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UNSTABLE SUBSYSTEMS CAUSE TURING INSTABILITY

Atsushi Anma, Kunimochi Sakamoto and Tohru Yoneda

Abstract

We study Turing instabilities in 3-component reaction-di¤usion systems. The

existence of a complementary pair of stable-unstable subsystems always gives rise

to Turing instability for suitable diagonal di¤usion matrices. There are two types

of Turing instability, one called steady instability and the other wave instability.

To determine which of the two types of instability actually occurs, easily verifiable

conditions on unstable subsystems are given. A complementary pair of unstable-

unstable subsystems in a stable full system also leads to steady instability. Our results

give a perspective to the rich variety and complexity of pattern dynamics in

3-component systems of reaction-di¤usion equations at the onset.

1. Background, problem and main result

In 1952, Turing [16] proposed a novel idea that two chemical substances
reacting and di¤using in a homogeneous medium might produce a stable spatially
inhomogeneous state, out of a uniform steady state which is stable under
homogeneous perturbations. This statement sounds counter intuitive, because
di¤usion supposedly acts as a stabilizing (homogenizing) e¤ect. Turing, how-
ever, clearly demonstrated, via a concrete system of two linear reaction-di¤usion
equations, that this (mathematical) phenomenon certainly is possible. Despite of
(or ‘‘Because of ’’) its counter intuitive nature, this fascinating idea has attracted
the attention of researchers from diverse areas of science, such as biology,
nonlinear physics, chemistry, engineering, as well as mathematics, and a huge
amount of literature on this subject has accumulated, see for example [1, 4, 6, 10]
and references there.

Most studies on Turing instability have been concerned with 2-component
systems of reaction-di¤usion equations, and the mathematical mechanism of
Turing instability is well-understood for 2-component systems [1, 4, 6, 10]. In
the original article [16], however, Turing also touched on 3-component systems
and briefly mentioned to a type of instability associated with a mode which is
nontrivial both in space and time, as quoted below:

§8.7. Oscillatory case with a finite wave length (case e). This means
that there are genuine travelling waves. Since the example to be given
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involves three morphogens it is not possible to use the formulae of
Section 6. Instead, one must use the corresponding three morphogen
formulae.

This type of Turing instability never occurs in 2-component systems, as long as
the di¤usion matrix is diagonal.

In recent decades, there have been several papers [13, 19, 18, 12, 7] dealing
with Turing instability in 3-component systems of reaction-di¤usion equations,
and each of these investigations extends the Turing instability mechanism to
3-component systems. To our best knowledge, however, there is no compre-
hensive mathematical description of what the essential feature of Turing insta-
bility is in n-component (nb 3) systems.

The purpose of this article is to clarify the source of Turing instabilities and
how they appear in 3-component systems of reaction-di¤usion equations.

In the remaining part of §1, we formulate our problem in precise terms,
present main results and relate our results to other previous studies. Proofs of
the main results are given in §2. We apply the main results to several concrete
examples in §3. Finally, in §4, we display types of stable 3� 3 matrices in which
various stability-instability properties of sub-matrices coexist, and give a perspec-
tive for remaining problems.

1.1. Statement of problem. We consider the 3-component system of
reaction-di¤usion equations;

qu

qt
¼ d1suþ F ðu; v;wÞ; qv

qt
¼ d2svþ Gðu; v;wÞ;ð1:1Þ

qw

qt
¼ d3swþHðu; v;wÞ;

where s stands for the Laplace operator and dj b 0 ( j ¼ 1; 2; 3) are di¤usion
coe‰cients of the components u, v, w, respectively. We assume that the non-
linear reaction terms F , G, H are smooth. Throughout this article, the spatial
domain and boundary conditions associated with (1.1) are not specified. Instead,
we only use the eigenvalues �ma 0 of the Laplace operator s in various
domains under suitable (presumably, no flux or periodic) boundary conditions.
This is su‰cient for the purpose of this article.

Suppose that (1.1) has a homogeneous steady state ðu; v;wÞ ¼ ðu0; v0;w0Þ
which is stable under homogeneous perturbation, i.e., ðu; v;wÞ ¼ ðu0; v0;w0Þ is an
asymptotically stable steady state with respect to the system of ordinary di¤er-
ential equations

du

dt
¼ Fðu; v;wÞ; dv

dt
¼ Gðu; v;wÞ; dw

dt
¼ Hðu; v;wÞ;ð1:2Þ

which is obtained from (1.1) by dropping the di¤usion terms. Our main concern
here is the linearized version of (1.1);

q

qt
U ¼ DsU þ AU ;ð1:3Þ
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where U ¼ ðu; v;wÞ, D ¼ diagðd1; d2; d3Þ is the 3� 3 di¤usion matrix, and A is the
linearization of the vector field ðF ;G;HÞ at ðu0; v0;w0Þ.

Detecting the Turing instability of the homogeneous state ðu0; v0;w0Þ
amounts to finding a suitable di¤usion matrix D for which (1.3) has exponentially
growing solutions. Since (1.3) is homogeneous both in space and time, its
solutions are easily found to be of the form

Uðt; xÞ ¼ elðmÞtFmðxÞ;
or linear combinations of such solutions, where the growth exponents lðmÞ are
the eigenvalues of the 3� 3 matrix �mDþ A, and Fm are the product of the
eigenfunctions of the Laplace operator s associated with the eigenvalue �m and
the eigenvectors of �mDþ A. (To be precise, the eigenvalues lðmÞ also depend
on D and A. They are sometimes expressed as lðm;DÞ or lðm;D;AÞ, according
to our needs.) Therefore, to find an exponentially growing solution of (1.3), it is
necessary and su‰cient to find D and mb 0 for which Re lðm;DÞb 0 is realized.
On the other hand, the assumption that ðu; v;wÞ ¼ ðu0; v0;w0Þ is asymptotically
stable relative to the dynamics of (1.2) implies that the eigenvalues of A have
negative real part. Therefore, our problem is formulated as follows.

Problem: For a stable 3� 3 matrix A, find a diagonal di¤usion matrix D
for which there exists an eigenvalue m > 0 of the Laplace operator s satisfying
Re lðm;D;AÞb 0.

Throughout this article, a square matrix A of any size is called stable if all
eigenvalues of A have negative real part, and A is called unstable if it is not
stable.

1.2. Turing-instability for 3-component systems. For a 3� 3 matrix
A ¼ ðajkÞ, 1- and 2-component subsystems Aj ( j ¼ 1; 2; 3) and Ajk (1a j;
ka 3; j0 k), respectively, are defined as follows: Aj ¼ ajj , ( j ¼ 1; 2; 3) and
Ajk is the 2� 2 submatrix obtained from A by taking exactly the rows and
the columns of indices j, k. A pair ðAm;AjkÞ is said to form a complementary
pair in A, if fm; j; kg ¼ f1; 2; 3g. There are three complementary pairs ðA1;A23Þ,
ðA2;A13Þ, ðA3;A12Þ.

Although the main results of this article contain several sub-cases, they are
summarized as Main Feature below. Before stating it, we give the precise
definition of Turing instability for the purpose of this article.

Definition 1.1. Let A be a stable 3� 3 matrix and D a 3� 3 diagonal
di¤usion matrix. We denote by lðm;DÞ the eigenvalues of �mDþ A.

(i) If one eigenvalue lðm;DÞ crosses 0 from negative to positive along
the real axis in the complex plane for some m > 0 as D varies, then we
say that steady instability (S-instability, for short) occurs for (1.3). If,
moreover, the remaining eigenvalues of �mDþ A, for all m > 0 and for
such D that lðm;DÞ ¼ 0, stay in the left half complex plane, then we say
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that the steady instability is primary ( primary S-instability, for short).
In these situations, the quantity kS ¼

ffiffiffi
m

p
is called the S-wave number.

(ii) If a non-real eigenvalue lðm;DÞ and its complex conjugate cross the
imaginary axis from the left half plane to the right half plane for some
m > 0 as D varies, then we say that wave instability (W-instability, for
short) occurs for (1.3). If, moreover, the remaining eigenvalues of
�mDþ A, for all m > 0 and for D such that Re lðm;DÞ ¼ 0, stay in
the left half complex plane, then we say that the wave instability is
primary ( primary W-instability, for short). In these situations, the
quantity kW ¼ ffiffiffi

m
p

is called the W-wave number.
These two types of instability are called Turing instability.

Note that W-instability is impossible for 2-component systems if the di¤usion
matrix D is diagonal. With this definition, the main feature of our results for
3-component systems is summarized as follows.

Main Feature. Suppose that the 3� 3 matrix A is stable and ðAm;AjkÞ
forms a complementary pair in A.

(i) If Ajk is unstable, then a Turing instability occurs for di¤usion matrices D
that satisfy dm gmaxfdj; dkg.

(ii) If Am > 0 is unstable, then a Turing instability occurs for di¤usion
matrices D that satisfy minfdj; dkgg dm.

In other words,

if the di¤usion rate of an unstable subsystem in a stable full system is
su‰ciently small compared with the di¤usion rate of its complementary
partner, then a di¤usion-induced instability readily sets in.

