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DEFORMING TWO-DIMENSIONAL GRAPHS IN R*
BY FORCED MEAN CURVATURE FLOW
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Abstract

A surface % is a graph in R* if there is a unit constant 2-form w in R* such that
{ey ez, wy =g > 0, where {ej,e>} is an orthonormal frame on Xy. In this paper, we
investigate a 2-dimensional surface X evolving along a mean curvature flow with a

forcing term in direction of the position vector. If vy > W5 holds on the initial graph

v

%y which is the immersion of the surface X, and the coefficient function of the forcing
vector is nonnegative, then the forced mean curvature flow has a global solution, which
generalizes part of the results of Chen-Li-Tian in [2].

1. Introduction

In the past three decades, the mean curvature flow and the forced mean
curvature flows of hypersurfaces have been investigated deeply, and many nice
results have been obtained. In contrast, very little about the higher codimen-
sional mean curvature flow has been known, since in high codimensional case the
complexity of the evolution equations of the intrinsic geometric quantities, such
as all derivatives of the second fundamental form, the mean curvature and so on,
increases the difficulty of doing estimates for those quantities. However, there
still exist nice results about the higher codimensional mean curvature flow, see [1,
2,5, 8,10, 11] for example. In [2], by using some conclusions in [1, 3], Chen-Li-
Tian proved that a 2-dimensional graph in R* moving by the mean curvature
flow has a global solution, and the corresponding scaled surfaces converge to a
self-similar solution under some suitable condition therein.

Let Fy : £* — R* be an immersion from a 2-dimensional oriented surface X>
to R*. Denote by Xy = Fy(X), and we say that ¥y is a graph if there is a unit
constant 2-form w in R* such that

{ep ney,wy =1y > 0,
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where {e|,e;} is an orthonormal frame on X). In this paper, we consider the
surface X evolves along the forced mean curvature flow

0
(1) EF(X’ 1)=H(x, 1)+ c(t)F(x,t), ¥VxeX Vi>0

F(,O) :F07

where H(x,t) denotes the mean curvature vector of X, = F(X,f) at F(x,t), and
¢(t) is a bounded continuous function. In order to state our main result, we
would like to introduce a notation here. Define

(1.2) v(x, 1) = er(x, 1) Aea(x, 1), w),

where {ej(x,7),ex(x,7)} is an orthonormal frame on %, at F(x,1).

This forced mean curvature flow (1.1) has been investigated in [6, 7],
where the initial submanifolds are an entire graph and a convex hypersurface
respectively. However, the codimensions there are just 1, but here we want to
discuss the higher codimensional case. In fact, we can prove the following.

THEOREM 1.1.  Suppose £* is a 2-dimensional oriented surface evolving under
the forced mean curvature flow (1.1) in R*. If the graph o = Fy(2) has bounded

1
curvature, v(x,0) > vy >7§, and additionally c(t) is a bounded nonnegative

continuous function, then the flow (1.1) has a global solution.

The paper is organized as follows. The geometric evolution equations of an
m-dimensional immersed submanifold evolving along the forced mean curvature
flow having the form as (1.1) in R" are derived in the next section. Theorem 1.1
will be proved in the last section.

2. Geometric evolution equations

In this section, we derive the evolution equations for some geometric
quantities. Given an immersion Fy: M” — R" from an m-dimensional sub-
manifold to the Euclidean space R” with the standard Euclidean metric (-, ).
Consider a one-parameter family of smooth maps F, = F(-,t) : M — R" with
corresponding images M, = F,(M) evolving along the forced mean curvature
flow

0

@.1) 3 Fx.0) = H(x,0) +e()F(x,1), ¥xe M, ¥i>0

F('? 0) = FOa
where H(x,t) denotes the mean curvature vector of M, = F(M,t) at F(x,t), and

