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INVARIANTS OF AMPLE LINE BUNDLES ON PROJECTIVE
VARIETIES AND THEIR APPLICATIONS, II**

YOsHIAKI FUKUMA

Abstract
Let X be a smooth complex projective variety of dimension n and let L,,..., L, ;
be ample line bundles on X, where 7 is an integer with 0 <i <n— 1. In the first part,
we defined the ith sectional geometric genus g;(X,L,...,L,—;) and the ith sectional
H-arithmetic genus y'(X,Li,...,L,—;) of (X,Ly,...,L,—;). In this third part, we will
investigate g>(X,Ly,...,L,—2) and x4 (X,Ly,...,L,2). Moreover we will give some

applications of the sectional invariants of multi-polarized manifolds.

Introduction

Let X be a projective variety of dimension n which is defined over the field
of complex numbers and let L be an ample (resp. nef and big) line bundle on
X. Then the pair (X,L) is called a polarized (resp. quasi-polarized) variety.
Moreover if X is smooth, then (X, L) is called a polarized (resp. quasi-polarized)
manifold.

This is the continuation of [11] and [12]. The third part consists of Sections
7, 8 and 9. Let X be a smooth complex projective variety of dimension n and
let Ly,...,L,; be ample line bundles on X, where i is an integer with 0 <
i<n—1. In Section 7 we will give some results and definitions which will be
used in this paper. In Section 8 we will deal with the second sectional invariants
of multi-polarized manifolds (X, L;,...,L, »). By using the sectional invariants
of (X,L;,...,L,») we can get some statements for multi-polarized manifolds
which are considered to be a kind of generalization of well-known results in the
theory of projective surfaces. In particular, we will give two problems which
are multi-polarized manifolds’ version of Castelnuovo’s theorem and Bogomolov-
Miyaoka-Yau’s theorem, and we will investigate these. In Section 9, we will
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give two applications in this paper. In [10] and [13], we gave an application of
sectional geometric genus of multi-polarized manifolds to calculation of the
dimension of the global sections of adjoint bundles. As another application,
first, we will calculate the sectional geometric genus of complete intersections of
hypersurfaces in the projective space by using the sectional geometric genus of
multi-polarized manifolds. Next we will give the definition of the ith sectional
m-genus of multi-quasi-polarized manifolds, which is thought to be a generaliza-
tion of the m-genus of minimal projective variety of general type. Also we will
investigate this invariant, and we can get some results for i =1 and 2 which are
considered to be a generalization of results in the theory of curves and surfaces.
Here we note that we cannot define the ith sectional m-genus of quasi-polarized
manifold easily without the notion of the ith sectional geometric genus of multi-
quasi-polarized manifolds.

7. Preliminaries for the third part

DEerNITION 7.1.  Let X be a projective variety and let L be a line bundle on
X. Then L is said to be k-big if k(L) > dim X — k, where k is an integer with
0 <k <dim X.

ProposITION 7.1 (Generalized Hodge Index Theorem). Let X be a projective
variety of dimension n, let k be a natural number and let L; be a line bundle on
X for 0 <i<k Assume that n >2 and L; is nef for i > 1. If ni+---+n =
n—1 and ny > 1, then we have

(LoL{' L3 -+ L*)? = (LGLY LS - L) (LY Ly - L),
Proof. See [1, Proposition 2.5.1]. O

PropPOSITION 7.2. Let a polarized manifold (X,L) be a quadric fibration
over a normal variety Y. Set n:=dim X and m :=dim Y. Then the intersection
number f*(Ny)--- f*(Nyu)L"™™ is even for every line bundles Ni,...,N, on Y.

Proof. Let p be a positive integer such that pL is very ample. By Bertini’s
theorem, there exists an m-dimensional projective variety 7 such that T is an
intersection of (n — m) general members of [pL|. Then f|,: T — Y is a surjec-
tive morphism with deg f; = 2p"™ and

SHND - T (Nw) (L) = 5 (N1) -+ f*(N) T
=N (N7
=(fp) " (N1) - (f17)" (Nm)
= (deg f17)N1 -+ Ny

— 2pnfm]\71 L Nm-
Therefore we get the assertion. O
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LemMA 7.1. Let X be a complete normal variety, and let D\ and D, be
effective Cartier divisors on X. Then h°(D; + Dy) = h°(Dy) + h°(Dy) — 1.

Proof.  See [5, Lemma 1.12] or [16, 15.6.2 Lemma). O

THEOREM 7.1. Let X be a smooth projective variety of dimension n > 3, and
let Hy,...,H, » be ample Cartier divisors on X. Let B be an ample Q-Cartier
divisor on X such that Ky +nB is nef and (n— 2)-big. Assume that 1x(X) > 0.
Then

e(X)Hy---Hy2 2 —(n— 1)Ky BH, -+ Hy—5 — (;)BzHl cHyo.
Proof. See [8, Theorem 2.1] and [18, Corollary 6.4]. O

NotaTioN 7.1. Let X be a smooth projective variety of dimension n and let
i be an integer with 1 <i<n—1. Let L;,...,L, ; be nef and big line bundles
on X. Assume that Bs|L;| = 0 for every integer j with 1 < j <n—i. Then by
Bertini’s theorem, for every integer j with 1 < j <n — i, there exists a general
member Xj € |Lj[y [ such that Xj is a smooth projective variety of dimension
n—j. (Here we set Xj:=X.)

8. The second sectional invariants
8.1. The second sectional geometric genus

ProposiTiION 8.1.1. Let X be a smooth projective variety of dimension
n>3 Let Ly,...,L, > be line bundles on X. Then

g2(XaL17' .- aLn—2)

1 (& 1
— 1 2
=—1+h ((Qx)‘i’g(jélLj>L]“~Ln_2+Z< E L_/Lk>L1“~L,,_2

1<j<k<n-2

38

1 — 1
+ZKX< Lj>Ll "'Ln—2+E(C2(X)+K)2()L1"'Ln72~
=

Proof. We use [11, Corollary 2.7] for i =2. Here we see from the proof
of [11, Theorem 2.4] that the equality in [11, Corollary 2.7] is true for any line
bundles L;,...,L,_;. By [11, Corollary 2.7], we can describe g»(X,L,...,L,_2)
by using the following four terms'’

!For the definition of Ty (X), see [11, Definition 1.7].
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n—2
<1ZL2>L1 Ly, ( > L_,Lk>L1-~Ln_z

1<j<k<n-2

(ZL)L1 Lo sTi(X) and Ly---L,,Th(X).

The coefficient of the above four terms are the following.