The Turing instability mechanism in 2-component systems naturally conforms to
the statements of Main Feature. It is well known [1, 4, 6, 10] that for a stable
2� 2 matrix B, Turing instability occurs only if B is one of the following types;

B ¼ þ �
þ �

� �
; B ¼ � þ

� þ

� �
; B ¼ � �

þ þ

� �
; B ¼ þ þ

� �

� �
:

Among these four types, the first and the second (respectively, the third and the
fourth) are essentially the same. Each one of these 2� 2 matrices consists of a
complementary pair of stable-unstable subsystems, and the fact that their o¤-
diagonal entries are of opposite sign is forced from the stability requirements
of the full 2� 2 system B. Moreover, the di¤usion induced instability actually
occurs when the di¤usion rate of unstable component is su‰ciently small relative
to the di¤usion rate of the stable component. We may well say that Main

Feature extends the Turing instability mechanism to a 3-component version.
In order to make Main Feature a little more useful in practice, its

statements must be made more precise. For the purpose, we classify the insta-
bility of a 2-component subsystem Ajk into three types by negating its stability
conditions tr Ajk < 0 and det Ajk > 0. We only consider semi-generic situations.
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Definition 1.2. Let Ajk be a 2-component subsystem of A. It is called
(1) type-1 unstable, if tr Ajk > 0 and det Ajk b 0,
(2) type-2 unstable, if tr Ajk a 0 and det Ajk < 0,
(3) type-3 unstable, if tr Ajk > 0 and det Ajk < 0.

We are now ready to state our main results.

Theorem 1.1. Suppose that A is a stable 3� 3 matrix and the pair ðAm;AjkÞ
forms a complementary pair in A.

(i) If Am > 0 is unstable and Ajk is stable, then for any dj > 0, dk > 0,
S-instability occurs for di¤usion matrices D that satisfy dm fminfdj; dkg.

(ii) If Ajk is type-1 unstable and Am is stable, then for any dm > 0,
W-instability occurs for di¤usion matrices D that satisfy maxfdj; dkgf
dm:

(iii) If Ajk is type-2 unstable and Am is stable, then for any dm > 0,
S-instability occurs for di¤usion matrices D that satisfy maxfdj; dkgf
dm:

(iv) If Ajk is type-3 unstable and Am is stable, then for any dm > 0, both
S-instability and W-instability occur for di¤usion matrices D that satisfy
maxfdj; dkgf dm:

(v) If Am > 0 is unstable and Ajk is type-2 unstable, then
(a) for any dm > 0, S-instability occurs for di¤usion matrices D that

satisfy maxfdj ; dkgf dm;
(b) for any dj > 0, dk > 0, S-instability occurs for di¤usion matrices D

that satisfy minfdj; dkgg dm:

Concerning the statements of this theorem, several remarks are to be made.
� We notice that S-instability is associated with a 1-component unstable
subsystem and a type-2 unstable subsystem. On the other hand,
W-instability occurs when a type-1 unstable or type-3 unstable subsystem
is involved in a complementary pair.

� In Theorem 1.1 above, we do not claim that the S- or W-instability must be
primary. This indefiniteness is due to the fact that there may be more than
one complementary pairs consisting of at least one unstable subsystem in a
stable full system, and that the Turing instability mechanisms originating
from the di¤erent complementary pairs may interact.

� If two complementary pairs other than the pair ðAm;AjkÞ in Theorem 1.1
(i) are of stable-stable type, then the S-instability is primary (cf. Corollary
1.1 (i), below).

� If 2-component subsystems other than Ajk in Theorem 1.1 (iii) are stable,
then the S-instability is primary (cf. Corollary 1.1 (ii), below).

� In Theorem 1.1 (ii), W-instability is primary for suitable di¤usion matrices
with maxfdj; dkgf dm (cf. Corollary 1.1 (iii) and (iv), below).

� In Theorem 1.1 (iv), the S- and W-instability mechanisms may interact
within a type-3 unstable subsystem. If S- and W-instability occur for the
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same di¤usion rates, the corresponding wave numbers tend to behave as
follows:

If tr Ajk f jdet Ajkj; then kW g kS.

If tr Ajk g jdet Ajkj; then kW f kS.

However, in case tr Ajk f jdet Ajkj, S-instability seems to be always primary
and W-instability is hardly observable. On the other hand, in case
tr Ajk g jdet Ajkj both S- and W-instability may occur for the same
di¤usion matrix D ([8, 18, 19]), and it has been reckoned that kW < kS
is a rule. We will show in §3 that this rule is violated by an example.

� Concerning statement (v) of Theorem 1.1, one may wonder if an unstable-
unstable complementary pair comprises a stable matrix A. This is, of
course, impossible in 2-component systems. However, in 3-component
systems, this is true for an open set of matrices (cf. examples in §3). In
this situation, the subsystem Ajk must necessarily be type-2 unstable.

There are situations in which Turing instabilities do not occur. Results in
this direction are summarized as follows.

Theorem 1.2. Suppose that A is a stable 3� 3 matrix.
(i) If all 1-component and 2-component subsystems are stable, then Turing

instability never occurs for any choice of the di¤usion matrix D.
(ii) If all 2-component subsystems are stable, then W-instability never occurs

for any choice of the di¤usion matrix D.
(iii) If Ajk is type-2 unstable and its complementary Am is stable, then

W-instability does not occur for di¤usion matrices D that satisfy
maxfdj; dkgf dm. If, moreover, 2-component subsystems other than
Ajk are stable, then W-instability does not occur for di¤usion matrices
D that satisfy maxfdj ; dkga dm.

(iv) Suppose that Am is stable and its complementary Ajk is type-1 unstable
with Aj > 0 > Ak. If either
(1) det Ajm < 0 and det Akm < 0, or
(2) det Akm b 0,
then S-instability does not occur for di¤usion matrices D that satisfy
maxfdj; dkga dm and dk a ð�Ak=AjÞdj.

(v) Suppose that Am is stable and its complementary Ajk is type-1 unstable
with Aj > 0 and Ak > 0. If either
(1) det Ajm b 0, det Akm b 0 and det Ajk > AjAk, or
(2) det Ajm < 0, det Akm < 0 and p2 > AjAk,
then there exist l1, l2 with 0 < l1 < ðAk=AjÞ < l2 so that S-instability
does not occur for di¤usion matrices D that satisfy maxfdj; dkga dm and
l1dj a dk a l2dj.

Combining Theorems 1.1 and 1.2, we immediately obtain several su‰cient
conditions for primary Turing instabilities.
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Corollary 1.1. Suppose that A is a stable 3� 3 matrix.
(i) If Am > 0 is an unstable subsystem and all 2-component subsystems are

stable, then for any dj > 0, dk > 0, S-instability primarily occurs for
di¤usion matrices D that satisfy dm fminfdj; dkg.

(ii) If a type-2 unstable Ajk and a stable Am form a complementary pair in A,
and if 2-component subsystems other than Ajk are stable, then for any
dm > 0, S-instability primarily occurs for di¤usion matrices D that satisfy
maxfdj; dkgf dm:

(iii) If Am is stable and its complementary Ajk is type-1 unstable with
Aj > 0 > Ak, and if either
(1) det Ajm < 0 and det Akm < 0, or
(2) det Akm b 0,
then W-instability primarily occurs for di¤usion matrices D that satisfy
maxfdj; dkgf dm and dk < ð�Ak=AjÞdj.

(iv) If Am is stable and its complementary Ajk is type-1 unstable with Aj > 0
and Ak > 0, and if either
(1) det Ajm b 0, det Akm b 0 and det Ajk > AjAk, or
(2) det Ajm < 0, det Akm < 0 and p2 > AjAk,
then there exist l1, l2 with 0 < l1 < ðAk=AjÞ < l2 so that W-instability
primarily occurs for di¤usion matrices D that satisfy maxfdj; dkgf dm
and l1dj a dk a l2dj.

There are many previous studies on necessary and/or su‰cient conditions for
Turing instability in n-component (nb 3) systems of reaction di¤usion equations.
We only mention to some representatives of such studies which caught our
attention.

Othmer and Scriven in [9] considered reaction equations with general dif-
fusion matrices with cross-di¤usion e¤ects, and studied various possibilities of
Turing-type instability, by closely examining the behavior of the eigenvalues
lðmÞ of the matrix �mDþ A for mb 0. In [15], a cross-inhibition e¤ect in A
(i.e., aij < 0 for some i0 j) was identified as a necessary condition for Turing
instability. In [11, 12], it was shown that if all possible subsystems are stable
then Turing instability never occurs (hence, our Theorem 1.2 (i) is not new),
although the main interest of [11, 12] was in another destabilization mechanism
called di¤erential flow induced instability. For mass-action type reaction equa-
tions, a graph theoretic method was applied in [5] to characterize, as a necessary
condition for Turing instability, a so called critical fragment condition which is
equivalent to the existence of an auto-catalytic subsystem (unstable subsystem).
For a concrete system of reaction di¤usion-equations describing the dynamics
among three species (host-parasite-hyperparasite), [18] developed a theoretical
framework, similar to that of this article, for Turing instabilities and displayed
the occasions where S- and W-instabilities are actually induced. The impor-
tance of stable-unstable complementary pairs for Turing instability seems to have
been envisaged in [13], although the idea was neither thoroughly scrutinized nor
fully developed. The authors of [13] claimed that the necessary and su‰cient
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conditions for the Turing instability were established by Theorems 1 and 3 in [13].
However, Theorem 3 in [13] (su‰ciency for Turing instability) is not complete
in the sense that it does not take care of the possibility of W-instability, and
[13] is amended by [14] which contains an example of a 4-component system
indicating the possibility of W-instability. In [19], 3-component systems (the
extended Brusselator model and the extended Oregonator model) were numer-
ically studied to exhibit a variety of spatiotemporal patterns arising from the
interaction of the stationary Turing and oscillatory Turing instabilities. The
authors of [7] experimentally identified the interaction network between the pig-
ment cells of zebrafish, and showed, by using a 3-component system of reaction-
di¤usion equations, that this interaction network possesses the properties neces-
sary to induce Turing patterns, in which two variables representing the density of
the 2 types of pigment cells, melanophores and xanthophores, form a 2-component
unstable subsystem.