¢(t) is a bounded continuous function. Denote by A and V the Laplace and
gradient operators for the induced metric on M,, respectively. For a normal
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coordinate system {x! ... ,x™} around a point p on M, the metric g on M,
induced by (-,-> satisfies

where 0;F, 1 <i<m, is the partial derivative with respect to the local
coordinates. Choose a local field of orthonormal frame ey,...,e,, vf,...,
Uy—m at the point F(p,t) of R" along M, such that e,...,e, are tangent
vectors of M, and vy,...,v,_, are in the normal bundle over M;. We make
use of the indices range, 1 <i j, k,....,.<m and 1 <o,f,y,...,<n—m. The

Einstein summation convention that repeated indices are summed over is adopted
in the rest of the article. Naturally, we can write

A= A%,, H = —H*%,,

where A% = (h}) is a matrix with A} the component of the second fundamental
form, and H* = g"h} = hj. Then the squared norm of the second fundamental
form should be

2 2 ij ‘
A" =D 14717 = g7g"hih; = hihi,.
o

Here we point out that the matrix 4* is symmetric, since we have
/’l;; = <8iva, 6,F> = <5jv“, 51F> = h;;

by the Weingarten equation (cf. [4, 9]).
In order to give the simple forms of the geometric evolution equations below,
we need to introduce several notations. Define Cip = vy, Vivg) and bl .=
0 . . .
<%,vﬁ>, obviously, € =—C, and b} = —b?. Notice that b/ vanishes for
hypersurfaces. We first derive the evolution equations for the induced metric
and the normal vector.

LemMmA 2.1.  Under the forced mean curvature flow (2.1), the induced metric
and the normal vector satisfy

agij

(2.2) P —2H"h;; + 2¢(t)gy,
and

v, 4 HTCPer 4 b
(2.3) Fr VH” + H'Cle; + blvp.

Proof.  Using normal coordinate systems at x on M, and at F(x,?) on R”",
together with the Gauss-Weingarten equations (cf. [4, 9])

O0ivy, = hll’,‘glkﬁkF + Cﬁvﬁ,
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we have

agij o 0
or 6t<a’F’ o>

= —0i(H"vy — c()F), 0;F ) — 0;(H"v, — c(1)F), 0:F )
= —2H"hj + 2c(1)gy,
which finishes the proof of (2.2).
Using normal coordinate systems at x on M, and at F(x,¢) on R", and then

translating the identity into normal frames, as the proof of lemma 2.2 in [1], we
have

v, Ov, .
2 ={ =2 0,F )g"0,F + b*
ot <6z’ >g] R
= — Uy, 0i(—Hv, + ¢()F)>g"0,F + bluvg
=VH" + H'Cle; + bllvg,
which finishes the proof of (2.3). O
Furthermore, we can prove the evolution equations for the second funda-

mental form, its squared norm, and also the squared norm of the mean curvature
vector.

LemMMaA 2.2.  Assume that the Christoffel symbols Fi;‘ of the Levi-Civita con-
nection of the induced metric are zero at a point p € M,, then under the forced
mean curvature flow (2.1) we have

%hg = V,V;H* — H'hjhj; + H'CLC}y + H'V,;C}!
+V;HPCY + ViHPCl — b7+ c(0)h:

at p.

Proof. Under the normal coordinate systems as before and our assumption,
by the Gauss-Weingarten equations (cf. [4, 9]), we have that at the point p

hi = —(0;F,v,y, 0;F = —hjv,,
and
00y = hig" O F + Clug.

Hence, we have

%h; = —%@fjm Uy

= C03(H"vy — c(1)F),v,) — <0,F, VH* + H' Cjle; + bllug)
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2 g V1.V 7,0 ' Wal: B e Bro y B
= ViH" — H'Ihji + H' CLCl + ViH" Cy — hjbj + (V;H7 Clog, v,)
+ Vil Cliog, v, + e(0)hy,
which implies our lemma. ]

By lemma 2.4 in [1], we have the following lemma.