(Zn 2L2) oLy s (1 ejekzna LiLe)Ly -+ Ly
(—D%/BN- 1) = 1/6 | (=1)°/(21211---11) = 1/4

(CrP L)Ly Lua Ty (X) | Ly -+ Lia Th(X)
(=Dt 1y =—1/2 | (=D 1) =1

Since T1(X) = (1/2)c1(X) = —(1/2)Ky and T5(X) = (1/12)(c2(X) + 1(X)?),
we obtain the assertion. 0

THEOREM 8.1.1. Let X be a smooth projective variety of dimension n > 4.
Let Ly,...,L,» be ample and spanned line bundles on X. 1If g2(X,Ly,...,L,_2)
= h?(Oy), then (X, Lo1), -+ » Lo(u—z)) is one of the following: (Here o is an
element of the symmetric group S,_5 of {1,...,n—2})

(1) (Pna(QP”(l)a“-a(ﬁP"(l))'

(2) n=5 and (P Opr(1),...,0p(1),Opn(2), Opn(2)).

(3) (P",Opn(1),. Opﬂ(l) Op(2).

(4) (P, Opn(1),...,0pr(1), Opn(3)).

(5) (Q",0qn(1 ). Oqr(1

(6) (Q", g (1),. C (1), 0gr(2).

(7) Xisa P”*I-bundle over a smooth curve C and one of the following holds.

(Here F denotes its fiber).

(71.1) Lojlp = @Pn (1) for every integer j with 1 < j<n-—2.

(7.2) Lo(jlp = Opni (1) for every integer j with 1< j<n-—3 and
Lan 2) |F - OP” 1(2)

(8) Ky + (n— 1)Lj = Ox for any j. In particular L; = Ly for any (j,k)
with j # k.

(9) There exist a smooth projective curve W and a surjective morphism
[+ X — W with connected fibers such that (X,L;) is a quadric fibration
over W with respect to [ for every integer i with 1 <i<n-—2.

(10) There exist a smooth projective surface S and a surjective morphism
f:X — S with connected fibers such that f is a P" *-bundle over S
and (X, L;) is a scroll over S with respect to f for every integer j with
I<j<n-2
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(11) Let (Y, Ay, ...

,An-2) be a reduction of (X,Ly,...,Ly,—3). Then n=4
and (Y, A1, 4>) =

(P4, 0ps(2), Ops(2)).

Proof. Here we use notation in Notation 7.1.  Let ((X,-3)", (Ly—2ly, ,)") be
a reduction of (X, 3,L, 2|y ,). Since

g2 (/\/11737 Ln72

Ky, '+ (Lu2ly, ;)" is not nef by [5, Corollary 3.5].

Here we note that Ky, ,+ L, 2|y , is not nef. (If Ky, , + L, 2|y , is
nef, then Ky, , +2L, [y , is ample. Hence (X, 3,L,2[y ,)= (X,—3)',
(Ly—2|y_,)"). But this is impossible because Ky ) + (Ly—|y_,)" is not nef)

Hence Ky +L;+---+L,» is not nef. By [I12, Remark 5.24],
(X, Ls1),- -, Lon—2)) is one of the types above.

If (X, Loy, .-+, Lon—2)) is one of the above, then we can easily see that

X,,,3) = g2(X7 Ly,... 7Lﬂ*2) = hz(@X) = hz(@anz)v

92(X, Li,..., Ly 2) = h(Cy).

Hence we get the assertion. O

Remark 8.1.1. (1) Theorem 8.1.1 has been also obtained by Lanteri [17,
Theorems (3.2) and (3.3)] (see also [10, Remark 3.1 (3)]).

(2) We can easily check that (X, L;,L,) in (11) of Theorem 8.1.1 is a simple
blowing up of (Y, A4, 4>).

(3) In [17] Lanteri showed that if (X,L;,...,L, ) is the type of (8) in
Theorem 8.1.1, then for any i with 1 <i<n—2 we see that 2 < L} <6 (resp.
2<L'<S)if n=4 (resp. n =5).

THEOREM 8.1.2. Let X be a smooth projective variety of dimension n > 3.
Let Ly,...,L,—» be ample line bundles on X. Assume that k(X)>0. Then

1
gz(X,Ll,...,Ln_z) > —1 -I—hl(@X) +ﬁ(L12+"'+L5_2)L1 oLy s

1 1 2
+ﬂ<2+z>(L1 +--4+Ly2)Li- Ly

Proof. By taking a reduction, if necessary, we may assume that Ky +

Ly +---+ L, is nef and (n— 2)-big by [12, Remark 5.2.4] and [12, Theorem

5.2.3] because x(X) > 0. By Theorem 7.1 we get the following lower bound
X)Ly Lya>—(n—1)KyBLy -+ Ly — (Z) B’Ly--- L, >,

where

1
B=—(Li+-+Lya).
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So by Proposition 8.1.1, we obtain

gZ(XaLb .. 'aLn—Z)

L] 2 1

1 <j<k<n—2

= 1
Z te n 2+12KXL1 L -2
7n—1KL L HZJL ,DL
Ion X\ LT T s

n—2 2
) < Lj)
j=1

1
=—1+h"(Ox)+—=Ky(Kx +Li ++ -+ Ly, 2)L; -+ L,»

12
1 1
+-—= 2 1 + (Ll +- Ln72)L1 Ly
1 1 5
+24 2+ (L1+"'+L;172) Ly Ly
l

24 (LZ +Ln Z)L : L”*Z

1 1
> -1 +h1((ﬂx)+ﬂ<2+z>(lzl +oo 4 Lya) Ly Lys

1
+52 —(Li+-+ LI )L Ly,
So we get the assertion. O

8.2. The second sectional H-arithmetic genus

Let n be an integer with n > 3. Let (X,L;,...,L,_») be an n-dimensional
multi-polarized manifold of type (n —2). Here we are going to propose some
conjectures which are induced by some results in the surface theory. Here
we note the following: let (X,Li,...,L, ») be a multi-polarized manifold of
type (n—2) with dim X =n. Assume that Bs|L;| = 0 for every integer j with
l<j<n-2,and (X,L;,...,L, ) is not the type (10) in [12, Remark 5.2.4].
Then by the same argument as in the proof of [9, Proposition 2.1], we see from
[12, Remark 5.2.4 and Theorem 5.2.3] that the following hold: (Here we use
Notation 7.1.)

(a) (KX+L1+-~~+Ln 2) > 2 if and only if x(X,—2) = 2.
(b) k(Kx +Li+---+L,—») =1 if and only if x(X,—2) =1.
() k(Ky+Li+ -+ L,—2) =0 if and only if x(X,—2) =0.
()K(KX+L1+-~+L” 2) = —oo if and only 1f1c( Xy—2) = —o0.



326 YOSHIAKI FUKUMA

By the same consideration as in [6] and [9], we can give the following
correspondences: let S be a smooth projective surface. Then the following cor-
respondences are considered.