As far as 3-component systems are concerned, the generality and variety of
the onset of instability in the above-mentioned results are altogether covered by
our results in Theorems 1.1, 1.2 and Corollary 1.1, except for cross di¤usion
e¤ects.

2. Proof of main results

Once the statements are properly made, the results in §1 are proved by using
the Routh-Hurwitz criterion [3] in an elementary manner. Let PðlÞ ¼ l3 þ
p1l

2 þ p2lþ p3 be the characteristic polynomial of the 3� 3 matrix A. The
coe‰cients pj ( j ¼ 1; 2; 3Þ are given by

p1 ¼ �tr A; p2 ¼ det A12 þ det A23 þ det A13; p3 ¼ �det A:

Here and below, we use sub-matrices Am, Ajk of A defined at the beginning of
§1.2. The Routh-Hurwitz criterion says that A is stable, i.e., all of the roots of
PðlÞ are in the left half complex plane, if and only if

p1 > 0; p3 > 0; p1p2 � p3 > 0:ð2:1Þ

Note that these conditions imply p2 > 0.
We denote by Pðl; mÞ ¼ l3 þ p1ðmÞl2 þ p2ðmÞlþ p3ðmÞ the characteristic

polynomial of �mDþ A. The coe‰cients pjðmÞ ( j ¼ 1; 2; 3Þ are given by

p1ðmÞ ¼ trðmD� AÞ; p3ðmÞ ¼ detðmD� AÞ;
p2ðmÞ ¼ detðA12 � mD12Þ þ detðA23 � mD23Þ þ detðA13 � mD13Þ;

which lead us to:

p1ðmÞ ¼ p1 þ ðd1 þ d2 þ d3Þm;ð2:2Þ
p2ðmÞ ¼ p2 þ ½�ðtr A23Þd1 � ðtr A13Þd2 � ðtr A12Þd3�m

þ ½d1d2 þ d2d3 þ d3d1�m2;
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p3ðmÞ ¼ p3 þ ½ðdet A23Þd1 þ ðdet A13Þd2 þ ðdet A12Þd3�mð2:3Þ

þ ½�A3d1d2 � A2d1d3 � A1d2d3�m2 þ d1d2d3m
3;

p1ðmÞp2ðmÞ � p3ðmÞð2:4Þ
¼ p1p2 � p3 þ ½ðdet A12 þ det A13 þ ðtr AÞðtr A23ÞÞd1

þ ðdet A12 þ det A23 þ ðtr AÞðtr A13ÞÞd2
þ ðdet A23 þ det A13 þ ðtr AÞðtr A12ÞÞd3�m

þ ½�ðtr A23Þd 2
1 � ðtr A13Þd 2

2 � ðtr A12Þd 2
3

� 2ðtr AÞðd1d2 þ d1d3 þ d2d3Þ�m2

þ ½2d1d2d3 þ d 2
1 ðd2 þ d3Þ þ d 2

2 ðd1 þ d3Þ þ d 2
3 ðd1 þ d2Þ�m3:

We apply the negation of Routh-Hurwitz criterion (2.1) to pjðmÞ ( j ¼ 1; 2; 3)
to show that Pðl; mÞ has roots lðmÞ with non-negative real part for some m > 0.
Since p1ðmÞ > 0 for all mb 0 in (2.2), the real part of lðmÞ possibly becomes
positive only by violating one of the other two inequalities in (2.1), namely,

p3ðmÞa 0 or p1ðmÞp2ðmÞ � p3ðmÞa 0 for some m > 0:

It is elementary to prove:
(S) If p3ðmÞ changes its sign from positive to negative as m > 0 varies with

p1ðmÞp2ðmÞ � p3ðmÞ being positive, then one of lðmÞ changes its sign
from negative to positive along the real axis.

(W) If p1ðmÞp2ðmÞ � p3ðmÞ changes its sign from positive to negative as
m > 0 varies with p3ðmÞ being positive, then a non-real root lðmÞ and its
complex conjugate in pair cross the imaginary axis from left to right.

According to Definition 1.1, the statements (S) and (W) correspond, respectively,
to primary S-instability and primary W-instability. In the proof of Theorem 1.1
below, we do not bother verifying additional conditions ‘‘with p1ðmÞp2ðmÞ � p3ðmÞ
being positive’’ and ‘‘with p3ðmÞ being positive’’, respectively, for (S) and (W).
This is allowed, because we do not claim in Theorem 1.1 that S-instability and
W-instability be primary.

By exchanging rows and columns appropriately, we may assume without loss
of generality that j ¼ 1, k ¼ 2 and m ¼ 3.

Proof of Theorem 1.1 (i): For fixed d1 > 0, d2 > 0 we set d3 ¼ 0, then p3ðmÞ
in (2.3) reduces to

p3ðmÞ ¼ p3 þ ½ðdet A23Þd1 þ ðdet A13Þd2�m� A3d1d2m
2;ð2:5Þ

and A3 being unstable and A being stable, we have A3 > 0, p3 > 0. Therefore,
regardless of the sign of the coe‰cient of m, there exists m� > 0 so that p3ðmÞ > 0
for 0a m < m� and p3ðmÞ < 0 for m > m�. We now perturb d3 > 0 o¤ from
d3 ¼ 0. Then there exist m > 0, m > 0 with m < m such that p3ðmÞ > 0 for 0a
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m < m or m > m, and p3ðmÞ < 0 for m < m < m. Therefore, when d3 fminfd1; d2g,
S-instability occurs for m A ðm; mÞ.

Proof of Theorem 1.1 (ii): For fixed d3 > 0 we set d1 ¼ d2 ¼ 0, then
p1ðmÞp2ðmÞ � p3ðmÞ in (2.4) reduces to

p1ðmÞp2ðmÞ � p3ðmÞ ¼ p1p2 � p3 þ ½det A23 þ det A13 þ ðtr AÞðtr A12Þ�d3mð2:6Þ

� ðtr A12Þd 2
3 m

2;

and A12 being type-1 unstable and A being stable, we have tr A12 > 0,
p1p2 � p3 > 0. Therefore, regardless of the sign of the coe‰cient of m, there
exists m� > 0 so that p1ðmÞp2ðmÞ � p3ðmÞ > 0 for 0a m < m� and p1ðmÞp2ðmÞ �
p3ðmÞ < 0 for m > m�. We now perturb d1 > 0, d2 > 0 o¤ from d1 ¼ d2 ¼ 0.
Then there exist m > 0, m > 0 with m < m such that p1ðmÞp2ðmÞ � p3ðmÞ > 0 for
0a m < m or m > m, and p1ðmÞp2ðmÞ � p3ðmÞ < 0 for m < m < m. This means that
W-instability occurs for m A ðm; mÞ when d3 gmaxfd1; d2g.

Proof of Theorem 1.1 (iii): For fixed d3 > 0 we set d1 ¼ d2 ¼ 0, then p3ðmÞ
in (2.3) reduces to

p3ðmÞ ¼ p3 þ ðdet A12Þd3m:ð2:7Þ
Now, A12 being type-2 unstable and A being stable, we have det A12 < 0, p3 > 0.
Therefore, there exists m� > 0 so that p3ðmÞ > 0 for 0a m < m� and p3ðmÞ < 0 for
m > m� in (2.7). We now perturb d1 > 0, d2 > 0 o¤ from d1 ¼ d2 ¼ 0. Then
there exist m > 0, m > 0 with m < m such that p3ðmÞ > 0 for 0a m < m or m > m,
and p3ðmÞ < 0 for m < m < m. This means that S-instability occurs for m A ðm; mÞ
when d3 gmaxfd1; d2g.

Proof of Theorem 1.1 (iv): This is the combination of cases (ii) and (iii).
For fixed d3 > 0 we set d1 ¼ d2 ¼ 0, then p3ðmÞ in (2.3) and p1ðmÞp2ðmÞ � p3ðmÞ
in (2.4) reduce, respectively to (2.7) and (2.6). Since A12 is type-3 unstable and A
is stable, we have tr A12 > 0, det A12 < 0, p3 > 0 and p1p2 � p3 > 0. Therefore,
there exist ms > 0 and mw > 0 so that

p3ðmÞ > 0 for 0a m < ms and p3ðmÞ < 0 for m > ms;

p1ðmÞp2ðmÞ � p3ðmÞ > 0 for 0a m < mw and

p1ðmÞp2ðmÞ � p3ðmÞ < 0 for m > mw:

By perturbing d1 > 0, d2 > 0 o¤ from d1 ¼ d2 ¼ 0, S- and W-instability occur for
suitable m > 0 when maxfd1; d2gf d3.

