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DEFORMING TWO-DIMENSIONAL GRAPHS IN R4

BY FORCED MEAN CURVATURE FLOW

Jing Mao

Abstract

A surface S0 is a graph in R4 if there is a unit constant 2-form w in R4 such that

he15e2;wib v0 > 0, where fe1; e2g is an orthonormal frame on S0. In this paper, we

investigate a 2-dimensional surface S evolving along a mean curvature flow with a

forcing term in direction of the position vector. If v0 b
1ffiffiffi
2

p holds on the initial graph

S0 which is the immersion of the surface S, and the coe‰cient function of the forcing

vector is nonnegative, then the forced mean curvature flow has a global solution, which

generalizes part of the results of Chen-Li-Tian in [2].

1. Introduction

In the past three decades, the mean curvature flow and the forced mean
curvature flows of hypersurfaces have been investigated deeply, and many nice
results have been obtained. In contrast, very little about the higher codimen-
sional mean curvature flow has been known, since in high codimensional case the
complexity of the evolution equations of the intrinsic geometric quantities, such
as all derivatives of the second fundamental form, the mean curvature and so on,
increases the di‰culty of doing estimates for those quantities. However, there
still exist nice results about the higher codimensional mean curvature flow, see [1,
2, 5, 8, 10, 11] for example. In [2], by using some conclusions in [1, 3], Chen-Li-
Tian proved that a 2-dimensional graph in R4 moving by the mean curvature
flow has a global solution, and the corresponding scaled surfaces converge to a
self-similar solution under some suitable condition therein.

Let F0 : S
2 ! R4 be an immersion from a 2-dimensional oriented surface S2

to R4. Denote by S0 ¼ F0ðSÞ, and we say that S0 is a graph if there is a unit
constant 2-form w in R4 such that

he15e2;wib v0 > 0;
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where fe1; e2g is an orthonormal frame on S0. In this paper, we consider the
surface S evolves along the forced mean curvature flow

q

qt
Fðx; tÞ ¼ Hðx; tÞ þ cðtÞFðx; tÞ; Ex A S; Et > 0

F ð�; 0Þ ¼ F0;

8<
:ð1:1Þ

where Hðx; tÞ denotes the mean curvature vector of St ¼ F ðS; tÞ at Fðx; tÞ, and
cðtÞ is a bounded continuous function. In order to state our main result, we
would like to introduce a notation here. Define

vðx; tÞ :¼ he1ðx; tÞ5e2ðx; tÞ;wi;ð1:2Þ

where fe1ðx; tÞ; e2ðx; tÞg is an orthonormal frame on St at F ðx; tÞ.
This forced mean curvature flow (1.1) has been investigated in [6, 7],

where the initial submanifolds are an entire graph and a convex hypersurface
respectively. However, the codimensions there are just 1, but here we want to
discuss the higher codimensional case. In fact, we can prove the following.

Theorem 1.1. Suppose S2 is a 2-dimensional oriented surface evolving under
the forced mean curvature flow (1.1) in R4. If the graph S0 ¼ F0ðSÞ has bounded

curvature, vðx; 0Þb v0 >
1ffiffiffi
2

p , and additionally cðtÞ is a bounded nonnegative

continuous function, then the flow (1.1) has a global solution.

The paper is organized as follows. The geometric evolution equations of an
m-dimensional immersed submanifold evolving along the forced mean curvature
flow having the form as (1.1) in Rn are derived in the next section. Theorem 1.1
will be proved in the last section.

2. Geometric evolution equations

In this section, we derive the evolution equations for some geometric
quantities. Given an immersion F0 : M

m ! Rn from an m-dimensional sub-
manifold to the Euclidean space Rn with the standard Euclidean metric h� ; �i.
Consider a one-parameter family of smooth maps Ft ¼ F ð�; tÞ : M ! Rn with
corresponding images Mt ¼ FtðMÞ evolving along the forced mean curvature
flow

q

qt
F ðx; tÞ ¼ Hðx; tÞ þ cðtÞFðx; tÞ; Ex A M; Et > 0

F ð�; 0Þ ¼ F0;

8<
:ð2:1Þ

where Hðx; tÞ denotes the mean curvature vector of Mt ¼ FðM; tÞ at F ðx; tÞ, and
cðtÞ is a bounded continuous function. Denote by s and ‘ the Laplace and
gradient operators for the induced metric on Mt, respectively. For a normal
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coordinate system fx1; . . . ; xmg around a point p on M, the metric g on Mt

induced by h� ; �i satisfies

gij ¼ hqiF ; qjFi;

where qiF , 1a iam, is the partial derivative with respect to the local
coordinates. Choose a local field of orthonormal frame e1; . . . ; em, v1; . . . ;
vn�m at the point F ðp; tÞ of Rn along Mt such that e1; . . . ; em are tangent
vectors of Mt and v1; . . . ; vn�m are in the normal bundle over Mt. We make
use of the indices range, 1a i; j; k; . . . ;am and 1a a; b; g; . . . ;a n�m. The
Einstein summation convention that repeated indices are summed over is adopted
in the rest of the article. Naturally, we can write