Invariants of S. Invariants of (X, Ly,...,L,—2).

=4
h?(0s) & 92(X,Ly,...,L,»)
h'(0s) & h'(Oy)
2(0s) & (X, Ly,... L)
K3 & (Kx+Li+-+L,2) Li-Ly»
k(S) =k <" K(Ky + Ly +---+L,2) =k
K(S) =2 & w(Ky+ L+ 4L, ) =2

(In (), k=—-00,0, or 1. In (%) and (*x), the direction = needs the
assumption that (X,Ly,...,L,—») is not the type (10) in [12, Remark
5.2.4])

By using these correspondences, we can propose many problems. Before we
propose conjectures, we state the following some fundamental results in the
surface theory.

(A) x(Os) >0 if x(S) = 2.

(B) x(O0s) =0 if 0 <x(S) < 1.

(C) 2(COs) =1 —¢q(S) if x(S) = —o0.

(D) 8x(0s) = K3 if x(S) = —oo and S is not isomorphic to P2
(E) 9x(0s) > K2 if x(S) > 0.

By using the above correspondences, we can propose the following conjec-
ture.

CONJECTURE 8.2.1. Let (X,Ly,...,Ly,2) be an n-dimensional multi-polarized
manifold of type (n—2). Then

(1) XZH(X,Ll,. .. ,Ln_z) >0 lf K(KX +Ly+--- —|—Ln_2) > 2.

(2) XZH(X7L17"~7Ln—2) = 0 lffo < K(KX+L1 +"'“i’Ln—Z) < 1.

(3) XZH(X7L17"~7LI172) =1 _q(X) lf K(KX+L1 + - +Ln72) = - and
(X,Ly,...,L,_) is not the type (10) in [12, Remark 5.2.4].

(4) 8d(X,Ly,... . Ly2) > (Ky + Li+ -+ Ly2)’Ly -+ Ly if  x(Kx+
Li+--+L,2)=—0w and (X,Ly,...,L,_2) is neither (P",Ops(1),...
Opn (1)) nor the type (10) in [12, Remark 5.2.4].

(5) 9 (X, Ly,...,Ly2) > (Kx + Li+ -+ Ly 2)’Ly - Ly if x(Ky+
Li+---+L,»5)>0.

)

If n = 3, then this conjecture is equivalent to [9, Conjecture 2.1]. So in this
paper we consider the case where n > 4. First we will study (2) in Conjecture
8.2.1.
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THEOREM 8.2.1. Let n be an integer with n >4. Let (X,Ly,...,L,_) be

an n-dimensional multi-polarized manifold of type n—2. Assume that k(Ky +
Li+-+Ly2)=0o0r 1. Then y¥(X,Ly,...,L,2) > 0.

Proof. By taking a reduction of (X,Li,...,L, ») if necessary, we may
assume that the multi-polarized manifold (X, Ly,...,L, ) is a reduction of itself
(see [11, Proposition 2.3]). Then Ky + L;+---+ L, is nef but not ample.
Let ®: X — W be the nef value morphism of (X,L;+---+ L,—»). Then
dim W =0 (resp. dim W =1) if «(Ky +Li+---+ Ly,—2) =0 (resp. 1).

If dim W =0, then Ky +L; +---+ L, » = Oy. Hence hi°(Ky +Lj +---+
L, 2)=1 and h'(0y) =0. Therefore by [11, Example 2.1 (G)] we have
gz(X,Ll,...7Ln,2) =1 and X?(X,Ll,...,Lnfz) =2.

If dim W =1, then (X, Ly,...,L,_») is a Del Pezzo fibration over a smooth
curve W. In this case Ky + Ly +---+ L,_» = ®*(H) for an ample line bundle
H on W. Then

G (X, Li,..., Ly o) =h"(Ky + L+ + L, »)
— W(H)
=h'(H)+ 1 —g(W) +deg(H).
Since deg(H) > 2g(W) —2 by [5, Lemma 1.13 (2)], we have
92X, Ly, Lya) = h' (H) + 1 = g(W) + deg(H)
>h'(H)+1—g(W)+29(W) -2
=h'(H)+g9(W)—1.
Therefore, since g(W) = h'(0y),
(X, Ly, Lya) =1 —h"(Ox) +g2(X,Ly,..., L, 2)
>h'(H) > 0.
This completes the proof. ]

Next we consider (1) in Conjecture 8.2.1 for x(X) > 0.

THEOREM 8.2.2. Let (X,Ly,...,L, ) be an n-dimensional multi-polarized
manifold of type n—2. Assume that n >4 and k(X)>0. Then
1
(X, Ly, .. Lya) > ﬁ(L%+~~+L§_2)L1~-~L,,_2
L. (Li+- 4Ly 2)’Ly - L
24 n 1 n—2 1 n—2
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Proof. Since
X2IJ(X7L1)"'3LI’172) = 1 _hl(@X) +g2(X7L17"')Ln72)7

we get the assertion by Theorem 8.1.2. O
Next we consider (3) and (4) in Conjecture 8.2.1.

THEOREM 8.2.3. Let n be an integer with n >4. Let (X,L;,...,L, ) be
an n-dimensional multi-polarized manifold of type n—2. Assume that k(Ky +
Li+---+L,,)=—0. Then the following hold.
(1) (X, Ly,...,Ly2) =1 —q(X) if (X,Ly,...,L, ) is not the type (10) in
(12, Remark 5.2.4].
(2) 8%5(XaL17“~,Ln72) = (KX+L1 + - +L1172)2L1 "'Lnfz lf (X;Lh"'v
L,_5) is neither (P",Opn(1),...,0px(1)) nor the type (10) in [12, Remark
5.2.4]
(3) I.f (Xale e aLn—Z) = (Pn? @P”(l)v ceey (QP”(I))> then

9 (X, Ly,...,Ly2) = (Ky +Li+ -+ Ly 2)°Ly - L, 2 =9.

Proof. Assume that k(Ky + L+ -+ L, »)=—0o and (X,Ly,...,L,2)
is not the type (10) in [12, Remark 5.2.4]. Then Ky + L; + -+ + L, is not nef,
and (X, Ly,...,L,2) is one of the types in [12, Remark 5.2.4] other than the type
(10) in [12, Remark 5.2.4]. Here, by using [11, Corollary 2.3], we calculate
G2(X, Ly, ..., L), 7(X,Ly,..., L, 5) and (Kx +Li + -+ L, 2)*Ly -~ L, .

(@) If (X,Ly,...,Ly3,L,2) = (P",Opn(1),...,0px(1),0pn(3)), then g¢r(X,
Li,...;Ly2)=0, (Ky+Lj+-+L,5)*Li---L,»=3 and (X L,...,
L) =1=1-gq(x).