Proof of Theorem 1.1 (v): Because A3 ð> 0Þ and A12 are unstable and A is
stable, we must have tr A12 < 0, implying that A12 is type-2 unstable and p3 > 0.
For fixed d3 > 0 we set d1 ¼ d2 ¼ 0, then p3ðmÞ in (2.3) reduces to (2.7). For
fixed d1 > 0, d2 > 0 we set d3 ¼ 0, then p3ðmÞ in (2.3) reduces to (2.5). The
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remaining reasoning is the same as that for the proof of Theorem 1.1 (iii) for (a),
or of Theorem 1.1 (i) for (b).

Proof of Theorem 1.2 (i): The conditions imposed on the sub-matrices imply
that Am < 0 (m ¼ 1; 2; 3), tr Ajk < 0, det Ajk > 0 (0a j < ka 3) and tr A < 0.
From these inequality, we easily find that p3ðmÞ > 0 in (2.3) and p1ðmÞp2ðmÞ �
p3ðmÞ > 0 in (2.4) for all possible m > 0 and dj > 0 ( j ¼ 1; 2; 3), because the
coe‰cients of m0, m, m2 and m3 are positive. Therefore, Turing instability does
not occur.

Proof of Theorem 1.2 (ii): The conditions imposed on the 2-component
sub-matrices imply that tr Ajk < 0, det Ajk > 0 (0a j < ka 3) and tr A < 0.
From these inequality, we easily find that p1ðmÞp2ðmÞ � p3ðmÞ > 0 in (2.4) for
all possible mb 0 and dj b 0 ( j ¼ 1; 2; 3), because p1p2 � p3 > 0 and the co-

e‰cients of m, m2 and m3 are non-negative. Therefore, W-instability does not
occur.

Proof of Theorem 1.2 (iii): Since A is stable and A12 is type-2 unstable,
we have that det A23 þ det A13 > 0 and tr A12 < 0. For fixed d3 > 0 and d1 ¼
d2 ¼ 0, we have p1ðmÞp2ðmÞ � p3ðmÞ > 0 in (2.6) for all mb 0, which remains
the same even after we perturb d1 > 0, d2 > 0 o¤ from d1 ¼ d2 ¼ 0. Therefore,
W-instability does not occur for maxfd1; d2gf d3.

If, moreover, A13 and A23 are stable, in (2.4) the coe‰cients of m0, m2 and
m3 are positive for all dj > 0 ( j ¼ 1; 2; 3). On the other hand, within the co-
e‰cient of m in (2.4), the coe‰cient of d3 is positive. If the coe‰cients of d1, d2
are positive, then the coe‰cient of m in (2.4) is also positive and we have
p1ðmÞp2ðmÞ � p3ðmÞ > 0 for all mb 0 and dj b 0 ( j ¼ 1; 2; 3). If the coe‰cients
of d1 and d2 are negative, then for maxfd1; d2ga d3 we have [coe‰cient of m in
(2.4)]b 2ðp2 þ p21Þd3 > 0. If the coe‰cient of d1 is negative and that of d2 is
non-negative, then for maxfd1; d2ga d3 we have that the coe‰cient of m in (2.4)
is estimated from below as follows

½coe‰cient of m in ð2:4Þ�b fp2 þ det A13 þ ðtr AÞðtr A23 þ tr A13Þgd3
þ fdet A12 þ det A23 þ ðtr AÞðtr A13Þgd2 > 0;

which implies that W-instability does not occur. The arguments are similar if
the coe‰cient of d1 is non-negative and that of d2 is negative. Therefore, we
conclude that W-instability is impossible for maxfd1; d2ga d3.

Proof of Theorem 1.2 (iv): We first show that the coe‰cient of m in (2.3)
is positive under the conditions maxfd1; d2ga d3 and d2 a ð�A2=A1Þd1. If (1)
is the case, the coe‰cient of m is estimated from below by p2d3 > 0. Since
tr A12 > 0, we have A1 > jA2j and hence d2 a ð�A2=A1Þd1 < d1. Therefore, if
(2) is the case, then the coe‰cient is estimated by p2d2 > 0. Since A3 < 0, the
coe‰cient of m2 is estimated from below by �A2d1d3 � A1d2d3 which is positive
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if d2 < ð�A2=A1Þd1. All coe‰cients of p3ðmÞ in (2.3) are positive, and therefore,
S-instability does not occur for maxfd1; d2ga d3, d2 a ð�A2=A1Þd1.

Proof of Theorem 1.2 (v): We have A3 < 0, A1 > 0 and A2 > 0.
If (1) is the case, for maxfd1; d2ga d3, p3ðmÞ in (2.3) is estimated from

below:

p3ðmÞb p3 þ d3½det A12 � ðA2d1 þ A1d2Þmþ d1d2m
2�m:

The minimum value of the quadratic function of mb 0 inside the bracket ½ � � � � is
given by

det A12 �
ðA2d1 þ A1d2Þ2

4d1d2
:

We will now show that the minimum value is nonnegative along half lines
d2 ¼ ld1 ðd1 > 0Þ for suitable l > 0. Namely, we will find l > 0 so that

det A12 �
ðA2 þ A1lÞ2

4l
b 0:

Thanks to the condition det A12 > A1A2, this is certainly true for l ¼ A2=A1.
We easily find that this inequality is satisfied for l A ½l1; l2�, where l1 and l2 are
roots of the quadratic equation ðA1lþ A2Þ2 ¼ 4l det A12 with 0 < l1 < A2=A1 <
l2.

If (2) is the case, for maxfd1; d2ga d3, p3ðmÞ in (2.3) is estimated from
below:

p3ðmÞb p3 þ d3½p2 � ðA2d1 þ A1d2Þmþ d1d2m
2�m:

The minimum value of the quadratic function of mb 0 inside the bracket ½ � � � � is
given by

p2 �
ðA2d1 þ A1d2Þ2

4d1d2
:

The remaining arguments are similar to those for (1). This completes the proof.

3. Examples

In this section, we display explicit examples of A to which Theorems 1.1,
1.2 and Corollary 1.1 apply. We then take up a model called the extended
Brusselator ([19]) and numerically study this model from the viewpoint of Turing
bifurcations.

3.1. Illustrative examples. We exhibit examples of A to which Theorem
1.1 applies. The examples below are chosen so that the number of unstable
subsystems is minimum, and hence the instability in each statement of Theorem
1.1 is mostly primary. In the subsequent figures, the white (resp. gray) area in
dj-dk planes indicates the area where p3ðmÞ or p1ðmÞp2ðmÞ � p3ðmÞ is positive
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(resp. negative). Therefore, the boundary between the white and gray areas is
the location where S- or W-instability actually sets in for suitable eigenvalues
m > 0 of the Laplace operator.

(i) This is an example for Theorem 1.1 (i):

A ¼
�2 0 1

1 �1 �1

�3 2 0:5

0
B@

1
CA

which is a stable matrix, because the stability conditions

p1 ¼ 2:5 > 0; p2 ¼ 5:5; p3 ¼ 4 > 0; p1p2 � p3 ¼ 9:75 > 0

are satisfied. Complementary pairs are:

� A12 ¼
�2 0

1 �1

� �
: Stable, A3 ¼ 0:5 : Unstable,

� A13 ¼
�2 1

�3 0:5

� �
: Stable, A2 ¼ �1 : Stable,

� A23 ¼
�1 �1

2 0:5

� �
: Stable, A1 ¼ �2 : Stable,

and Theorem 1.1 (i) applies with j ¼ 1, k ¼ 2, m ¼ 3. Figure 1 below shows
that S-instability occurs for small d3 > 0.

We may consider this case as a direct generalization of 2-component Turing
instability to a 3-component version.

Figure 1. We set the parameter d2 ¼ 1 in Figure 1. The pair ðd1; d3Þ in the white area means that

p3ðmÞ ¼ d1d3m
3 þ ð�0:5d1 þ 2d3 þ d1d3Þm2 þ ð2þ 1:5d1 þ 2d3Þmþ 4 > 0 for all m > 0, while the pair

ðd1; d3Þ in the gray area indicates that p3ðmÞ < 0 for some m > 0. The S-instability occurs on the

boundary between these two areas.
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(ii) An example for Theorem 1.1 (ii) is given by

A ¼
2 �3 �4

1 �1 1

2 �1 �3

0
B@

1
CA

whose stability conditions

p1 ¼ 2 > 0; p2 ¼ 7; p3 ¼ 11 > 0; p1p2 � p3 ¼ 3 > 0

are satisfied. Complementary pairs are

� A12 ¼
2 �3

1 �1

� �
: type-1 unstable, A3 ¼ �3 : Stable,

� A13 ¼
2 �4

2 �3

� �
: Stable, A2 ¼ �1 : Stable,

� A23 ¼
�1 1

�1 �3

� �
: Stable, A1 ¼ 2 : Unstable,

and Theorem 1.1 (ii) applies with j ¼ 1, k ¼ 2, m ¼ 3. In this case, a
1-component unstable subsystem (A1 ¼ 2) must appear, in addition to the
type-1 unstable subsystem A12. We cannot completely separate the interaction
between the complementary pairs ðA12;A3Þ and ðA1;A23Þ. In Figures 2 and 3
below, S-instability (on the left) is caused by the pair ðA1;A23Þ as in (i), while
W-instability (on the right) is due to the pair ðA12;A3Þ.