A ¼ Aava; H ¼ �H ava;

where Aa ¼ ðha
ijÞ is a matrix with ha

ij the component of the second fundamental
form, and H a ¼ gijha

ij ¼ ha
ii . Then the squared norm of the second fundamental

form should be

jAj2 ¼
X
a

jAaj2 ¼ gijgklha
ikh

a
jl ¼ ha

ikh
a
ik:

Here we point out that the matrix Aa is symmetric, since we have

ha
ij ¼ hqiva; qjFi ¼ hqjva; qiFi ¼ ha

ji

by the Weingarten equation (cf. [4, 9]).
In order to give the simple forms of the geometric evolution equations below,

we need to introduce several notations. Define C a
ib :¼ hva;‘ivbi and bb

a :¼
qva

qt
; vb

� �
, obviously, C a

ib ¼ �C
b
ia and bb

a ¼ �ba
b . Notice that bb

a vanishes for

hypersurfaces. We first derive the evolution equations for the induced metric
and the normal vector.

Lemma 2.1. Under the forced mean curvature flow (2.1), the induced metric
and the normal vector satisfy

qgij

qt
¼ �2H aha

ij þ 2cðtÞgij;ð2:2Þ

and

qva

qt
¼ ‘H a þH gC a

igei þ bb
a vb:ð2:3Þ

Proof. Using normal coordinate systems at x on Mt and at Fðx; tÞ on Rn,
together with the Gauss-Weingarten equations (cf. [4, 9])

qiva ¼ ha
ilg

lkqkF þ C
b
iavb;
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we have

qgij

qt
¼ q

qt
hqiF ; qjFi

¼ �hqiðH ava � cðtÞFÞ; qjFi� hqjðH ava � cðtÞF Þ; qiFi
¼ �2H aha

ij þ 2cðtÞgij ;

which finishes the proof of (2.2).
Using normal coordinate systems at x on Mt and at Fðx; tÞ on Rn, and then

translating the identity into normal frames, as the proof of lemma 2.2 in [1], we
have

qva

qt
¼ qva

qt
; qiF

� �
gijqjF þ bb

a vb

¼ �hva; qið�H gvg þ cðtÞFÞigijqjF þ bb
a vb

¼ ‘H a þH gC a
igei þ bb

a vb;

which finishes the proof of (2.3). r

Furthermore, we can prove the evolution equations for the second funda-
mental form, its squared norm, and also the squared norm of the mean curvature
vector.

Lemma 2.2. Assume that the Christo¤el symbols Gk
ij of the Levi-Civita con-

nection of the induced metric are zero at a point p A Mt, then under the forced
mean curvature flow (2.1) we have

q

qt
ha
ij ¼ ‘i‘jH

a �H gh
g
jlh

a
il þH gC

b
jgC

a
ib þH g‘iC

a
jg

þ ‘jH
bC a

ib þ ‘iH
bC a

jb � h
b
ij b

a
b þ cðtÞha

ij

at p.

Proof. Under the normal coordinate systems as before and our assumption,
by the Gauss-Weingarten equations (cf. [4, 9]), we have that at the point p

ha
ij ¼ �hq2ijF ; vai; q2ijF ¼ �ha

ij va;

and

qiva ¼ ha
ilg

lmqmF þ C
b
iavb:

Hence, we have

q

qt
ha
ij ¼ � q

qt
hq2ijF ; vai

¼ hq2ijðH ava � cðtÞFÞ; vai� hq2ijF ;‘H
a þH gC a

igei þ bb
a vbi
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¼ ‘2
ijH

a �H gh
g
jlh

a
il þH gC

b
jgC

a
ib þ ‘iH

bC a
jb � h

b
ij b

a
b þ h‘jH

gC
b
igvb; vai

þ h‘iH
gC

b
jgvb; vaiþ cðtÞha

ij ;

which implies our lemma. r

By lemma 2.4 in [1], we have the following lemma.

Lemma 2.3. Assume that the Christo¤el symbols Gk
ij of the Levi-Civita con-

nection of the induced metric are zero at a point p A Mt, then at the point p we
have

‘i‘jH
a ¼sha

ij þ ‘lðhb
ijC

a
lbÞ � ‘lðhb

ljC
a
ibÞ þ h

b
il h

b
lmh

a
mj �H bh

b
imh

a
mj þ h

b
ij h

b
lmh

a
ml

� h
b
imh

b
lj h

a
ml þ ‘iðhb

jlC
a
lbÞ � ‘iðH bC a

jbÞ:

Combining Lemma 2.2 and Lemma 2.3 immediately yields the following.