(b) If (X,Ly,...,Ly4,L, 3,L, 5) = (P" Op:(1),...,0p:(1),0px(2), 0pr(2)),
then we see that gz(X,Ll,. .. ,Ln_z) =0, (KX +L;+--- -I-Ln_z)le L,y =4
and y7(X,Ly,...,L,2) =1=1—¢q(X).

() If (X,Ly,...,Ly 3,L,2)=(P" Op(1),...,0pn(1),0p:(2)), then g¢gr(X,
Li,....;Ly2)=0, (Ky+Li+-+L,2)"Li---L,2=8 and (X L,...,
Lan) =1=1- q(X)

(d) If (X,Ly,...,Ly—2) = (P",Opr(1),...,0px(1)), then go(X,Ly,...,Ly,2)
=0, (Kxy+Li+-+L,2)*Li--L,2=9 and y(X,L,...,L,2)=1=
1 —q(X). Hence 97 (X,Ly,...,Ly2) = (Ky +Li+ 4Ly 2)°Li-- Ly ».

(C) If (X,Lla"'anthan) = (Qna(QQ"(l)V"ﬂ@Q"(l)v(gQ”(z))> then gZ(Xa
Li,....;Ly2)=0, (Ky+Li+-+L,2)"Li---L,2=4 and (X L,...,
Li2) = 1=1-gq(x).

(F) If (X,Ly,...,Ly2) =(Q",0q¢x(1),...,0qx(1)), then g>(X,Li,..., L, »)
=0, (Kx+Li+-+L,2)Li---L,2=8 and y(X,L,....L,2)=1=
1 —g(X).

(g) Let (X,Ly,...,L,») be the type (9) in [12, Remark 5.2.4]. Let
f:X — W be its morphism. Then Ky +L;+---+ L, 2+ L;=f*(4;) and
Ky+Li+--+L,2+L;j=f"(4;) for any i and j with i# j, where A4; e
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Pic(W) for any k. Therefore L;—L;= f*(4;—4;), that is, L;=L;+
S*(A4;i — A4;). Then Ky +Li+-+Lya=Ky+n—=2)Li +f*(A2 4+
Aypn—(n—3)A4;). We may assume that deg(A4;) > deg 4; for any i. Here
we set A:=Ay+ -+ A,—»— (n—3)4;. Then deg 4 >0. Here we note that
(X, L) is a quadric fibration over W. Let &, := f.(L;). Then &) is a locally
free sheaf of rank n+ 1 and X € |2H(&,) + p*(B)| for some B € Pic(W), where
p:Pyw(&)— W, and Ky=—-(m—-1)Li+ f*(Kw+c1(é1)+B). We set
a:=deg A, a;:=deg A;, b:=deg B and e:=degc|(&). Here we note that
a=Y"ra—(n—3)a; and L? =2e+b>0. Then

(Ky + Ly 4+ L, 2)°Ly -~ L, »
= (~Li+(Q2g(W) =2+ e+a+b)F)
x Li(Li 4 (a2 — a\)F) --- (L1 + (a,_» — a\)F)
=L —202g(W)—24e+a+bL""F+(ar+-+ayp— (n—3)a))LI"'F
=8 —8y(W) —2e —2a — 3b.

CLamM 8.2.1. 2e+3b>0.

Proof. 1If b>0, then 2¢+3b=(2¢e+b)+2b>0. So we assume that
b < 0. Since 2¢+ (n+1)b >0 by [2, (3.3)] and n >4, we see that 2e +3b >
—(n—2)b > 0. Therefore we get the assertion. O

Since gz(X,Ll,...,Ln_z) =0 and XzH(X,Ll,...,Ln_z) =1 7g(W) by [11,
Example 2.1 (I)], we get

(Kx + L+ + Ly )Ly Ly2=8—8g(W) —2e —2a—3b < 8(1 — g(W))
=8y (X,Ly,...,L, )

because a > 0 and 2e+ 3bH > 0.

(h) Assume that Ky + (n—1)L; = Oy for every i with 1 <i<n—2 and
L;=L;fori+# j. Then by [11, Example 2.1 (G)], we have g»(X,Li,...,L,2) =
0 and y#(X,L,,...,L,») = 1. Here we note that by [4, (8.11) Theorem] L < 8
for every i because (X,L;) is a Del Pezzo manifold for every i. Then

(Kx + L1+ + L, 2)’Ly - Ly 2= (Ky + (n =2)L;)’L' > = L < 8
=8y (X,Ly,...,L,»).

(i) Let (X,Ly,...,L,—7) be the type (7.1) in [12, Remark 5.2.4]. Then by
[11, Example 2.1 (H)], we have g2(X,Li,...,L,—2) =0 and x4/ (X,Ly,...,L,—>)
=1—-g(W). Let ®:X — W be a P"'-bundle over W such that L, =
Opn-1(1) for every i. Then we may assume that there exists an ample vector
bundle & on W such that L; = H(&) and there exists B; € Pic(W) such that
L= L+ ®*(B;) for every j with 2<j<n—2. We set bj:=deg B; and
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=8y (X,Ly,...,L,»).

(j) Let ®: X — W be a P" !-bundle over a smooth curve W such that
Li|p = Opni (1) for every i with 1 <i<n—3 and L, 5|p = Opn1(2). Then
(X, Ky +Li+---+L,3+2L, ,) is a scroll over W. We set & := D, (Ky +
Li+---4+L,3+2L,»). Then & is a locally free sheaf of rank n on W such
that X =Py (&) and Ky + Ly +---+ L, 3+ 2L, , = H(&). On the other hand,
we can express L; as L; = H(&)+ ®"(4;) and L, , =2H(&)+ ©*(B), where
A;, Be Pic(W). We set a; :=deg A; for every mteger i with 1 <i<n-—3 and
b:=deg B. We calculate (Ky +L;+---+ L, 2) Li---L,.

(Kx+L1+"-+Ln,2)2L1--~Ln,2
= (—H(&)+ O (K + c1(6) + A + -+ Ay_3 + B)?
X (H(&) + @7 (41)) -+ (H(6) -3))(2H(&) + @7(

+®"(4,
=2¢—4Q2g(W)—-2)—4e—4 <Z3 ) 4b+2<nz3a,

i=1 i=1
= —2e+8(1 —g(W (Za,>—3b

On the other hand
0<(Ly---Ly,3)L},
= (H(8) + @ (A1) -+ (H(6) + ®*(4,3)) (2H(6) + ©*(B))’
=8 <§a,~> + 8e + 12b.
i=1

Hence 231, a,) +2e¢+3b>0. Since (X,Ly,...,Ly,—3,L,3,L, ) is a quadric
fibration over W, by [11, Example 2.1 (I)], we have

gz(X,Ll,...,Ln_z) =0
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and
WXL, L) = 1= g(W).

