
C.-K. LAW AND E. YANAGIDA
KODAI MATH. J.
35 (2012), 358–373

A SOLUTION TO AN AMBARZUMYAN PROBLEM ON TREES

Chun-Kong Law and Eiji Yanagida

Abstract

We consider the Neumann Sturm-Liouville problem defined on trees such that the

ratios of lengths of edges are not necessarily rational. It is shown that the potential

function of the Sturm-Liouville operator must be zero if the spectrum is equal to that for

zero potential. This extends previous results and gives an Ambarzumyan theorem for

the Neumann Sturm-Liouville problem on trees. To prove this, we compute approxi-

mated eigenvalues for zero potential by using a generalized pigeon hole argument, and

make use of recursive formulas for characteristic functions.

1. Introduction

Recently there is a lot of interest in the study of Sturm-Liouville problem
on graphs (see e.g. [2, 11, 17, 12, 13, 18]). On one hand, the problem is a
natural extension of the classical Sturm-Liouville problem on an interval. On
the other hand, it has a number of applications in thin domains, networks, spider
webs, curvature-driven motion with triple junctions and even nanostructures (see
[6, 13, 9, 10, 21]). This Sturm-Liouville problem defined on a graph was called
a quantum graph by Gutkin and Smilansky [7]. In [14], Kuchment and Post
studied the spectral properties of quantum graphs on graphene as well as carbon
nanotubes. The interested reader may consult [6] for excellent surveys and lists
of references.

When the quantum graph is a compact metric tree (a connected graph
with no cycles), the spectrum consists of point spectra only. We are interested
in an inverse spectral problem for certain quantum graphs. Namely, we study
the problem of a Neumann Sturm-Liouville operator defined on a metric
tree G ¼ fV ;Eg, where V ¼ fvj : j ¼ 0; . . . ; Jg is the set of all vertices and
E ¼ fgi : i ¼ 1; . . . ; Ig is the set of all edges with lengths ai A ð0;yÞ. We let qG
be the set of all pendant (boundary) vertices. Any edge connected to a pendant
vertex is called a boundary edge. For any internal vertex v, we let IðvÞ be the
set of all indices i such that the edge gi is incident to v. The degree of v is
defined as jIðvÞj. We also choose an arbitrary internal vertex v0 to be the
root. All edges are directed towards the root v0 and away from the pendant
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vertices. Thus we may assign local coordinates ½0; ai� to each edge gi, such that
the local coordinate increases as the distance to the root decreases. So all
pendant vertices have local coordinate 0, while the root v0 has local coordinate ai
corresponding to the edge gi connected to it. For each internal vertex v other
than the root, there is an outgoing edge which gets closer to the root. All the
other edges in IðvÞ are incoming edges. Therefore this Neumann Sturm-Liouville
problem can be expressed as a system of equations for yi’s given by

�y 00
i þ qiðxÞyi ¼ lyi 0 < x < ai; i ¼ 1; 2; . . . ; I ;ð1:1Þ

where each qi is a real L1 function defined on gi (i ¼ 1; . . . ; I ), subject to the
following boundary and matching conditions:

(A1) y 0
i ð0Þ ¼ 0 whenever gi is a boundary edge.

(A2) The continuity and Kirchho¤ conditions are satisfied at every internal
vertex v (other than v0) as

ykð0Þ ¼ yiðaiÞ; and y 0
kð0Þ ¼

X
i0k

y 0
i ðaiÞ;

where gk is an outgoing edge while all the other edges i A IðvÞnfkg are
incoming edges.

(A3) At the root v0, all the connecting edges are incoming. Hence the
continuity and Kirchho¤ conditions are defined as: for any i; k A Iðv0Þ,

ykðakÞ ¼ yiðaiÞ; and
X

i A Iðv0Þ
y 0
i ðaiÞ ¼ 0;

The above formulation of the Sturm-Liouville problem on G is essentially the
same as in [15]. Note that the Neumann boundary conditions (A1) can be viewed
as a special case of (A2), for the degree of a pendant vertex is 1, hence the conti-
nuity condition is empty and right-hand side of the Kirchho¤ condition vanishes.