Figure 2 Figure 3

We set the parameter d3 ¼ 1 in Figures 2 and 3. In Figure 2, the pair ðd1; d2Þ is in the white area if

p3ðmÞ ¼ d1d2m
3 þ ðd1 � 2d2 þ 3d1d2Þm2 þ ð1þ 4d1 þ 2d2Þmþ 11 > 0 for all m > 0, and the pair is in the

gray area if p3ðmÞ < 0 for some m > 0. S-instability occurs on the boundary between these areas.

On the other hand, in Figure 3, ðd1; d2Þ in the white area indicates that p1ðmÞp2ðmÞ � p3ðmÞ ¼
fd1 þ d2 þ 2d1d2 þ ð1þ d1Þd 2

2 þ d 2
1 ð1þ d2Þgm3 þ f�1þ 4d 2

1 þ d 2
2 þ 4ðd1 þ d2 þ d1d2Þgm2 þ ð4þ 11d1 þ

7d2Þmþ 3 > 0 for all m > 0, while the pair in the gray area means that p1ðmÞp2ðmÞ � p3ðmÞ < 0 for

some m > 0. W-instability occurs on the boundary between these areas.
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We may read o¤ from the figures above that W-instability is primary for
d2 < 2d1, while Corollary 1.1 (iii) guarantees that the primary W-instability
occurs for d2 a d1=2 with maxfd1; d2gf d3.

(iii) Our example for Theorem 1.1 (iii) is given by

A ¼
�1 1 �3

2 �1 �5

2 1 �1:5

0
B@

1
CA

which satisfies the stability conditions

p1 ¼ 3:5 > 0; p2 ¼ 13; p3 ¼ 25:5 > 0; p1p2 � p3 ¼ 20 > 0:

The complementary pairs are:
� (A12: type-2 unstable, A3: Stable),
� (A13: Stable, A2: Stable),
� (A23: Stable, A1: Stable),

and there is only one unstable subsystem A12 which is of type-2. In this
example, S-instability appears primarily. We may also consider this situation
as a direct generalization of 2-component Turing instability to a 3-component
version.

(iv) As an example to illustrate the application of Theorem 1.1 (iv), we take
the matrix

A ¼
2 �a �4

1 �1 1

2 �1 �3

0
B@

1
CA

containing a parameter a. As in the case (ii), we necessarily have one unstable
1-component subsystem (A1 ¼ 2), in addition to a type-3 unstable subsystem.

Figure 4. We set the parameter d3 ¼ 1 in Figure 4. The pair ðd1; d2Þ in the white area means that

p3ðmÞ ¼ d1d2m
3 þ ðd1 þ d2 þ 1:5d1d2Þm2 þ ð�1þ 6:5d1 þ 7:5d2Þmþ 25:5 > 0 for all m > 0, while the pair

is in the gray area if p3ðmÞ < 0 for some m > 0. S-instability occurs on the boundary between these

areas.
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The stability conditions for this matrix are

p1 ¼ 2 > 0; p2 ¼ aþ 4; p3 ¼ 5a� 4 > 0; p1p2 � p3 ¼ 12� 3a > 0;

which are fulfilled for 4=5 < a < 4. For 4=5 < a < 2, A12 is type-3 unstable and
complementary pairs in A for this range of a are

� (A12: type-3 unstable, A3: Stable),
� (A13: Stable, A2: Stable),
� (A23: Stable, A1: Unstable).

There are three sources of instability in this system: One source is the
1-component subsystem A1 ¼ 2. The other two come from the type-3 unstable
A12. They are tr A12 > 0 which tends to cause W-instability, and det A12 < 0
which tends to cause S-instability. These three sources interact within the
stable full system and exhibits varied manifestation of Turing instabilities.
The decisive factor is the relative magnitude between tr A12 and jdet A12j. In
Figures 5 through 12 below, we show how the areas of S-instability and
W-instability vary according to the values of a for (1) a ¼ 0:85, (2) a ¼ 1, (3)
a ¼ 1:4, (4) a ¼ 1:9, which in turn adjust the relative magnitude between tr A12

and jdet A12j.
(1) In this case, the S-instability originating from det A12 < 0 is dom-

inant, and W-instability does not manifest primarily. The potential
W-instability area (the gray in Figure 6, below) is completely contained
in the gray area in the left figure, below.

Figure 5 Figure 6

In Figures 5 and 6, we set the parameters d3 ¼ 1, a ¼ 0:85 which imply jtr A12jð¼ 1Þ <
jdet A12jð¼ 1:15Þ. In Figure 5, the pair ðd1; d2Þ in the white area means that p3ðmÞ ¼ d1d2m

3 þ
ðd1 þ 2d2 þ 3d1d2Þm2 þ ð�1:15þ 4d1 þ 2d2Þmþ 0:25 > 0 for all m > 0, while the pair in the gray area

means that p3ðmÞ < 0 for some m > 0. S-instability occurs on the boundary between these areas. On

the other hand, in Figure 6, the pair is in the white area if p1ðmÞp2ðmÞ � p3ðmÞ ¼ fd1 þ d2 þ 2d1d2 þ
ð1þ d1Þd 2

2 þ d 2
1 ð1þ d2Þgm3 þ f�1þ 4d 2

1 þ d 2
2 þ 4ðd1 þ d2 þ d1d2Þgm2 þ ð4þ 8:85d1 þ 4:85d2Þm þ 9:45

> 0 for all m > 0, and the pair is in the gray area if p1ðmÞp2ðmÞ � p3ðmÞ < 0 for some m > 0.

W-instability occurs on the boundary between these areas.
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(2) In this case, the instability e¤ect due to the unstable-stable pair ðA1;A23Þ
gained more influence than the instability det A12 < 0 and S-instability is
primary, while W-instability is not yet observable.

(3) In this case, S-instability e¤ect due to det A12 < 0 further decreases and
W-instability occurs primarily in some area.

(4) In this case, the area of primary W-instability increases, and S-instability
is mainly caused by the pair ðA1;A23Þ, while the e¤ects due to det A12 <
0 seems to be negligible.

More detailed computations reveal that W-instability starts to occur for
aA1:3 and larger. We computed values ðd1; d2Þ for which both S-instability
and W-instability simultaneously occur for a ¼ 1:3; 1:4; 1:408; 1:41; 1:9. We also
computed the corresponding critical wave numbers kS, kW. The result is sum-
marized in Table 1.

When tr A12 < jdet A12j, we have kS < kW for which, however, S-instability
tends to be primary and W-instability is hidden. On the other hand, when
tr A12 > jdet A12j, we have kS > kW for which both S-instability and W-instability
occur. This is why it is reckoned that kS > kW is a rule. Notice, however, for
a ¼ 1:3 we have kW > kS.

(v) We apply Theorem 1.1 (v) to the matrix

A ¼
�1 �2 �1

�1 �1 �2

1 3 0:5

0
B@

1
CA

Figure 7 Figure 8

We set parameters d3 ¼ 1, a ¼ 1:0 for which we have jtr A12j ¼ jdet A12j. In Figure 7, ðd1; d2Þ in the

white area represents that p3ðmÞ ¼ d1d2m
3 þ ðd1 � 2d2 þ 3d1d2Þm2 þ ð�1þ 4d1 þ 2d2Þmþ 1 > 0 for all

m > 0, and the pair is in the gray area if p3ðmÞ < 0 for some m > 0. On the other hand, in Figure 8,

the pair ðd1; d2Þ in the white area means that p1ðmÞp2ðmÞ � p3ðmÞ ¼ fd1 þ d2 þ 2d1d2 þ ð1þ d1Þd 2
2 þ

d 2
1 ð1þ d2Þgm3 þ f�1þ 4d 2

1 þ d 2
2 þ 4ðd1 þ d2 þ d1d2Þgm2 þ ð4þ 9d1 þ 5d2Þmþ 9 > 0 for all m > 0,

while the pair is in the gray area if p1ðmÞp2ðmÞ � p3ðmÞ < 0 for some m > 0.
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Figure 9 Figure 10

We set the parameters d3 ¼ 1, a ¼ 1:4 which implies that jtr A12j > jdet A12jð¼ 0:6Þ. In Figure 9,

the pair ðd1; d2Þ in the white area means that p3ðmÞ ¼ d1d2m
3 þ ðd1 � 2d2 þ 3d1d2Þm2 þ ð�0:6þ 4d1 þ

2d2Þmþ 3 > 0 for all m > 0, while the pair in the gray area means that p3ðmÞ < 0 for some m > 0. In

Figure 10, the pair is in the white area if p1ðmÞp2ðmÞ � p3ðmÞ ¼ fd1 þ d2 þ 2d1d2 þ ð1þ d1Þd 2
2 þ

d 2
1 ð1þ d2Þgm3 þ f�1þ 4d 2

1 þ d 2
2 þ 4ðd1 þ d2 þ d1d2Þgm2 þ ð4þ 9:4d1 þ 5:4d2Þmþ 7:8 > 0 for all m > 0,

and it is in the gray area if p1ðmÞp2ðmÞ � p3ðmÞ < 0 for some m > 0.