Lemma 2.4. Under the forced mean curvature flow (2.1), the second funda-
mental form satisfies

q

qt
�s

� �
ha
ij ¼ ‘lðhb

ijC
a
ibÞ þ h

b
il h

b
lmh

a
mj �H bðhb

imh
a
mj þ h

b
jl h

a
ilÞ þ h

b
ij h

b
lmh

a
ml � h

b
imh

b
jl h

a
ml

þ h
b
jl ð‘iC

a
lb � ‘lC

a
ibÞ þ h

g
jlC

b
lgC

a
ib � h

b
ij b

a
b þ cðtÞha

ij :

Now, by using the previous lemmas, we can prove the main result of this
section as follows.

Lemma 2.5. Under the forced mean curvature flow (2.1), we have

q

qt
�s

� �
jAj2 ¼ �2j~‘‘Aj2 þ 2jAj4 � 2cðtÞjAj2;

and

q

qt
�s

� �
jHj2 ¼ �2j~‘‘Hj2 þ 2jAj2jHj2 � 2cðtÞjHj2;

where ~‘‘ is the covariant di¤erentiation on HomðTMt � TMt;Nor MtÞ determined
by the covariant di¤erentiation on TMt and D on the normal bundle, D is the
normal connection for the embedding Mt HRn (cf. [9]).

3. Long time existence

Obviously, choose Mm ¼ S2 to be an oriented 2-dimensional surface and
n ¼ 4, then the flow (2.1) coincides with the flow (1.1), which implies those
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evolution equations derived in the last section also hold under the flow (1.1). In
this section, we want to show the global existence of the smooth solution of the
forced mean curvature flow (1.1).

As the hypersurface mean curvature flow case, we could get the short-time
existence of the smooth solution of the flow (1.1) by the standard theory of
parabolic partial di¤erential equation. We state it as follows.

Theorem 3.1. Suppose that the initial surface S0 ¼ F0ðSÞ has bounded
curvature, then there exists T > 0 such that (1.1) has a smooth solution on the
time interval ½0;TÞ. If maxSt

jAj2 is bounded near T , then the solution could be
extended to ½0;T þ eÞ for e > 0.

So, if we want to show the global existence of the smooth solution of the
flow (1.1), it needs to show that maxSt

jAj2 is bounded as t ! T . In order to get
the boundness of limt!T maxSt

jAj2, we first derive a monotonicity formula as in
[2, 3]. Define a function r ¼ rðx; tÞ by

rðx; tÞ ¼ 4pðt0 � tÞHðx; x0; tÞ ¼
1

4pðt0 � tÞ exp � jx� x0j2

4ðt0 � tÞ

 !
; t < t0;ð3:1Þ

where Hðx; x0; tÞ is the backward heat kernel in R4. We can prove the following.

Proposition 3.2. Suppose F satisfies the flow (1.1), and f ðx; tÞ is a smooth
function defined on S2 � Rþ, then

q

qt

ð
St

frðF ; tÞ dmt ¼
ð
St

df

dt
�sf

� �
rðF ; tÞ dmt �

ð
St

frðF ; tÞ H þ ðF � x0Þ?

2ðt0 � tÞ

�����
�����
2

dmt

þ 2

ð
St

cðtÞ frðF ; tÞ dmt �
ð
St

cðtÞhF ;F � x0i

2ðt0 � tÞ frðF ; tÞ dmt;

where ðF � x0Þ? denotes the projection of ðF � x0Þ onto the normal bundle
of St.

Proof. By Lemma 2.1, we have

q

qt
dmt ¼

1

2
gij qgij

qt
dmt ¼ �ðjHj2 � 2cðtÞÞ dmt;

so, it follows that

q

qt

ð
St

frðF ; tÞ dmt ¼
ð
St

q

qt
�s

� �
f

� �
rðF ; tÞ dmt þ

ð
St

f
q

qt
þs

� �
rðF ; tÞ dmtð3:2Þ

�
ð
St

frðF ; tÞjHj2 dmt þ 2

ð
St

cðtÞ frðF ; tÞ dmt:

528 jing mao



By straightforward computation, we obtain

q

qt
rðF ; tÞ ¼ 1

t0 � t
� hH þ cðtÞF ;F � x0i

2ðt0 � tÞ � jF � x0j2

4ðt0 � tÞ2

" #
rðF ; tÞ

and

s exp � jx� x0j2

4ðt0 � tÞ

 !
¼ exp � jx� x0j2

4ðt0 � tÞ

 !