A real number l is said to be an eigenvalue of the above problem if it has a
nontrivial solution ðy1; . . . ; yI Þ. We write Q ¼ ðq1; . . . ; qI Þ, and let sðQÞ be the
set of eigenvalues for the vector potential function Q. In particular, sð0Þ denotes
the set of eigenvalues for Q ¼ 0, i.e., qi 1 0 for all i ¼ 1; . . . ; I .

In the simplest case I ¼ 1, the above problem is reduced to a usual Sturm-
Liouville problem on a finite interval ð0; a1Þ with the Neumann boundary con-
dition. In this case, in 1929, Ambarzumyan [1] showed that sðQÞ ¼ sð0Þ implies
Q ¼ 0 almost everywhere. This seems to be the first example of an inverse
problem where the potential function can be determined uniquely by the spec-
trum, without any additional data. Later, Chern and Shen [5] extended the
result to vectorial Sturm-Liouville systems. In the case of the Dirichlet boundary
condition, it was shown by Chern et al. [4] that the potential function must be
identically equal to 0 if an additional conditionð a1

0

q1ðxÞ cos
2p

a1
x

� �
dx ¼ 0
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is imposed. Recently, the Ambarzumyan problem for periodic boundary con-
ditions was studied by Yang et al [22]. They showed that for a vectorial Sturm-
Liouville system of dimension d with the periodic boundary condition, if the
eigenvalues are ð2npÞ2 with multiplicities 2d, then the vector potential must be 0.
Thus the Ambarzumyan theorem, originally specified for the Neumann boundary
condition, can be generalized to several Sturm-Liouville problems with di¤erent
boundary conditions.

The aim of this paper is to study the Ambarzumyan problem for the
Neumann Sturm-Liouville problems defined on trees. In this direction, Pivovar-
chik [16] showed that when G consists of three edges with equal length and one
triple junction, an analogue of Ambarzumyan theorem is valid for the problem
(1.1) with (A1)@(A3). Later, Carlson and Pivovarchik [3] extended the result
to any trees such that fai=Lg are all rational numbers, where L is the total length
of G given by

L :¼
XI
i¼1

ai:

In this case, we can find infinitely many eigenvalues explicitly given by

mm0

L
p

� �2
A sð0Þ; m ¼ 0; 1; 2; . . .ð1:2Þ

for some integer m0, which makes the analysis much easier than a more general
case. As for the Dirichlet problem on star-shaped graphs, we refer to a recent
paper by Hung et al [8].

In this paper we consider the Sturm-Liouville problem on trees such that
fai=Lg are not necessarily rational. The following theorem is the main result
of this paper, which gives a solution to the Ambarzumyan problem on compact
metric trees.

Theorem 1.1. For the Neumann Sturm-Liouville operator defined on G,
sðQÞ ¼ sð0Þ implies Q ¼ 0 almost everywhere.

When we deal with compact metric trees, we encounter two di‰culties. The
first one is that we must handle trees with arbitrary number of edges. Moreover,
even if the number of edges is given, the topologies might still be di¤erent. In
order to handle this, we shall derive a recursive formula for characteristic func-
tions whose zeros are the square roots of eigenvalues (see Lemma 2.1). The
second di‰culty is that the eigenvalues now are not explicit at all. Only when
the edgelengths are in rational ratio, the eigenvalues would be as in (1.2). To
overcome this di‰culty, we approximate fai=Lg precisely by rational numbers at
the same time by applying a (generalized) pigeon hole argument.