Figure 11 Figure 12

The parameters are set as d3 ¼ 1, a ¼ 1:9 for which we have jtr A12jð¼ 1Þg jdet A12jð¼ 0:1Þ. In

Figure 11, the pair is in the white area if p3ðmÞ ¼ d1d2m
3 þ ðd1 � 2d2 þ 3d1d2Þm2 þ ð�0:1þ 4d1 þ

2d2Þmþ 5:5 > 0 for all m > 0, and it is in the gray area if p3ðmÞ < 0 for some m > 0. In Figure

12, ðd1; d2Þ in the white area represents that p1ðmÞp2ðmÞ � p3ðmÞ ¼ fd1 þ d2 þ 2d1d2 þ ð1þ d1Þd 2
2 þ

d 2
1 ð1þ d2Þgm3 þ f�1þ 4d 2

1 þ d 2
2 þ 4ðd1 þ d2 þ d1d2Þgm2 þ ð4þ 9:9d1 þ 5:9d2Þmþ 6:3 > 0 for all m > 0,

and the pair in the gray area means that p1ðmÞp2ðmÞ � p3ðmÞ < 0 for some m > 0. From these figures

we can clearly identify the existence of a point ðd1; d2Þ where both S-instability and W-instability

simultaneously occur.
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whose stability conditions

p1 ¼ 1:5 > 0; p2 ¼ 5; p3 ¼ 0:5 > 0; p1p2 � p3 ¼ 7 > 0

are satisfied. Complementary pairs in this matrix are
� (A12: type-2 unstable, A3 ¼ 0:5: Unstable),
� (A13: Stable, A2 ¼ �1: Stable),
� (A23: Stable, A1 ¼ �1: Stable).

Figure 13 shows S-instability associated with type-2 unstable A12, while Figure
14 below shows the instability associated with the 1-component unstable sub-
system A3.

We have shown the simplest example for each statement of Theorem 1.1.
Many examples in application may contain more unstable subsystems than the

Table 1

a 1.3 1.4 1.408 1.41 1.9

d1 0.0338445 0.0288521 0.0285321 0.0284537 0.0184498

d2 0.00143095 0.00664213 0.00697764 0.00705998 0.0178036

kS 2.973 3.404 3.507 3.517 5.7

kW 3.521 3.507 3.508 3.507 3.404

relation kS < kW kS < kW kS JkW kS > kW kS > kW

Figure 13 Figure 14

We set d3 ¼ 1 in Figure 13 and d2 ¼ 1 in Figure 14. Figure 13 represents that ðd1; d2Þ is in the

white area if p3ðmÞ ¼ d1d2m
3 þ ðd1 þ d2 þ 0:5d1d2Þm2 þ ð�1þ 5:5d1 þ 0:5d2Þmþ 0:5 > 0 for all m > 0,

and it is in the gray area otherwise. In Figure 14, the pair ðd1; d3Þ is in the white area if

p3ðmÞ ¼ d1d3m
3 þ ð�0:5d1 þ d3 þ d1d3Þm2 þ ð0:5þ 5:5d1 � d3Þmþ 0:5 > 0 for all m > 0, and it is in the

gray area otherwise. S-instability occurs on the boundary between these areas.
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examples above, and the Turing instabilities caused by these unstable subsystems
interact to produce complicated bifurcation phenomena. We will present some
of such examples in the next subsection and in §4.

3.2. Extended Brusselator Model. The Extended Brusselator Model is the
following system of reaction-di¤usion equations ([19]).

qu

qt
¼ d1suþ p� ð2þ qÞuþ u2vþ w;

qv

qt
¼ d2svþ qu� u2v;

qw

qt
¼ d3swþ u� w;

8>>>>>><
>>>>>>:

ð3:1Þ

where p > 0 and q > 0 are real parameters. We easily find the unique homo-
geneous steady state ðu0; v0;w0Þ ¼ ðp; q=p; pÞ of (3.1). The linearized reaction
matrix A is given by

A ¼
q� 2 p2 1

�q �p2 0

1 0 �1

0
B@

1
CA:ð3:2Þ

In the first quadrant of the p-q parameter plane, we identify the region where A
is stable, and subdivide the region into subregions according to the number and
type of subsystems in A. Let l3 þ p1l

2 þ p2lþ p3 be the characteristic poly-
nomial of A. The stability conditions are given by

p1 ¼ p2 � qþ 3 > 0; p3 ¼ p2 > 0;

p1p2 � p3 ¼ q2 � 4ðp2 þ 2Þqþ 3ðp4 þ 3p2 þ 1Þ > 0:

The third condition is equivalent to ðq > qþðpÞ; p > 0Þ or ð0 < q < q�ðpÞ; p > 0Þ,
where qGðpÞ are two roots of p1p2 � p3 ¼ 0 as a quadratic equation in q.
However, the region q > qþðpÞ is eliminated from the stability region of A by
the requirement p1 > 0 ð, q < p2 þ 3Þ, as we verify qþðpÞb p2 þ 3 for p > 0.
Therefore the stability region of A is fðp; qÞ j p > 0; 0 < q < q�ðpÞg.

We notice that subsystems A2, A3 and A23 are stable for all parameter values
p > 0, q > 0. Stability or instability of other subsystems is determined as
follows.

� A1 is stable if q < 2, and unstable if q > 2.
� A12 is stable if q < p2 þ 2, and is type-1 unstalbe if q > p2 þ 2.
� A13 is stable if 0 < q < 1, is type-2 unstable if 1 < q < 3, and is type-3
unstable if q > 3.

Figure 15 below shows the stability region of A and its subregions. The
subregions are defined by
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ðIÞ fðp; qÞ j 0 < p; 0 < q < 1g; ðIIÞ fðp; qÞ j 0 < p; 1 < q < min½2; q�ðpÞ�g;

ðIIIÞ fðp; qÞ j 0 < p; 2 < q < min½3; q�ðpÞ�g; ðIVÞ fðp; qÞ j 1 < p; 3 < q < p2 þ 2g;

ðVÞ fðp; qÞ j 1 < p; p2 þ 2 < q < q�ðpÞg:

The number of unstable subsystems in A varies from regions (I) to (V), as
follows.

� Region I � � � All subsystems of A are stable (no unstable subsystem).
� Region II � � � A13 is type-2 unstable.
� Region III � � � A1 is unstable and A13 is type-2 unstable.
� Region IV � � � A1 is unstable and A13 is type-3 unstable.
� Region V � � � A1 is unstable, A12 is type-1 unstable and A13 is type-3
unstable.

In Region I, Theorem 1.2 (i) applies, where Turing instability never occurs
for any choice of the di¤usion matrix D. In Regions II and III, Theorem 1.1
(iii) applies to the complementary unstable-stable pair A13-A2. If d1 and d3 are
su‰ciently small compared with d2, then S-instability occurs. In Region IV,
Theorem 1.1 (iv) applies to the pair A13-A2. If d2 is su‰ciently large com-
pared with d1 and d3, then either S- or W-instability occurs, or both S- and
W-instabilities occur. In Region V, Theorem 1.1 (ii) and (iv) apply to the
complementary unstable-stable pairs A12-A3 and A13-A2, respectively. If d1 and
d2 are su‰ciently small compared with d3, then W-instability occurs. If d1 and
d3 are su‰ciently small compared with d2, then either S-instability or W-
instability occurs, or both S- and W-instabilities occur.

In order to improve the qualitative descriptions of Turing instabilities in
Regions II, III, IV and V, we pick one point from each region as indicated by (a),

Figure 15
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(b), (c) and (d) in Figure 15. We now numerically detect the di¤usion matrix
D for which Turing instabilities occur, with the restriction d1 þ d2 þ d3 ¼ 1. The
corresponding results are shown in Figures 16 through 20, where we project
the di¤usion coe‰cients (d1; d2; d3) onto the d1-d3 plane. In Figures 16 through
20, meaningful points (d1; d3) are those satisfying 0a d1; d3; d1 þ d3 a 1, hence
the upper-right triangular gray regions should be neglected. The homogeneous
steady state is stable for (d1; d3) in white area and unstable for (d1; d3) in black
area, with respect to S-mode and W-mode, respectively.

Figure 16 indicates S-instability associated with type-2 unstable A13, while
Figure 17 shows S-instability region caused both by type-2 unstable A13 and
unstable subsystem A1.

Both of Figures 18 and 19 show the S-instability caused by the combined
e¤ects of type-3 unstable A13 and unstable subsystem A1.

In Figure 20, the instability indicated in the upper-left corner is W-
instability caused by the type-1 unstable A12, while the instability indicated in
the lower-left is the potential W-instability caused by the type-3 unstable A13.
However, the latter W-instability is not observed, because it is completely
consumed inside the S-instability region in Figure 19.

3.3. Simulations for nonlinear equation. We solve the nonlinear equations
(3.1) numerically with the initial conditions near the equilibrium state ðp; q=p; pÞ
for the parameter values used in (a), (b), (c) and (d) above. These simula-
tions reveal that Turing bifurcations actually take place near the instability

Figure 16 Figure 17

Figure 16 is for the parameter values ðp; qÞ ¼ ð1:5; 1:7Þ. The pair ðd1; d3Þ is in the white area if

p3ðmÞ ¼ d1d3ð1� d1 � d3Þm3 þ fd1ð1� d1Þ þ 0:95d1d3 þ d3ð1� d3Þgm2 þ ð�0:7 þ 2:95d1 þ 5:2d3Þm þ
2:25 > 0 for all m > 0, and it is in the black area if p3ðmÞ < 0 for some m > 0. Figure 17 is for the

parameter values ðp; qÞ ¼ ð1:5; 2:7Þ. The pair ðd1; d3Þ is in the white area if p3ðmÞ ¼ d1d3ð1� d1 �
d3Þm3 þ fd1ð1� d1Þ þ 1:95d1d3 � 0:7d3ð1� d3Þgm2 þ ð�1:7þ 3:95d1 þ 6:2d3Þmþ 2:25 > 0 for all m > 0,

and it is in the black area otherwise.
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thresholds that are represented by the boundary between the white and black
areas.