Therefore we obtain

8(X,Ly,... Ly 2)— (Kx + L4+ Ly 2) L1~ Ly, »

n—3
= 2(261,) +2e + 3b

i=1

> 0.
By above we get the assertion of Theorem 8.2.3. O
Next we consider the case where (X,L;,...,L, ) is the type (10) in [12,

Remark 5.2.4]. Namely, assume that there exist a smooth projective surface S
and a surjective morphism 7 : X — S with connected fibers such that 7 is a P" -
bundle over S and (X, L;) is a scroll over S with respect to f for every integer
j with 1 <j<n—2. For every integer i with 0 <i<n—2, let #; be a non-
negative integer with ¢ +---+1¢,_» =n—2. Then we set

f([],___’tn_z) = (KX +HLli+---+ tn—ZLn—z)szl L,?‘:%

and

n—2
A, ::{(al,...,a,,_z) 0£a,~eZ,Za_,-=n—2}.

J=1

Lemma 8.2.1. Let i and j be two distinct natural numbers such that
1<i,j<n—2 and L;# L;. Then for every (ai,...,an-2), (b1,...,by_2),
(c1y...yCn2) € Ap—n with

bi:ai—l, Cj:ai+1,
bj=a+1, G=a-1
by =ax, if k#i,j \ck=ar, If k#i}],
we can prove that either f(ay,...,a,—2) < f(b1,...,bu—2) or f(ai,...,ay_2) <

flery ... enmn) holds.

Proof. Here we may assume that i = 1 and j = 2 without loss of generality
and then we also assume that L, # L,. By assumption, we see that (X,L;) is a
scroll over S. Hence there exists an ample vector bundle & on S of rank n — 1
such that X =Pg(&) and L = H(&). Then for every integer p with 2 < p <
n—2, we get

L, = H(&) + (),
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where 7, € Pic(S). Here we note that
Ky =—(n—-1)H(&)+ 7" (Ks + c1(8)).
So we have
(1) flai,...,ap2) =Ky +aiLi+---+ an—2Ln—2)2Lill L2
= (—H(&) 4+ 7" (Ks + c1(&) + @2 Tr + -+ - + ty2Ty2))*
x H(&)" (H(E) +n"(T2)" - (H(6) + 1" (Ty-2)) "
= H(g)n — (ZKS + 26’1(5) +ayTr+ -+ an,zTn,z)cl(g)
+ (Ks+c1(6) + Ty + -+ a, 2Ty »)*
—2(Ks+ca(8)+aTr+ - +an 2Ty )
X (@Ty+--+a, 2T, )
n-2
a,
+ Z aia;T;T; + Z (2’) Ti2.
2<i<j i=2

Here we set by =a; — 1, b=ax+1 and by =ax (k#1,2). Then by (1) we
have

f(b1,....by2)
=H(&)"— (2Ks+2c1(&) + (a2 + DT+ a3T3 + -+ + ay2Ty2)c1(6)
+ (Ks+c1(8) + (@ + )T+ aTs + - +a, 2T, 2)’
—2(Ks+a(6)+(a+ )+ a3Ts+ - +ay2Ty)
X((a+ 1) +a3T3+ -+ a,2T,-2)
=2 a +1 &2 (a;
+(a2+1)<zaj> T,T; + ZAaiajTiTjjL ( 5 >T22+ ’ <2>T,2.
=3 3<i<j
Here we note that
(2Ks +2c1(6) +(a + )T + a3 T3 + -+ ap2T,-2)c1(8)
= (2Ks +2c1(8) + @ Ta + -+ + ap-2Ty2)c1 (6) + Tac1 (&),
(Ks 4+ c1(€) + (@ + DTa +a3Ts + -+ ay 2Ty 2)°
= (Ks+c1(8) + axTo+ -+ + ay2Tys)’
+2(Ks 4+ ¢1(8) + aaTr + -+ ay 2Ty 2)To + T3,

and



INVARIANTS OF AMPLE LINE BUNDLES 333

2Ks+ (&) + (aa+ D)+ a3Ts+ -+ ap2Ty-2)
X(@+ )T +aTs+---+a, 2T, 2)
=2Ks+ (&) +aTr+ -+ anoTh2) @D+ +an2T,-2)
+2(Ks +¢1(8) +2a2Ts + -+ + 2a, 2Ty 2)T> + 2T5.
Therefore
(2) flar,---yan2)— f(b1,..,bu2)
n-2

=The1(8) + 2T+ -+ an2Ty2)T> — ZajTZTj —ay T} + T}
=

=Trc1(6) + (@ + VT3 + (a3T3 + -+ ay2Ty2)Ts
=(Ly— L)L{ LS LE - L3,

In order to prove Lemma 8.2.1, we assume that both f(ay,...,a,-2) >
f(by,...,by—2) and f(ay,...,a,—2) = f(c1,...,cn—2) hold. Then by (2) we have
LOLEVLE L3 = L L Ly L

and
Llal+2L§2L§l3 . LG:zz > Lill-&-lL;tz-&-lL;l,% . L;ln:zz_
Hence by [1, Proposition 2.5.1 and Corollary 2.5.4], we see that L; = L,. But

this contradicts the assumption that L; % L,. Therefore we get the assertion of
Lemma 8.2.1. O

THEOREM 8.2.4. Let (X,Ly,...,L, 2) be the type (10) in [12, Remark 5.2.4].
Then there exists an integer i such that

(Kx + L1+ +Ly,2)*Li - Ly_» < (Ky + (n— 2)L;)*L!">.
Proof. Let (ai,...,ay-2) € Ap—a. Then we will prove the following.

Cramm 8.2.2. If a; and a; satisfy a; > 1 and a; > 1 for some i and j, then
either f(ar,...,an-2) < f(b1,...,by2) or flay,...,an—2) < f(c1,...,cn—2) holds,
where

bi =0, ¢ = a; + aj,
bj:ai—i-aj, Cj:()v
by =ar, if k#i,j, \a=ax, if k#i,j.
Proof. If L; = L;, then f(ai,...,a,—2) = f(b1,...,by—2) and f(ai,...,a,-2)

= f(c1,...,c4—2) hold. So we may assume that L;# L;. Then we apply
Lemma 8.2.1, and we see that one of the following holds.
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(A) f(al,...7an,2) <f(oc1,...,ocn,2).
B) flar,-- - an2) < f(Br,--- s Bua)-

Here

% =a;+1, Bi=a—1,

{cx,:ai—l, Bi=ai+1,
o =ai, 1if k#1i,]J, Pe=ar, 1if k#ij.