We believe that the recursive formula as given in Lemma 2.1 will be useful in
future studies about quantum trees (see also Remark 2.2).
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In Section 2, we shall study direct problems and derive recursive formulas for
characteristic functions. In Section 3, we compute the expansion of character-
istic functions. In Section 4, we present a key lemma for the approximation of
eigenvalues. Finally Section 5 is devoted to the proof of Theorem 1.1.

2. Recursive formula for characteristic functions

Let r > 0, and let y ¼ Ciðx; rÞ and y ¼ Siðx; rÞ be (linearly independent)
solutions of

�y 00 þ qiðxÞy ¼ r2y; 0 < x < aið2:1Þ

with the initial conditions

yð0Þ ¼ 1; y 0ð0Þ ¼ 0;

and

yð0Þ ¼ 0; y 0ð0Þ ¼ 1;

respectively. We sometimes write Ciðx; rÞ as CiðxÞ and Siðx; rÞ as SiðxÞ just for
simplicity. For each edge gi, we write yi as

yi ¼ AiCiðxÞ þ BiSiðxÞ:

Then from (A1)@(A3), we have a system of linear equations for the unknowns
fAig and fBig. Thus we may express the coe‰cient matrix of the system of
linear equations as

FNðrÞ ¼

C 0
1ð0Þ S 0

1ð0Þ 0 0 0 � � � 0

C1ða1Þ S1ða1Þ �C2ð0Þ �S2ð0Þ 0 � � � 0

C 0
1ða1Þ S 0

1ða1Þ �C 0
2ð0Þ �S 0

2ð0Þ � � � � �
0 0 � � � � � � �
..
. ..

. ..
. ..

. ..
. ..

.

0 � � � � � � � �

2
6666666664

3
7777777775
;ð2:2Þ

where the first row corresponds to the Neumann boundary condition at v1 A G,
and the second and third rows correspond to the continuity condition and the
Kirchho¤ condition at v2. Note that in the first row, we include the term S 0

1ð0Þ
although the corresponding coe‰cient B1 ¼ 0. We do this in order to have a
systematic form of FN during reductions, as we shall see later. We define a
characteristic function by

jNðrÞ :¼ det FNðrÞ;

so that l ¼ r2 A sðQÞ if and only if jNðrÞ ¼ 0. We note that the characteristic
function depends on the orientation of edges and how to express the coe‰cient
matrix, but the set of zeros of jNðrÞ does not depend on them.
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Next we introduce another eigenvalue problem by replacing (A1) with the
following condition:

(A4) Let v1 be a vertex of a boundary edge g1 in a subtree, with local
coordinate 0 (or a1). The solution of (1.1) satisfies the zero Dirichlet
boundary condition at v1:

y1ð0Þ ¼ 0 ðor y1ða1Þ ¼ 0Þ;

while at all other pendant vertices, the solution satisfies the homoge-
neous Neumann boundary condition as in (A1).

Hereafter, we call (1.1) with (A2)@(A4) the Dirichlet-Neumann problem.
Suppose that we impose zero Dirichlet condition at this pendant vertex v1 A qG,
then A1 ¼ 0. Thus we may express the corresponding coe‰cient matrix by

FDðrÞ ¼

C1ð0Þ S1ð0Þ 0 0 0 � � � 0

C1ða1Þ S1ða1Þ �C2ð0Þ �S2ð0Þ 0 � � � 0

C 0
1ða1Þ S 0

1ða1Þ �C 0
2ð0Þ �S 0

2ð0Þ � � � � �
0 0 � � � � � � �
..
. ..

. ..
. ..

. ..
. ..

.

0 0 � � � � � � �

2
6666666664

3
7777777775
:

Then we define a characteristic function for the Dirichlet-Neumann problem by

jDðrÞ :¼ det FDðrÞ:

Figure 1
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Again, the set of zeros of jDðrÞ does not depend on the orientation of edges and
how to express the coe‰cient matrix. Our interest will be only in zeros of the
characteristic functions, and hence the non-uniqueness of characteristic functions
will not a¤ect the following argument.

