Lerch zeta-functions, Nagoya Math. J. 157 (2000), 211–237.
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