Assume that the case (A) holds. If o; = 0, then this is done. So we may assume
that o; > 1. Then o; > 1 and Lemma 8.2.1 implies that one of the following

holds.
(A/) f(alv s 7“"*2) < f(ylv s 7yn72)'
(Bl) f(ocl, ey O(nfz) < f(&l, c.. ,5,,,2).

Here
yi:ai_la 5i:ai+1v
v=o+ 1 o= —1,
Vi = %%, lfk;éhj, 5/(:“/(7 lfk#la]
But since (dy,...,0,-2) = (ai,...,a,—2), the case (B’) cannot occur because

flay,...,ap2) < f(d1,...,0,—2) from (A) and (B’). By repeating this process,

we find that f(ay,...,a,-2) < f(b1,...,b,—2) holds.
If we assume that the case (B) holds, then by the same argument as above
fla,...;an-2) < f(c1,...,cn—2) holds. So we get the assertion of Claim 8.2.2.
O

We go back to the proof of Theorem 8.2.4. By using Claim 8.2.2 repeatedly,
there exist (di,...,d,—2) € A,—» and an integer i such that d; =n—2 and d; =0
for every j with j#i and f(ai,...,a,-2) < f(di,...,d,—2). Therefore we get
the assertion of Theorem 8.2.4. O

THEOREM 8.2.5. Let (X,Ly,...,L, ») be the type (10) in [12, Remark 5.2.4].
Then the following inequality holds.
<8N(X, Ly, L) if w(S) #2,
<X, L, Lyo) if K(S)=2.

Proof. By Theorem 8.2.4, there exists an integer i such that

(Ky +Li+ -+ Ly 2)°Ly - L, 2 < (Kx 4 (n — 2)Li)2L;172~

On the other hand, by [9, Theorem 3.1.1 (4)], we have
<8 H(X,L) if x(S) #2,
<98 (X, L) if x(S)=2.

Here we note that h'(Ox)=h'(0s), ¢2(X,L;) = h*(Ox) =h*Os) and
g2(X, Ly, ..., Ly ) = h*(Ox) = h*(0s) by [11, Example 2.1 (H)]. Hence

(KX +Ll + - +Ln—2)2Ll o 'Ln—Z{

(K + (n 2>Li>2Li"-2{
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' (X, Li) = 1 = h'(Ox) + g2(X, Li) = x(Us) = 1 — h'(Ox) + ga(X, L1, ..., Ly2)
XzH X,L;,...,L,»), and we get the assertion of Theorem 8.2.5. O

Finally we are going to investigate (5) in Conjecture 8.2.1.

THEOREM 8.2.6. Let (X,Ly,...,L, ) be an n-dimensional multi-polarized
manifold of type n—2 with n > 4. Assume that k(X) >0. Then

12§ (X,Ly,...,Ly2) > (Ky + L+ +Ly_2)*Ly -+ L,_».

Proof. By taking a reduction of (X,Li,...,L,»), we may assume that
Ky+Li+---+L, > is nef and (n—2)-big by [12, Remark 5.2.4] because
k(X)>0. Hence by using Theorem 7.1 (setting B:= (L;+---+ L, 2)/n), we
see that

X;I(XaLh"‘uLan)
=1 _hl(wX) +92(X7L17"->L)172)

1 (& 1
=E<ZL]-2 Ll---an+Z< > Lij>L1-~-an

J=1 1<j<k<n-2
1 3 1
+4Kx< L_/)Ll--~L,,_2+12(CQ(X)+K)2()L1-~-L,,_2
=
1 (&3 1
2 g( L]2>L1L”2+Z< Z L/Lk>L1L”2
=1 l<j<k<n—2

n—-2
1
+Kx< L_/‘>L1" L, 2+12K2L1 Ly,

n—l n—2 I’l—l n—2
- K L |L _ L
121 X<j_1 ) b 27 an (1_] f) -2

Ky +Li+ -+ Ly 2) Ly Ly

:E(

2
1 2
+EKX(L1+ 4 Ly2)Ly -+ Ly 2+ (Z ) oLy

1 n—2
+37 (ZL})LI-..L -
j=1

1
> 5 Ky + Lyt oot Ly 2)’Ly- Ly ».
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Here we note that Kx(L; + -+ L,—2)L;--- L, > 0 because k(X) > 0. So we
get the assertion. O

9. Applications

In this section, we will provide two applications.

9.1. The sectional geometric genus of complete intersections of
hypersurfaces in P
By using the notion of the sectional geometric genus of multi-polarized
manifolds, we calculate the sectional geometric genus of (X, L), where X is a
complete intersection of hypersurfaces in P" and L := Opx(1)|y.

THEOREM 9.1.1. Let X be a projective variety such that X is a complete
intersection of hypersurfaces D; of PN with Dj € |Opn(dy)| for any j with
l<j<r Letn:=dimX =N —r and L:= Opx(1)|y. Then for every integer
iwith0<i<n—1=N-r—1

g(X,L)=>"(-n™ > (d1p1+-;;+id,p,_1).

u—1 (P1yspr) €S(P),

Here
S(}’)u = {(plv"'vpr) |pm GZ,O < Pm < 17#{m|pm = 1} = 1/[}

Proof. Here we note that X and D; are not smooth in general. First we
will prove the following:

Cram 9.1.1. g(X,L)=g:(PY,Dy,...,D,, H,...,H), where H := Opx(1).
———
N—i—-r

Proof. By the Bertini theorem we can take a general member D; € |Op~(d;)|
for any j such that the following holds: X/:=Dj{N---ND; is a smooth
projective variety of dimension N —k for every k with 1 <k <r. Set X' :=
DiN---ND;.

Then by using [11, Theorem 2.3] we have

gi(X' H|y)=g:(PY,D],....,D/H,....H).
Let Ny, pv (resp. Ny pv) be the normal bundle to X’ (resp. X) in PY. Then
¢(Nypn) = [Ty (1 +diH|y,) and ¢(Nypv) = [T (1 +diH]|y). Since

o(Ty) = (1 4 H|p) ! / [0+ dely)
k=1
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(see [14, Example 3.2.12]), by [7, Theorem 2.1] we get

gi(X' Hly) = a(H| )" + (=1)™! (X(@X’) - Z(—l)"kh”k((%w)> ;

where ¢ € Q. On the other hand since

o(Ty) = (1 + H| ™! / 1101+ detly).
k=1

by [7, Theorem 2.1] we have

n—i

gi(X, Hly) = a(H| )" + (-1)""" (%(@'X) - (—D"‘kh"k(@x))-

k=0

Here we note that h%(COy) = h°(Ox:) =1 and h/(Ox) = h/(Ox/) =0 for every j
with 0 < j < n (see also [15, Chapter I, Section 3, Theorem 3.4 (a) and Chapter
III, Section 5, Exercise 5.5 (c)]). Since

n—i n—i

£(Ox) = S (=)W (O = 7(0x) = S (=) h o),

k=0 k=0

(H| )" = (H| )"

and Dy is linearly equivalent to D], we see that
9i(X, L) = gi(X, Hly)
= gi(X', Hly,)
=g,(P",Dj,....D/H,... . H)
=g (PY,Dy,...,D, H,... H).