I
nection of the induced metric are zero at a point p € M,, then at the point p we

have

LemmaA 2.3.  Assume that the Christoffel symbols 1";-‘ of the Levi-Civita con-

ViViH? = A%+ Vi(hECl) — Vi(h C) + hyhiy 2y — HPR b+ hh), b

il Im" mj im" mj Im"*ml

— W W%, + Vil Cl) — Vi(HECR).

im"*[j"ml
Combining Lemma 2.2 and Lemma 2.3 immediately yields the following.

LemmA 2.4.  Under the forced mean curvature flow (2.1), the second funda-
mental form satisfies

a o o o o o o o
<E - A) h = V(W Cl) + hyhiy bty — HP (R e+ hyhir) + hh) by, — il W

il""Im" mj im" mj Im"*ml im"*j1" ml
+ R (ViCly = ViCly) + W CLCo — Wb+ c(0)h:.

Now, by using the previous lemmas, we can prove the main result of this
section as follows.

LemMmA 2.5. Under the forced mean curvature flow (2.1), we have

(g - A) A* = =2|VA|* +2]4]* - 2¢(1)| 4],

and

P 3
(5 & )P = ~29P + 21l — 201

where V is the covariant differentiation on Hom(TM,; x TM,,Nor M,) determined
by the covariant differentiation on TM, and D on the normal bundle, D is the
normal connection for the embedding M, = R" (cf- [9]).

3. Long time existence

Obviously, choose M =X? to be an oriented 2-dimensional surface and
n =4, then the flow (2.1) coincides with the flow (1.1), which implies those
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evolution equations derived in the last section also hold under the flow (1.1). In
this section, we want to show the global existence of the smooth solution of the
forced mean curvature flow (1.1).

As the hypersurface mean curvature flow case, we could get the short-time
existence of the smooth solution of the flow (1.1) by the standard theory of
parabolic partial differential equation. We state it as follows.

THEOREM 3.1. Suppose that the initial surface Xy = Fy(X) has bounded
curvature, then there exists T >0 such that (1.1) has a smooth solution on the
time interval [0, T). If maxs,|A|* is bounded near T, then the solution could be
extended to [0,T +¢) for ¢ > 0.

So, if we want to show the global existence of the smooth solution of the
flow (1.1), it needs to show that maxy,|4|* is bounded as 7 — T. In order to get
the boundness of lim,_,7 maxz,|A|2, we first derive a monotonicity formula as in
[2, 3]. Define a function p = p(x,t) by

2
(3.0)  plx,t) = 4n(ty — O)H(x, X0, 1) = m exp <— %) t< o,

where H (x, xo, ) is the backward heat kernel in R*.  We can prove the following.

PrOPOSITION 3.2.  Suppose F satisfies the flow (1.1), and f(x,t) is a smooth
function defined on £* x R*, then

SZLI Tp(F.1) du, = L (cg - Af)/)(F, ) dp, — J Jp(F;1)

t

112
(F—XO)

H
+ 2ty — 1)

c()F,F — xp)

20— 1) Jp(F. 1) du,,

+2 L[ () fp(F,1) dp, — J

t

where (F —xo)" denotes the projection of (F —xo) onto the normal bundle
of X,

Proof. By Lemma 2.1, we have

0 1 ;i 0gi 2
_ — _ 40 29Y — _ _ 9
o1 du, 29 ot du, (‘H| 2¢(t)) dp,

so, it follows that

(32) %J Tp(Fo1) dy, = L [ (3 _ A) f] p(F, 1) dp, + J | f(% + A) o(F. 1) dy,

, ot

- j Sp(F, )| HI dy, + zj (1) fp(F 1) dp,.

% %
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By straightforward computation, we obtain

9 |1 KH+)F,F—x) |F—xl|
5P (F0) = LO — 20— 1) 41— t)2] (F,1)

|x—x0|2 B \x—xo|2
o ) e )

[KF = x0,VF)|>  (F—xo,AFy  |VFJ?