In these numerical simulations, the di¤usion coe‰cients (d1; d3) are taken
slightly inside the unstable (black) area in Figures 16, 17, 18, 19 and 20, and

Figure 18 Figure 19

Figure 18 is for the parameter values ðp; qÞ ¼ ð1:5; 3:5Þ. The pair ðd1; d3Þ in the white area indicates

that p3ðmÞ ¼ d1d3ð1 � d1 � d3Þm3 þ fd1ð1 � d1Þ þ 2:75d1d3 � 1:5d3ð1 � d3Þgm2 þ ð�2:5 þ 4:75d1 þ
7d3Þmþ 2:25 > 0 for all m > 0. The pair is in the black area if p3ðmÞ < 0 for some m > 0. In Figure

19, the parameters are set as ðp; qÞ ¼ ð1:2; 3:5Þ. If p3ðmÞ ¼ d1d3ð1� d1 � d3Þm3 þ fd1ð1� d1Þ þ
1:94d1d3 � 1:5d3ð1� d3Þgm2 þ ð�2:5þ 3:94d1 þ 5:38d3Þmþ 1:44 > 0 for all m > 0, then ðd1; d3Þ is in

the white area, and it is in the black area if p3ðmÞ < 0 for some m > 0.

Figure 20. We set ðp; qÞ ¼ ð1:2; 3:5Þ in Figure 20. The pair ðd1; d3Þ is in the white area if

p1ðmÞp2ðmÞ � p3ðmÞ ¼ ðd1 � d 2
1 þ d3 � 2d1d3 þ d 2

1 d3 � d 2
3 þ d1d

2
3 Þm3 þ ð�0:5 þ 2:88d1 þ 0:66d 2

1 þ
2:88d3 � 2:88d1d3 � 2:44d 2

3 Þm2 þ ð3:85� 1:1764d1 � 4:9664d3Þmþ 0:2708 > 0 for all m > 0, and it is in

the black area if p1ðmÞp2ðmÞ � p3ðmÞ < 0 for some m > 0. W-instability occurs on the boundary

between these areas.
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the corresponding space-time profiles of uðx; tÞ are shown. We used the semi-
implicit scheme on the finite domain (ðx; tÞ A ½0; 10� � ½0; 600�), and the no flux
boundary conditions are imposed on the boundary. For each simulation, the
initial condition is a small sinusoidal perturbation of the homogeneous steady
state. Figure 21 shows the steady bifurcation caused by the pair of type-2
unstable A13 and the stable A2. Figure 22 shows the steady bifurcation caused
by the pairs (A13-A2) and (A1-A23).

Figure 23 exhibits the steady bifurcation caused by the pairs (A13-A2) and
(A1-A23), while Figure 24 is that caused by the pairs (A13-A2) and (A1-A23).

Figure 21 Figure 22

In Figure 21, we set ðp; qÞ ¼ ð1:5; 1:7Þ, ðd1; d2; d3Þ ¼ ð0:02; 0:96; 0:02Þ, and in Figure 22, we set

ðp; qÞ ¼ ð1:5; 2:7Þ, ðd1; d2; d3Þ ¼ ð0:004; 0:166; 0:83Þ. Plotted in these figures are the numerical solu-

tions uðx; tÞ of (3.1), solved by semi-implicit schemes under the homogeneous Neumann boundary

conditions.

Figure 23 Figure 24

Parameter values are ðp; qÞ ¼ ð1:5; 3:5Þ, ðd1; d2; d3Þ ¼ ð0:1; 0:65; 0:25Þ in Figure 23, and ðp; qÞ ¼
ð1:2; 3:5Þ, ðd1; d2; d3Þ ¼ ð0:02; 0:15; 0:83Þ in Figure 24. The numerical solution uðx; tÞ of (3.1) is

plotted.
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Figure 25 clearly exhibits the oscillatory Turing bifurcation caused by the pair
(A12-A3). The W-wave number here is smaller than the S-wave number in
Figure 24 above.

In the left upper corner of Figures 19 and 20 with ðp; qÞ ¼ ð1:2; 3:5Þ, we
have shown that W-instability caused by type-1 unstable A12 and S-instability
caused by the combined e¤ects of type-3 unstable A13 and unstable sub-
system A1 interact at the linear level. Figure 26 is a magnification of the
upper left corner near the double instability point where W-instability line
(horizontal) and S-instability line (vertical) intersect at around ðd1; d3Þ ¼
ð0:0160811; 0:877466Þ.

We now closely examine the interaction by numerically solving the nonlinear
equation (3.1) for the di¤usion rates d1, d2, d3 near the double instability point
where both S-instability and W-instability occur simultaneously. For the pairs

Figure 25. In Figure 25, we set ðp; qÞ ¼ ð1:2; 3:5Þ, ðd1; d2; d3Þ ¼ ð0:02; 0:09; 0:89Þ, and the numerical

solution uðx; tÞ of (3.1), solved by semi-implicit schemes under the homogeneous Neumann boundary

conditions, is plotted.

Figure 26. Parameters are set ðp; qÞ ¼ ð1:2; 3:5Þ, and d2 ¼ 1� d1 � d3.
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of ðd1; d3Þ indicated in Figure 26, we used the semi-implicit scheme to simulate
the numerical solutions of (3.1) in the finite domain ðx; tÞ A ½0; 10� � ½0; 600� with
the no flux boundary conditions. The gray scale profiles of uðx; tÞ are shown as
Figures 27 through to 31, below.

This shows clearly that the steady state is stable.

Figure 27. The parameter values in Figure 27 are given by

ðp; qÞ ¼ ð1:2; 3:5Þ; ðd1; d2; d3Þ ¼ ð0:05; 0:15; 0:8Þ;

and the numerical solution uðx; tÞ of (3.1) is plotted.

Figure 28 Figure 29

We set the parameters ðp; qÞ ¼ ð1:2; 3:5Þ, ðd1; d2; d3Þ ¼ ð0:01; 0:14; 0:85Þ in Figure 28, and ðp; qÞ ¼
ð1:2; 3:5Þ, ðd1; d2; d3Þ ¼ ð0:02; 0:09; 0:89Þ in Figure 29. The numerical solution uðx; tÞ of (3.1) is

plotted.
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Figure 28, where we set ðd1; d2; d3Þ ¼ ð0:01; 0:14; 0:85Þ, shows S-instability with a
slight influence of W-instability. Figure 29, which corresponds to ðd1; d2; d3Þ ¼
ð0:02; 0:09; 0:89Þ, clearly exhibits W-instability.

By more detailed simulations, we have confirmed that bifurcations at these insta-
bilities are supercritical. In Figure 30, where ðd1; d2; d3Þ ¼ ð0:0160811; 0:1064529;
0:877466Þ, the combined e¤ect of S- and W-instability is visible. In Figure 31,
where ðd1; d2; d3Þ ¼ ð0:015; 0:105; 0:88Þ is employed, the dominant S-instability is
superimposed by a weak W-instability. The bifurcation near the double point
could be quite complicated, and we do not pursue its further study here.

4. Discussion

In this section, we classify stable 3� 3 matrices to discern the range of
applicability of our main results. We also point out several issues that are en-
countered when we deal with Turing instability in n-component systems (nb 4).

4.1. Classification of stable 3D 3 matrices. In the previous section, we
have exhibited a variety of unstable sub-matrices appearing in a stable 3� 3
matrix A, and numerically investigated Turing instability associated with the
unstable subsystems. A natural question arises: How many combinations of
unstable subsystems are there within a stable 3� 3 matrix A? The constraints
are the stability conditions for A:

Figure 30 Figure 31

Figure 30: ðp; qÞ ¼ ð1:2; 3:5Þ, ðd1; d2; d3Þ ¼ ð0:0160811; 0:1064529; 0:877466Þ. Figure 31: ðp; qÞ ¼
ð1:2; 3:5Þ, ðd1; d2; d3Þ ¼ ð0:015; 0:105; 0:88Þ. We plotted the numerical solution uðx; tÞ of (3.1) with the

homogeneous Neumann boundary conditions solved by semi-implicit schemes.
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p1 ¼ �ðdet A1 þ det A2 þ det A3Þ > 0;ð4:1Þ
p2 ¼ det A12 þ det A13 þ det A23 > 0;ð4:2Þ
p3 ¼ �det A > 0; p1p2 � p3 > 0:ð4:3Þ

We denote by � (resp. þ, 0) a stable (resp. unstable, neutral) 1-component
subsystem of A. There are ten possible combinations of 1-component sub-
systems, and the constraint (4.1) gives immediately that the combinations
ðþ þ þÞ, ðþ þ 0Þ, ðþ00Þ, ð000Þ do not appear in a stable matrix. On the
other hand, by way of examples, we easily find that the following six types are
possible for a stable A.