For a compact metric tree, it is not easy to express explicitly the charac-
teristic functions jN and jD. Instead, we may compute these functions recur-
sively as follows. Let v1 be a pendant vertex which is an endpoint of the edge
g1, while v2 is the other vertex of g1. We also let g2 be incident to v2, and is
closer to the root v0 than g1 (cf. fig. 1). Let ~GG be a subtree of G obtained by
removing g1. We denote by ~jjN the corresponding characteristic function of
the problem with Neumann condition at v2 in case Iðv2Þ ¼ f1; 2g. However if
the degree of v2 is greater than 2, then we take the continuity and Kirchho¤
conditions at v2 instead. Thus we say ~jjN the characteristic function for a
Neumann/Kirchho¤ problem on ~GG.

If we remove g1 and replace the matching conditions (A2) and (A3) by zero
Dirichlet condition at the vertex v2, then ~GG is broken into several subtrees, all of
which have v2 as a pendant vertex. For each subtree, a characteristic function
of the Dirichlet-Neumann problem is defined as above. We denote by ~jjDðrÞ the
product of these characteristic functions.

For trees with two or more edges, we have the following recursive formulas.

Lemma 2.1. Assume that I b 2. Then the characteristic functions have the
following properties:

(a) jNðrÞ ¼ C1ða1Þ~jjNðrÞ � C 0
1ða1Þ~jjDðrÞ.

(b) jDðrÞ ¼ �S1ða1Þ~jjNðrÞ þ S 0
1ða1Þ~jjDðrÞ.

Proof. Since C 0
1ð0Þ ¼ 0 and S 0

1ð0Þ ¼ 1, we have

det FNðrÞ ¼ �det

C1ða1Þ �C2ð0Þ �S2ð0Þ 0 � � � 0

C 0
1ða1Þ �C 0

2ð0Þ �S 0
2ð0Þ � � � � �

0 � � � � � � �
..
. ..

. ..
. ..

. ..
.

0 � � � � � � �

2
6666664

3
7777775

¼ C1ða1Þ det ~FFNðrÞ � C 0
1ða1Þ det ~FFDðrÞ;

after an expansion with respect to the first row, where ~FFN and ~FFD are
ð2I � 2Þ � ð2I � 2Þ matrices given by

~FFNðrÞ ¼

C 0
2ð0Þ S 0

2ð0Þ � � � � �
� � � � � � �
..
. ..

. ..
. ..

.

� � � � � � �

2
66664

3
77775
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and

~FFDðrÞ ¼

C2ð0Þ S2ð0Þ 0 � � � 0

� � � � � � �
..
. ..

. ..
. ..

.

� � � � � � �

2
66664

3
77775;

respectively. Noting that ~FFN describes conditions on the Neumann/Kirchho¤
problem for ~GG, we have

det ~FFNðrÞ ¼ ~jjNðrÞ:

Similarly, since ~FFD describes conditions on the Dirichlet-Neumann problems for
subtrees of ~GG, with Dirichlet conditions at v2, we have

det ~FFNðrÞ ¼ ~jjDðrÞ:
Thus the proof of (a) is completed.

Next, let us consider the Dirichlet-Neumann problem. In this case, we have
the expansion, since C1ð0Þ ¼ 1 and S1ð0Þ ¼ 0,

det FDðrÞ ¼ det

S1ða1Þ �C2ð0Þ �S2ð0Þ 0 � � � 0

S 0
1ða1Þ �C 0

2ð0Þ �S 0
2ð0Þ � � � � �

0 � � � � � � �
..
. ..

. ..
. ..

. ..
.

0 � � � � � � �

2
6666664

3
7777775

¼ �S1ða1Þ det ~FFNðrÞ þ S 0
1ða1Þ det ~FFDðrÞ:

This proves (b). r

Remark 2.2. More general recursive formulas were obtained in a recent
paper by Law and Pivovarchik [15]. Interested readers might like to read a
spectral determinant approach to the same formulas [20].