� jhF � x0;‘Fij2

4ðt0 � tÞ2
� hF � x0;sFi

2ðt0 � tÞ � j‘F j2

2ðt0 � tÞ

" #
;

together with the fact that j‘F j2 ¼ 2 and sF ¼ H for the induced metric on St,
the equality

q

qt
þs

� �
rðF ; tÞ ¼ � hF � x0;Hi

ðt0 � tÞ þ jðF � x0Þ?j2

4ðt0 � tÞ2

" #
rðF ; tÞð3:3Þ

� cðtÞhF ;F � x0i

2ðt0 � tÞ rðF ; tÞ;

holds. Our lemma follows by substituting (3.3) into (3.2). r

Then we can prove the following maximum principle.

Proposition 3.3. Suppose f ðx; tÞ is a smooth function defined on S2 � Rþ,
which satisfies the inequality

qf

qt
�sf a~aa � ‘f

for some vector filed ~aa, where ‘ and s denote the tangential gradient and
Laplacian on St. If a0 ¼ supS�½0; t1�j~aaj < y for some t1 > 0, and in addition cðtÞ in
(1.1) is nonnegative, then

sup
St

f a sup
S0

f

for all t A ½0; t1�.

Proof. Let k ¼ supS0
f and fk ¼ maxð f � k; 0Þ, as the proof of corollary

1.1 in [3], we have

d

dt
�s

� �
f 2
k a

1

2
a20 f

2
k :

Employing the monotonicity formula of Proposition 3.3 with f 2
k instead of f , and

choosing x0 ¼ 0 in (3.1) result in
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d

dt

ð
St

f 2k r dmt a
1

2
a20

ð
St

f 2k r dmt þ 2

ð
St

cðtÞ f 2
k r dmtð3:4Þ

a
1

2
a20 þ 2cþ

� �ð
St

f 2
k r dmt;

where cþ is the bound of the function cðtÞ. Then the desired result follows from
(3.4) directly. r

Now, we want to show that if the initial image S0 is a graph in R4, then
under the forced mean curvature flow (1.1), St is also graph for 0a t < T , which
will be used for deriving the boundness of limt!T maxSt

jAj2 at the end of this
section. In fact, as the proof of lemma 2.4 in [2], by using the evolution
equation (2.3) for normal vectors, we have the following.

Lemma 3.4. Let w be a unit constant 2-form in R4, and let v be defined as
(1.2) with respect to an orthonormal frame fe1ðx; tÞ; e2ðx; tÞg of St ¼ F ðS; tÞ at
Fðx; tÞ. Then under the flow (1.1) we have

q

qt
�s

� �
v ¼ jAj2v� 2ðh111h212 � h211h

1
12 þ h121h

2
22 � h221h

1
22Þhv15v2;wi;

where as before fv1; v2g is an orthonormal frame for the normal bundle of St.

Then by Proposition 3.3 and Lemma 3.4, as the proof of proposition 2.5 in
[2], we can prove the following conclusion.

Proposition 3.5. Let w be a unit constant 2-form in R4. If vðx; 0Þb v0 >1ffiffiffi
2

p for all x A S2, and in addition cðtÞ in (1.1) is nonnegative for 0a t < T , then

under the flow (1.1), vðx; tÞb v0 holds for all t A ½0;TÞ and x A S2.

Proof of Theorem 1.1. Let w be a unit constant 2-form in R4 with respect
to which S0 is a graph. Consider the functions u1 ¼ he15e2;wþ �wi and u2 ¼
he15e2;w� �wi. As the proof of theorem 2.6 in [2], by Lemma 3.4 and
Proposition 3.5, we have

uiðx; tÞb uiðx; 0Þb v0 �
1ffiffiffi
2

p > 0; i ¼ 1; 2:ð3:5Þ

Moreover, let u ¼ u1u2, then we have

q

qt
�s

� �
u ¼ 2jAj2u� 2‘u1 � ‘u2 ¼ 2jAj2u� 2

‘u1

u1
� ‘uþ 2

j‘u1j2u
u21

:ð3:6Þ

Define f ¼ jAj2

u
, by Lemma 2.5 and (3.6), we have
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q

qt
�s

� �
f ¼ 1

u

q

qt
�s

� �
jAj2 � jAj2

u2
q

qt
�s

� �
uþ 2‘jAj2 � ‘u

u
� 2jAj2 � j‘uj

2

u3

a‘f � ‘u
u

� 2cðtÞf

a‘f � ‘u
u

;

together with (3.5) and Proposition 3.3, it follows that supSt
jAj2a supS0

jAj2 <y.
Then by Theorem 3.1, we have T ¼ y, which implies Theorem 1.1. r
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