This completes the proof of Claim 9.1.1. O
Next by using [11, Corollary 2.3, we calculate ¢;(P"Y,Dy,...,D,, H,... H).
Here we note that Ny
N—i o
(=) RN (Opr) = 0
7=0

for any i>1. First we consider the case where N —i—r=1. Then i=
N—r—1=n-1 and by [11, Corollary 2.3] we have
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r+1
=> DT YT KK+ piDy -+ peDr o+ gH)
u=1 (Propr @) €S(r+1),
Syt oy ()
u=1 (Prse-sPriq) €S(r+1),, N
r+1
= (=t 3 (d1p1 +oeet d,~p,~>
u=1 (P1yeesr) €S(r), N
a r+1—u d1P1+"'+drPr_1
=Ty (
u=1 (P1yeesPr) €S(1), N
r _ d1p1+"'+drpr
_ r—u
= Z(—l) > ( N
u=0 (p1seesPr) €S(1),
u=1 (p1yes0r) €S(1), N
:zr:(*l)"*u Z dipy+ - +dp, . dpi+--+dipr =1 .
u=1 (p1yespr) €S(1),

. r lel ++dlpr
(Here we note that if u =0, then (=1)"3>2, . cs0), < N =0.)
Hence

gn—l(PN7D17"'7Dr7H)

:Z’:(_l),_u | Z M{<d1p1+']\'['+d,.p,,) B <d1p1+-~~N+d,.p,.—1)}

u=1 (p1y-spr) €S(1)
i (P €S0,

:i(_l)H (d1p1+~--+d,ﬁr—1>_
= (Prop €50), rtn=l

Next we consider the case where N —i—r>2 and we calculate g;(P",
Dy,...,D.,H,...,H). Here we note that by [11, Theorem 2.3]
N —

N—i—r
gi(PY.Dy,....D, H,...,H) = gi(P™" Opriini(dy),. .., Oprini(d), Opriini (1)).
N——

N—i—r
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On the other hand, by above
g,’(PH—H—l, @PH»H»I (d1>7 ey @Pr+i+1 (dr), @PH»H»I (1))

_ - r—u d1p1+"'+dr r—1
_;(_1) Z | ( i )

Hence
r . d _|_..._|_dr r_]
gi(PY.Dy,... . D H, ... H) =) (1) Y~ (11)1 ri g )
u=1 (P1yspr) €S(r),
So we get the assertion. O

9.2. The sectional m-genus of multi-polarized manifolds
Here we define the ith sectional m-genus of multi-quasi-polarized manifolds.

DeriNITION 9.2.1. Let m be an integer with m > 2. Let (X,Ly,...,L,—;)
be an n-dimensional multi-quasi-polarized manifold of type n — i, where i is an
integer with 0 <i<n-—1. Let & be a coherent sheaf on X.

(1) Assume that Ky + L; +---+ L,_; is nef and (n —i)-big. Then the ith
sectional m-genus p! (X,Ly,...,L,;;7) is defined by the following:

prl;1<X7L17"'7Ln7i;y)
gifl(X7(m_1)(KX+L1+"'+Ln7i)7L17-"7Ln7i;97)

+gi(X,Ly,....,L,;F)—h=(F) if 1<i<n-—1,
Go(X,Ly,...,Ly;7) if i=0.

(2) If F = Oy, then we set p)(X,Li,...,Ly, ;) := py(X,Ly,..., L, ;;Ox).
B)If =0y and L=L;=---=1L,;, then we set p.(X,L):= p. (X,
L,...,L; @X

THEOREM 9.2.1. Let m, n, and i be integers with m >2, n>2 and 1 <i <
n—1. Let (X,Ly,...,L,_;) be an n-dimensional multi-quasi-polarized manifold
of type (n—1i). Assume that n >2, Ky + L, +---+ L,_; is nef and (n— i)-big
and |L;| is base point free for every j with 1 < j <n—i. Here we use notation in
Notation 7.1. Then

p(X,Ly,...,L,;) = h’(mKy, ).

Proof. By definition and the proof of [11, Theorem 2.3] we get
p(X,Ly,...,L,)
=gi(X,im—-1)(Kx+L +---+Ly),Li,...,Ly)
+gi(X, L, ..., Ly;) — " (Ox)
=gi1(Xu_i, (m — DKy, )+ hi(Ox, ) — W7 (O, ).

n—i n—i
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Since Ky + Li + ---+ L,—; is nef and (n — i)-big, we see that Ky, , is nef and big
because (Ky +Li+---+ L, ;)'Ly---L,_;>0 by [1, Lemma 2.5.8]. Hence by
[5, Theorem 2.3] we have

gi1(Xui, (m— 1)Ky, ) = h*(Kx, , + (m — 1)Ky, ) = h'(Ox, ) + h' ' (Cy,_)

=h"(mKy, ) — h'(Ox, )+ h" ' (Ox,).

Therefore we get the assertion. O
THEOREM 9.2.2. Let m be an integer with m>2. Let (X,Ly,...,L,1)

be an n-dimensional multi-quasi-polarized manifold of type (n—1). Assume that
n>2 and Ky + Ly +---+ L, is nef and (n— 1)-big. Then

pL(X,Li,...,L,y) =2m—1.
Proof. By definition we get

p;]n(Xale"wLnfl) = gO(X; (m_ 1)(KX+L1 + "'+Ln71)7L17~~';Ln71)
+91(X, L, L) = h(Ox)
_2m—1

== (Kx+ L+ 4 L)L Lyt

On the other hand, since Ky + L;+---+ L, is nef and (n— 1)-big, we see
that (Kx+Li+---+L,—1)L;---L,_; >0 by [l, Lemma 2.5.8]. Moreover
(Ky+Li+---+Ly,1)Ly--- L,y is even. Hence we get the assertion. O

Remark 9.2.1. 1If dim X =1, m >2 and Ky is nef and big, then by the
Riemann-Roch theorem

W (mKy) = (2m — 1) (' (Oy) — 1).

Since Ky is nef and big, we have h!'(COy) > 2. Hence we get h°(mKy) = 2m — 1.
So Theorem 9.2.2 can be regarded as a generalization of this result.