Now we compute the characteristic function of a compact metric tree as
follows. Given a tree with two or more edges, we remove one of the edges
of G and use the recursive formulas. Repeating this procedure, we will reach to
problems on single edges. For a single edge gi, we may define its characteristic
functions by

~jjNðrÞ :¼ �C 0
i ðaiÞ; ~jjD :¼ S 0

i ðaiÞ:ð2:3Þ
Thus we can express jNðrÞ and jDðrÞ as polynomials of fCiðaiÞg and fSiðaiÞg.

Next, we consider the zero potential Q ¼ 0, and denote by cNðrÞ and cDðrÞ
the corresponding characteristic functions of the Neumann/Kirchho¤ problem
and the Dirichlet-Neumann problem, respectively. Similarly, we denote by ~ccN

and ~ccD be characteristic functions for the Neumann and Dirichlet-Neumann
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problems for G with g1 removed. For a tree with a single edge gi, to be
consistent with (2.3), we define its characteristic functions by

~ccNðrÞ :¼ sinðraiÞ; ~ccDðrÞ :¼ cosðraiÞ:ð2:4Þ
For trees with two or more edges, the characteristic functions can be computed
by using the following recursive formulas repeatedly and (2.4).

Lemma 2.3. Assume I b 2. Then the characteristic functions for Q ¼ 0 have
the following properties:

(a) cNðrÞ ¼ cosðra1Þ ~ccNðrÞ þ sinðra1Þ ~ccDðrÞ.
(b) cDðrÞ ¼ �sinðra1Þ ~ccNðrÞ þ cosðra1Þ ~ccDðrÞ.

Proof. For qiðxÞ1 0, the solutions of (2.1) are given by Ciðx; rÞ ¼ cosðrxÞ
and Siðx; rÞ ¼ sinðrxÞ. Then the above recursive formulas can be obtained in
the same way as Lemma 2.1. r

3. Expansion of characteristic functions

In this section we show the following asymptotic formulas for the charac-
teristic functions jNðrÞ and jDðrÞ, as r ! y. First, the following lemma is not
new and can be easily derived from the integral equations:

CiðxÞ ¼ cosðrxÞ þ 1

r

ð x
0

sinðrðx� tÞÞqiðtÞCiðtÞ dt;

SiðxÞ ¼
sinðrxÞ

r
þ 1

r2

ð x
0

sinðrðx� tÞÞqiðtÞSiðtÞ dt:

Lemma 3.1. As r ! y, one has

Ciðai; rÞ ¼ cosðraiÞ þ r�1Ki sinðraiÞ þ oðr�1Þ;
C 0

i ðai; rÞ ¼ �r sinðraiÞ þ Ki cosðraiÞ þ oð1Þ;

Siðai; rÞ ¼ r�1 sinðraiÞ � r�2Ki cosðraiÞ þ oðr�2Þ;

S 0
i ðai; rÞ ¼ cosðraiÞ þ r�1Ki sinðraiÞ þ oðr�1Þ;

where Ki :¼ 1
2

Ð ai
0 qiðxÞ dx.

Lemma 3.2. The characteristic functions jN and jD have the following
properties:

(a) jNðrÞ ¼ rcNðrÞ �
XI
i¼1

Ki

 !
cDðrÞ þ oð1Þ as r ! y.