419 — 1)* 2(tg — 1) 2ty — 1)

and

b

together with the fact that |VF|* =2 and AF = H for the induced metric on Z,,
the equality

0 F—xo.Hy |(F—x) [
33 —+ A |)p(F,t)=— Ft
63 (Gra)ern =[S 0
C(l‘)<F,F*X0>
_WP(F’ 1),
holds. Our lemma follows by substituting (3.3) into (3.2). O

Then we can prove the following maximum principle.
PROPOSITION 3.3.  Suppose f(x,t) is a smooth function defined on * x R,

which satisfies the inequality

%fﬁfga.vjf

for some vector filed d, where V and /N denote the tangential gradient and
Laplacian on .. If ay = sups o, ,,|d| < oo for some t, > 0, and in addition (1) in
(1.1) is nonnegative, then

sup f < sup f
s, %
Sor all te 0, 1)

Proof. Let k =supy, f and f; = max(f —k,0), as the proof of corollary
1.1 in [3], we have

d 1 X
(E - A)sz < Eagsz-

Employing the monotonicity formula of Proposition 3.3 with f? instead of f, and
choosing xp =0 in (3.1) result in
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d 1
(34) EJ fEp du, < §a§J fép du, + ZJ () f2p duy
% s

1
< (Eag + 2c+) J fipdu,,
%

where ¢t is the bound of the function ¢(z). Then the desired result follows from
(3.4) directly. U

Now, we want to show that if the initial image X, is a graph in R*, then
under the forced mean curvature flow (1.1), %, is also graph for 0 < 7 < T, which
will be used for deriving the boundness of lim, 7 rnaxz,\A|2 at the end of this
section. In fact, as the proof of lemma 2.4 in [2], by using the evolution
equation (2.3) for normal vectors, we have the following.

LemMA 3.4. Let w be a unit constant 2-form in R*, and let v be defined as
(1.2) with respect to an orthonormal frame {e\(x,t),ex(x,1)} of £, =F(Z,t) at
F(x,t). Then under the flow (1.1) we have

0
( A) v = (A0 = 2(hi\ 1ty = hyhly + Ry h3y = 3y hgy) (o Ao, w),

i
where as before {vy,v,} is an orthonormal frame for the normal bundle of X,.

Then by Proposition 3.3 and Lemma 3.4, as the proof of proposition 2.5 in
[2], we can prove the following conclusion.

PROPOSITION 3.5. Let w be a unit constant 2-form in R*. If v(x,0) > vy >
— for all x €X?, and in addition c(t) in (1.1) is nonnegative for 0 <t < T, then

V2
under the flow (1.1), v(x,t) > vy holds for all t€[0,T) and x € %

Proof of Theorem 1.1. Let w be a unit constant 2-form in R* with respect
to which X, is a graph. Consider the functions u; = {e; Aey, w+ *w) and up =
ey Aey,w—xwy. As the proof of theorem 2.6 in [2], by Lemma 3.4 and
Proposition 3.5, we have

1
3.5 ui(x,t) = uj(x,0) =vp——=>0, i=1,2
(3.5) (x,1) > ui(x,0) > v NG

Moreover, let u = ujup, then we have

0 5 ) Vuy |Vu1\2u
(3.6) (= — A )u=2/4"u—2Vuy - Vuy =2[A['u —2— - Vu +2—5—.

ot uy uj
|4)?

A
Define ¢ == by Lemma 2.5 and (3.6), we have
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0 1/a Ve > Vu > |Vu)?
(az A>¢_u(6t >|A| g Jutavial S -y

\%
<V 7“ ~2e(1)p
< V¢ . @’
u
together with (3.5) and Proposition 3.3, it follows that sup2,|A|2 < sup20|A\2 < 0.
Then by Theorem 3.1, we have T = oo, which implies Theorem 1.1. O
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