THEOREM 9.2.3. Let (X, L) be a polarized manifold of dimension n > 3, and
let m be an integer with m > 2. Assume that Ky + (n — 1)L is nef and (n —1)-
big. If pl(X,L)=2m—1, then (X,L) is one of the following types.
(1) Ky +(n—3)L = Oy.
(2) X is a double covering of P" with branch locus being a smooth hyper-
surface of degree 6 and L is the pull-back of Opr(1).
(3) (X, L) is a simple blowing up of the type (2) above. In this case n = 3.
4) (X, L) is a scroll over a smooth surface, and one of the types in [3, (3.4)
Theorem)].
(5) (X, L) is a quadric fibration over a smooth curve, and one of the types in
[2, (3.7) and (3.30) Theorem)].
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Proof. By the proof of Theorem 9.2.2, we see that (Ky + (n— 1)L)L""!
2. Hence ¢g;(X,L)=2. So by the classification of (X,L) with ¢;(X,L) =
(see [2, (1.10) Theorem]), (X, L) is one of the above types because Ky + (n— 1)
is nef and (n — 1)-big.

DhNII

THEOREM 9.2.4. Let n be an integer with n > 3. Let (X,Ly,...,L,_5) be an
n-dimensional multi-polarized manifold of type n—2. Assume that one of the
following conditions holds:

(@) n=3 and Ky + L, is nef and 1-big.
(b) n>4, kK(X)>0 and Ky + L1 +---+ L,_» is nef.
Then for any integer m with m > 2 we have

-1
pgl(XaL17~-~7Ln,2) 21—}—%

Proof. By definition we get
P2(X,Ly,...,Ly2) = qi(X,(m — 1)(Kxy + Ly +---+ Ly, 2),Li,..., L, 2)
+92(X,Ly,...,Lya) — h'(Ox)

m(m—1)
2
+ (X, Ly, Ly ) — 1.

On the other hand by assumption we have (Ky + L; +---+Ln,2)2L1 Ly

>0 by [l, Lemma 2.5.8]. Moreover y¥(X,Ly,...,L,2)>1 by [9, Theorem
3.3.1(2)] and Theorem 8.2.2. Hence we get the assertion. O

=1+ (Ky +Li+ -+ Ly 2)°Li -+ Ly»

Remark 922, If dim X =2, m >2 and Ky is nef and big, then by the
Riemann-Roch theorem and the Kawamata-Viehweg vanishing theorem we have

m(m —1)

ho(mK)() = >

K3 + 2(Ox).

Since Ky is nef and big, we have yx(Oy)>1. Hence we get h’(mKy) >
—1 Ny

1 +m(mT)‘ Therefore Theorem 9.2.4 can be regarded as a generalization of

this result.

THEOREM 9.2.5. Let (X, L) be a polarized manifold of dimension 3, and let m
be an integer with m > 2. ~ Assume that Ky + L is nef and 1-big. Then p%(X,L)
=1+ (mm—1)/2) if and only if O(Ky)= COx, h'(Ox)=0, h°(L) =1 and
L’ =1

Proof. First we are going to prove the “only if”” part. By the proof of
Theorem 9.2.4, we see that (Ky + L)°L = 1.
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Assume that (Ky 4+ L)® > 0. Then by Proposition 7.1, we have (Ky + L)L?
=1. Again by using Proposition 7.1, we also have L3*=1. Hence
(Ky +2L)L?> =2. Therefore g;(X,L) =2. By the classification of (X, L) with
g1(X,L) =2 (see [2, (1.10) Theorem]) we see that O(Ky) = Ox and h'(Ox) =0
because Ky + L is nef and 1-big. Moreover since p2(X,L) =1+ (m(m —1)/2),
we see from the proof of Theorem 9.2.4 that y4/(X,L) = 1. Hence g2(X,L) =0
because /#'(Ox) =0. Therefore by [11, Corollary 2.3] or [5, Theorem 2.3] we
have h°(L) = h°(Kx + L) =1 since 7*(Ux) =1 and h*(Ox) = h'(Kx) = h'(Ox)
=0.

Assume that (Ky + L)’ =0. Then (X,L) is a quadric fibration over a
normal surface S. Then there exists a surjective morphism f : X — S with con-
nected fibers such that Ky + L = f*(A4) for some ample line bundle 4 on S.
Since (Ky + L)’L =1, we get (f*(4))’L=1. But by Proposition 7.2, this is
impossible in this case.

Next we prove the “if” part. If O(Ky)= Oy, h'(Ox) =0, h°(L) =1 and
L3 =1, then easy calculations show that p2(X,L) =1+ (m(m—1)/2) holds.

O

Remark 9.2.3. There exists an example of a polarized 3-fold (X,L) with
O(Ky) = Oy, h'(Ox) =0, h°(L) =1 and L3>=1. (See [2, (2.7) and Remark
(2.13)])

Furthermore we can prove the following.

THEOREM 9.2.6. Let m, n and i be integers such that m >2, n>2 and
l<i<n—-1 Let (X,Ly,...,L,_;) be an n-dimensional multi-quasi-polarized
manifold of type n—i. Assume that Ky + Ly +---+ L,_; is nef and (n—i)-
big, and Bs|L;| =0 for every integer j with 1 < j<n—1i Then

pi(X,Ly,...,Ly) >mgi(X,Ly,...,Ly_;) — (m—1).

Proof. Here we note that g;(X,Ly,...,L,—;) >0 by [12, Theorem 4.1].
Since

p;iq(Xlea"wLnfi) > 0

by Theorem 9.2.1, the assertion is true if g;(X,L;,...,L,—;) =0. So we may
assume that g;(X,Ly,...,L,—;) > 1. Here we use Notation 7.1. Then we note
that

9:/(X,Ly,....L,_;)=h"(Ky,,) and pL(X,Li,...,L,;) =h"(mKy, ).

Now we are going to prove the assertion by induction on m. First we
consider the case where m=2. Since h°(Ky, ) =gi(X,Li,...,L,—;)>1 by
assumption, we have h°(2Ky, ) >2h°(Ky,,)—1 by Lemma 7.1. Therefore
we get the assertion for m = 2.
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Next we assume that the assertion is true for m = k with k > 2. Then
(X, Li,...,Ly ) > kgi(X,Ly,...,Ly) — (k= 1)
holds by assumption, and g¢;(X,Li,...,L, ;) >1 implies that h°(kKy )=

pi(X,Ly,...,L,;) > 1. Since h°(Ky, ,)=gi(X,Ly,...,L,—;) =1, by Lemma
7.1 we obtain

Peni(Xo Ly L) = hO((k + 1)Ky, )
> h°(kKy, )+ h°(Ky, ) — 1
=pi(X,L1,..., Ly ) +g:(X,Ly,..., L, ) — 1
> kgi(X,Li,...,Lyi)— (k—=1)+gi(X,Li,...,L,;)— 1
= (k+ 1)gi(X,Li,...,Ly_;) — k.

So we get the assertion for m =k + 1, and this completes the proof. O
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