(b) jDðrÞ ¼ cDðrÞ þ r�1
XI
i¼1

Ki

 !
cNðrÞ þ oðr�1Þ as r ! y.
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Proof. If G consists of a single edge, then by Lemma 3.1, we have

jNðrÞ ¼ �C 0
1ða1Þ ¼ r sinðra1Þ � K1 cosðra1Þ þ oð1Þ;

jDðrÞ ¼ S 0
1ða1Þ ¼ cosðra1Þ þ r�1K1 sinðra1Þ þ oðr�1Þ;

so that

jNðrÞ ¼ rcNðrÞ � K1cDðrÞ þ oð1Þ;
jDðrÞ ¼ cDðrÞ þ r�1K1cNðrÞ þ oðr�1Þ:

Hence (a) and (b) hold in this case.
Suppose now that (a) and (b) hold for any subtree of G. Then by Lemmas

2.1 and 2.3, we have

jNðrÞ ¼ C1ða1Þ~jjNðrÞ � C 0
1ða1Þ~jjDðrÞ

¼ fcosðra1Þ þ r�1K1 sinðra1Þ þ oð1Þg r ~ccNðrÞ �
XI
i¼2

Ki

 !
~ccDðrÞ þ oð1Þ

( )

� f�r sinðra1Þ þ K1 cosðra1Þ þ oð1Þg

� ~ccDðrÞ þ r�1
XI
i¼2

Ki

 !
~ccNðrÞ þ oðr�1Þ

( )

¼ r cosðra1Þ ~ccNðrÞ þ K1 sinðra1Þ ~ccNðrÞ � cosðra1Þ
XI
i¼2

Ki

 !
~ccDðrÞ

þ r sinðra1Þ ~ccDðrÞ � K1 cosðra1Þ ~ccDðrÞ þ sinðra1Þ
XI
i¼2

Ki

 !
~ccNðrÞ þ oð1Þ

¼ rcNðrÞ � K1cDðrÞ �
XI
i¼2

Ki

 !
cDðrÞ þ oð1Þ;

¼ rcNðrÞ �
XI
i¼1

Ki

 !
cDðrÞ þ oð1Þ:

Similarly,

jDðrÞ ¼ �S1ða1Þ~jjNðrÞ þ S 0
1ða1Þ~jjDðrÞ

¼ �fr�1 sinðra1Þ � r�2K1 cosðra1Þ þ oðr�2Þg

� r ~ccNðrÞ �
XI
i¼2

Ki

 !
~ccDðrÞ þ oð1Þ

( )

þ fcosðra1Þ þ r�1K1 sinðra1Þ þ oð1Þg
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� ~ccDðrÞ þ r�1
XI
i¼2

Ki

 !
~ccNðrÞ þ oðr�1Þ

( )

¼ �sinðra1Þ ~ccNðrÞ

þ r�1 K1 cosðra1Þ ~ccNðrÞ þ sinðra1Þ
XI
i¼2

Ki

 !
~ccDðrÞ

( )
þ oðr�1Þ

þ cosðra1Þ ~ccDðrÞ

þ r�1 K1 sinðra1Þ ~ccDðrÞ þ cosðra1Þ
XI
i¼2

Ki

 !
~ccNðrÞ

( )
þ oð1Þ

¼ cDðrÞ þ r�1 K1cNðrÞ þ
XI
i¼2

Ki

 !
cNðrÞ

( )
þ oðr�1Þ

¼ cDðrÞ þ r�1
XI
i¼1

Ki

 !
cNðrÞ þ oðr�1Þ:

Hence the assertion holds for the whole tree. Thus by induction, the proof is
complete. r

4. Approximation of eigenvalues

In this section we compute approximate eigenvalues for G with Q ¼ 0. We
begin with the following lemma, which is a slight generalization of the Dirichlet
approximation theorem (see e.g. [19]).

Lemma 4.1. There exist infinite sequences of natural numbers fmng and
fki;ng ði ¼ 1; . . . ; IÞ such that mn ! y as n ! y and

ai

L
� ki;n

mn

����
����< m�1�1=I

n

for all i ¼ 1; 2; . . . ; I and n ¼ 1; 2; . . . .