ð� � �Þ; ð� � þÞ; ð� � 0Þ; ð� þ þÞ; ð� þ 0Þ; ð�00Þ:
We denote by T0 (resp. T1, T2, T3) a stable (resp. type-1 unstable, type-2

unstable, type-3 unstable) 2-component subsystem of A. There are twenty
possible combinations of 2-component subsystems, and the following types do
not appear in a stable A:

ðT1T1T1Þ; ðT1T1T3Þ; ðT1T3T3Þ;ð4:4Þ
ðT2T2T2Þ; ðT2T2T3Þ; ðT2T3T3Þ; ðT3T3T3Þ:ð4:5Þ

The combinations in (4.4) violate (4.1), while those in (4.5) violate (4.2). On the
other hand, the remaining thirteen combinations in (4.6) below can constitute a
stable matrix. Therefore, as long as the constraints (4.1) and (4.2) are satisfied,
any combination of 2-component subsystems in (4.6) is realized in a stable 3� 3
matrix.

ð1Þ ðT0T0T0Þ; ð2Þ ðT0T0T1Þ; ð3Þ ðT0T0T2Þ; ð4Þ ðT0T0T3Þ;
ð5Þ ðT0T1T1Þ; ð6Þ ðT0T1T2Þ; ð7Þ ðT0T1T3Þ;
ð8Þ ðT0T2T2Þ; ð9Þ ðT0T2T3Þ; ð10Þ ðT0T3T3Þ;

ð11Þ ðT1T1T2Þ; ð12Þ ðT1T2T2Þ; ð13Þ ðT1T2T3Þ:

ð4:6Þ

We have exhibited examples for (1), (2), (3) and (4) in the previous section. For
completeness, we list examples for the other combinations.

ð5Þ
�2 1=4 �1

0 �2 7

7 �1 3

0
B@

1
CA; ð6Þ

2 �2 2

1:5 �1 �1

�1 1 �2:5

0
B@

1
CA; ð7Þ

2 �2 2

1:5 �1 �1

�1 1 �1:5

0
B@

1
CA;

ð8Þ
1 1 �4

2 �2 �2

2 �2 �1:5

0
B@

1
CA; ð9Þ

1 1:2 2

1 1 0

�6:5 �7 �3

0
B@

1
CA; ð10Þ

�2 0:55 �2

0 �2 5

2 �1 3

0
B@

1
CA;

ð11Þ
�2 1 �4

5 �2 15

4 �3 3

0
B@

1
CA; ð12Þ

1 �1 2

3 �4 8

�3 0 1

0
B@

1
CA; ð13Þ

�2 1 �4

5 �2 0

4 �1:7 3

0
B@

1
CA:
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Among the combinations in (4.6), the last three (11), (12) and (13) seem most
interesting, because the number of 2-component unstable subsystems is the
maximum. We take (12) and show below how S- or W-instability appears
as the di¤usion rates d1, d2 and d3 are varied. The matrix A in (12) is stable,
and complementary pairs of subsystems are:

� A12 ¼
1 �1

3 �4

� �
: type-2 unstable, A3 ¼ 1 : Unstable

� A13 ¼
1 2

�3 1

� �
: type-1 unstable, A2 ¼ �4 : Stable

� A23 ¼
�4 8

0 1

� �
: type-2 unstable, A1 ¼ 1 : Unstable

In Figures 32 and 33, we set d2 ¼ 1. Two critical curves (the boundaries
between white and gray areas) in Figure 32 show, respectively, the S-instabilities
associated to A1 > 0 with d1 fminfd2; d3g and A3 > 0 with d3 fminfd1; d2g.
Theorem 1.2 (v) (together with its proof ) predicts that S-instability does not
occur for ð3�

ffiffiffi
8

p
Þd1 < d3 < ð3þ

ffiffiffi
8

p
Þd1, while a rough estimates read o¤ from

Figure 32 says that S-instability does not occur for 0:08d1 < d3 < 12:5d1. Note
that 3�

ffiffiffi
8

p
A0:17157, 3þ

ffiffiffi
8

p
A5:82842, and hence the theoretical results sub-

stantially underestimates the area where S-instability does not occur. The criti-
cal curve in Figure 33 indicates the location where W-instability associated to
type-1 unstable A13 with maxfd1; d3gf d2. On the part of this critical curve
between the lines d3 ¼ 0:08d1 and d3 ¼ 12:5d1, the W-instability actually occurs
primarily.

Figure 32 Figure 33

In Figure 32, p3ðmÞ ¼ d1d3m
3 þ ð�d1 � d3 þ 4d1d3Þm2 þ ð7� 4d1 � d3Þmþ 1 > 0 for all m > 0 in the

while area. p3ðmÞ < 0 for some m > 0 in the gray area.

In Figure 33, p1ðmÞp2ðmÞ � p3ðmÞ ¼ fd1 þ d3 þ 2d1d3 þ ð1þ d1Þd 2
3 þ d 2

1 ð1þ d3Þgm3 þ f�2þ 3d 2
1 þ

3d 2
3 þ 4ðd1 þ d3 þ d1d3Þgm2 þ ð�9þ 12d1 þ 9d3Þmþ 3 > 0 for all m > 0 in the while area.

p1ðmÞp2ðmÞ � p3ðmÞ < 0 for some m > 0 in the gray area.
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The critical curve in Figure 34 (Figure 35) indicates S-instability associated to
type-2 unstable A23 (A12).

4.2. Perspective for n-component systems. Let us consider (1.3) for n-
component systems, where D is an n� n diagonal di¤usion matrix and A is a
stable n� n reaction matrix. Based on the discussion on 3-component systems,
we present a probable mechanism of Turing instability in general n-component
systems of reaction-di¤usion equations.

Let I be a non empty subset of f1; 2; . . . ; ng. By AI we denote the principal
subsystem of A. Namely, AI is the m�m submatrix obtained from A by taking
exactly the rows and the columns of indices belonging to I , where m stands for
the number of elements in I . For two subsets I ; JH f1; 2; . . . ; ng of indices,
subsystems AI and AJ are said to form a complementary pair, if I V J ¼ j and
I U J ¼ f1; 2; . . . ; ng are satisfied. Then, a possible mechanism of Turing insta-
bility in n-component systems may be stated as follows.

(PM): Suppose that A is a stable n� n matrix. If subsystems AI and
AJ of A form a complementary pair and AI is unstable, then Turing
instability occurs for di¤usion matrices D ¼ diagðd1; d2; . . . ; dnÞ that
satisfy

max
k A I

fdkgf min
l A J

fdlg:

There are several issues to be considered before we prove or disprove this
statement.

(A) What is the factor to detect W-instability? (The factor to detect
S-instability apparently is detð�mDþ AÞ.)

Figure 34 Figure 35

In Figure 34, p3ðmÞ ¼ d2d3m
3 þ ð�d2 þ 4d3 � d2d3Þm2 þ ð�7þ 4d2 � d3Þmþ 1 > 0 for all m > 0 in the

while area and p3ðmÞ < 0 for some m > 0 in the gray area, where d1 ¼ 1.

In Figure 35, p3ðmÞ ¼ d1d2m
3 þ ð4d1 � d2 � d1d2Þm2 þ ð�1� 4d1 þ 7d2Þmþ 1 > 0 for all m > 0 in the

while area and p3ðmÞ < 0 for some m > 0 in the gray area, where d3 ¼ 1.
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(B) What type of Turing instability, S- or W-type, is associated to a type of
unstable m�m subsystem AI ?

(C) What types of instabilities are there for m�m principal subsystems with
1am < n?

(D) When an unstable subsystem AI is given, how does it form a stable
matrix together with a suitable complementary partner?

Items (A) and (B) are related to the Routh-Hurwitz criteria for the stability of
matrices. Items (C) and (D) are essentially classification problems of stable and
unstable matrices. Let us clarify the points by considering 4� 4 matrix A. We
denote by l4 þ q1l

3 þ q2l
2 þ q3lþ q4 the characteristic polynomial of A. Then,

the stability conditions of A are

ðiÞ q1 > 0; ðiiÞ q1q2 � q3 > 0; ðiiiÞ q1q2q3 � q21q4 � q23 > 0; ðivÞ q4 > 0:

These conditions imply q3 > 0 and q2 > 0.
It is not di‰cult to show that A has a pair of pure imaginary roots (0 0) if

the inequality in (iii) is replaced by equality. Applying this to the characteristic
equation of �mDþ A, we find W-instability is detected by examining how the
polynomial

q1ðmÞq2ðmÞq3ðmÞ � q1ðmÞ2q4ðmÞ � q3ðmÞ2

in m changes its sign for m > 0. Therefore, the question in item (A) is partially
resolved for n ¼ 4. However, it is cumbersome to extend this type of arguments
to the general case nb 5.

A 4� 4 matrix admits 1-, 2- and 3-component subsystems. We classified
types of instability for 1- and 2-component subsystems. For a 3-component
subsystem, let l3 þ p1l

2 þ p2lþ p3 be its characteristic polynomial. Types of its
instability may be classified by negating the Routh-Hurwitz criteria (2.1), which
leads us to at least 6 types. This seems to be intractable. The classification
due to Tyson [17], given by negating qualitative stability conditions, may be one
way. However, his method also becomes complicated as the size of the system
exceeds 4.

Despite of these di‰culties, the statement (PM) seems to be highly probable,
and we may have to come up with a completely new idea to deal with Turing
instability for general n-component systems.
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