Proof. If ai=L (i ¼ 1; . . . ; I ) are all rational numbers, we can find natural
numbers p and qi such that

ai

L
¼ qi

p
; i ¼ 1; 2; . . . ; I :

Then we may take

ki;n ¼ nqi; mn ¼ np:
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Assume that not all of ai=L (i ¼ 1; . . . ; I ) are rational. We consider the
I -dimensional unit cube

fx ¼ ðx1; x2; . . . ; xI Þ A RI : 0a xi a 1 for i ¼ 1; 2; . . . ; Ig;

and divide it into nI smaller cubes with edge length 1=n. We shall approximate
the vector ða1=L; . . . ; aI=LÞ by a rational point in the unit cube as follows. For
each p ¼ 0; 1; 2; . . . ; nI , there exists qi A NU f0g such that

0a p
ai

L
� qi < 1:

Then by the pigeonhole principle, there exist two distinct vectors U1 and U2 of
the form

Uj ¼ pj
a1

L
� q1; j; . . . ; pj

aI

L
� qI ; j

� �
; j ¼ 1; 2;

that fall into the same small cube. Let p2 > p1. Then for mn :¼ p2 � p1 a nI

and ki;n :¼ qi;2 � qi;1, we have

mn

ai

L
� ki;n

���� ����< 1

n
;ð4:1Þ

so that

ai

L
� ki;n

mn

����
����< 1

mnn
a

1

m
1þ1=I
n

:

The proof is complete since from (4.1), mn ! y as n ! y. r

Remark 4.2.
(a) Since

mn �
XI
i¼1

ki;n

�����
�����amn

XI
i¼1

ai

L
� ki;n

mn

����
����< I

n
;

the equality

mn ¼
XI
i¼1

ki;nð4:2Þ

holds for all nb I .
(b) Using

PI
i¼1ðai=LÞ ¼ 1, we may apply the pigeonhole principle on the

ðI � 1Þ-dimensional hyperplane

fx ¼ ðx1; x2; . . . ; xI Þ A RI : x1 þ x2 þ � � � þ xI ¼ 1g:
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Then we can improve the result in Lemma 4.1 to

ai

L
� ki;n

mn

����
����¼ Oðm�1�1=ðI�1Þ

n Þ:

Let fmng be the sequence given in Lemma 4.1. We define a sequence fmng

mn :¼
2mnp

L
; n ¼ 1; 2; . . . ;

and compute the values of cN , cD, and their derivatives at r ¼ mn as follows.

Lemma 4.3. The characteristic functions cN and cD have the following
properties:

(a) cNðmnÞ ¼ Oðm�1=I
n Þ and

dcN

dr
ðmnÞ ¼ LþOðm�1=I

n Þ as n ! y.

(b) cDðmnÞ ¼ 1þOðm�1=I
n Þ and

dcD

dr
ðmnÞ ¼ Oðm�1=I

n Þ as n ! y.

Proof. By Lemma 2.3 and

mnai ¼
mnp

L
ai ¼ 2ki;npþOðm�1=I

n Þ;

we have

cNðmnÞ ¼ cosðmna1Þ ~ccNðmnÞ þ sinðmna1Þ ~ccDðmnÞ ¼ ~ccNðmnÞ þOðm�1=I
n Þ ~ccDðmnÞ;

and

cDðmnÞ ¼ �sinðmna1Þ ~ccNðmnÞ þ cosðmna1Þ ~ccDðmnÞ ¼ ~ccDðmnÞ þOðm�1=I
n Þ ~ccNðmnÞ:

Using these equalities repeatedly on (2.4), we obtain

cNðmnÞ ¼ Oðm�1=I
n Þ; ~ccNðmnÞ ¼ Oðm�1=I

n Þ;
and

cDðmnÞ ¼ 1þOðm�1=I
n Þ; ~ccDðmnÞ ¼ 1þOðm�1=I

n Þ:
Also, we have

dcN

dr
ðmnÞ ¼

d

dr
fcosðra1Þ ~ccN þ sinðra1Þ ~ccDgðmnÞ

¼ �a1 sinðmna1Þ ~ccNðmnÞ þ cosðmna1Þ
d ~ccN

dr
ðmnÞ

þ a1 cosðmna1Þ ~ccDðmnÞ þ sinðmna1Þ
d ~ccD

dr
ðmnÞ

¼ d ~ccN

dr
ðmnÞ þ a1 þOðm�1=I

n Þ
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and

dcD

dr
ðmnÞ ¼

d

dr
f�sinðra1Þ ~ccN þ cosðra1Þ ~ccDgðmnÞ

¼ �a1 cosðmna1Þ ~ccNðmnÞ � sinðmna1Þ
d ~ccN

dr
ðmnÞ

� a1 sinðmna1Þ ~ccDðmnÞ þ cosðmna1Þ
d ~ccD

dr
ðmnÞ

¼ d ~ccD

dr
ðmnÞ þOðm�1=I

n Þ:

Using these equalities repeatedly on (2.4), we obtain

dcN

dr
ðmnÞ ¼

XI
i¼1

ai þOðm�1=I
n Þ

and

dcD

dr
ðmnÞ ¼ Oðm�1=I

n Þ:

The proof is complete. r

As an immediate consequence of Lemma 4.3, we have the following result
concerning the location of zeros of cN .

Lemma 4.4. There exists a sequence of positive numbers frng such that

cNðrnÞ ¼ 0 for n ¼ 1; 2; . . . and rn ¼ mn þOðm�1=I
n Þ as n ! y.

Proof. By Lemma 4.3, there exists M > 0 independent of n such that
jcNðmnÞjaMm

�1=I
n for all large n. On the other hand, by (2.4) and Lemma

2.3, cNðrÞ and cDðrÞ must be some polynomials of sinðraiÞ and cosðraiÞ
(i ¼ 1; 2; . . . ; I ) with constant coe‰cients. This implies that jðd 2=dr2ÞcN j is
uniformly bounded in r > 0. Hence by Lemma 4.3, there exists d > 0 inde-
pendent of n such that

d

dr
cNðrÞ >

L

2
for r A ðmn � d; mn þ dÞ:

Therefore cNðrÞ must vanish at some rn such that

jrn � mnja ð2M=LÞm�1=I
n :

This completes the proof. r
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5. Proof of Theorem 1.1

In this section we complete the proof of Theorem 1.1. By Lemma 3.2, jN
satisfies

jNðrÞ ¼ rcNðrÞ �
XI
i¼1

Ki

 !
cDðrÞ þ oð1Þ as r ! y:

Here, setting r ¼ rn, we have jNðrnÞ ¼ 0 ¼ cNðrnÞ by sðQÞ ¼ sð0Þ. Also, by
Lemmas 4.3 (b) and 4.4, we have

cDðrnÞ ¼ 1þOðr�1=I
n Þ as n ! y:

Thus we obtain

XI
i¼1

Ki

 !
f1þOðr�1=I

n Þg þ oð1Þ ¼ 0:

Letting n ! y, we conclude

XI
i¼1

Ki ¼
1

2

XI
i¼1

ð ai
0

qiðxÞ dx ¼ 0:ð5:1Þ

On the other hand, since l ¼ 0 is the first eigenvalue, it follows from the
variational principle that the inequality

XI
i¼1

ð ai
0

fðy 0
i Þ

2 þ qiðxÞðyiÞ2g dx

XI
i¼1

ð ai
0

ðyiÞ2 dx
b 0

holds for any test function in H 1ðGÞ. By (5.1), the infimum is attained by
yiðxÞ ¼ 1 for i ¼ 1; . . . ; I . This implies that the constant vector ð1; . . . ; 1Þ is an
eigenfunction associated with l ¼ 0. Then by simple substitution, we conclude
that qi ¼ 0 a.e. on ½0; ai�, i ¼ 1; 2; . . . ; I . Thus the proof is complete. r
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