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THE NASH PROBLEM OF ARCS AND

THE RATIONAL DOUBLE POINT E6
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Abstract

This paper deals with the Nash problem, which consists in proving that the number

of families of arcs on a germ of a normal isolated singularity coincides with the number

of essential components of the exceptional set in any resolution of this singularity. We

propose a program for an a‰rmative solution of the Nash problem for special types

of normal isolated hypersurface singularities. We illustrate this program by giving an

a‰rmative solution of the Nash problem for the rational double point E6. We also

prove some results on the algebraic structure of the space of k-jets of an arbitrary

hypersurface singularity and apply them to the specific case of E6.

1. Introduction

In this paper, k is an algebraically closed field of characteristic 0.
Let ðS; 0Þ be a germ of a normal isolated singularity over k and

p : ðX ;EÞ ! ðS; 0Þ a divisorial resolution of singularities of ðS; 0Þ (this means
that X is a smooth variety and E ¼ p�1ð0Þ is of pure codimension one). Let

E ¼ 6
i AD

Eið1Þ

be the decomposition of E into its irreducible components. The set E has two
kinds of irreducible components: essential and inessential. For each i let mi
denote the divisorial valuation determined by Ei.

Definition 1.1. We say that Ei is an essential divisor if for any other
divisorial resolution p 0 : ðX 0;E 0Þ ! ðS; 0Þ the center of mi on X 0 is an irreducible
component of E 0. The divisor Ei is inessential if it is not essential.

Remark 1.2. In general (that is, when dim Sd 3) it is quite di‰cult to show
that a given component is essential (see [29] for a discussion of this question
as well as some su‰cient conditions for essentiality). In dimension two each
exceptional divisor of the minimal resolution is essential.
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In order to study the resolution X of S, J. Nash (around 1968, published
in 1995 [23]) introduced the space H of arcs passing through the singular
point 0.

Definition 1.3. An arc is a k-morphism from the local ring OS;0 to the
formal power series ring k½½t��.

Intuitively, an arc should be thought of as a parametrized formal curve,
contained in S and passing through the singular point 0.

Nash had shown that H has finitely many irreducible components, called
families of arcs, and that there exists a natural injective map, now called the
Nash map, from the set of families of arcs to the set of essential divisors. The
celebrated Nash problem, posed in [23], is the question of whether the Nash map
is surjective.

Let us fix a divisorial resolution of singularities ðX ;EÞ ! ðS; 0Þ. Consider
the decomposition (1) of E into irreducible components, as above. Let D 0 HD
denote the set which indexes the essential divisors.

M. Lejeune-Jalabert [17], inspired by Nash’s original paper [23], proposed
the following decomposition of the space H: for i A D 0 let Ni be the set of arcs
whose strict transform in X intersects the essential divisor Ei transversally but
does not intersect any other exceptional divisor Ej. M. Lejeune-Jalabert showed
that H ¼ 6

i AD 0 Ni and the set Ni is an irreducible algebraic subvariety of the
space of arcs; therefore the families of arcs are among the Ni’s. Moreover there
are as many Ni as essential divisors Ei. Then the Nash problem reduces to
showing that the Ni, i A D 0, are precisely the irreducible components of H, that is,
to proving cardðD 0ÞðcardðD 0Þ � 1Þ non-inclusions:

Problem 1.4. Is it true that Ni QNj for all i0 j ?

This question has been answered a‰rmatively in the following special cases:
for An singularities by Nash, for minimal surface singularities by A. Reguera
[30] (with other proofs by J. Fernandez-Sanchez [7] and C. Plénat [26]), for
sandwiched singularities by M. Lejeune-Jalabert and A. Reguera (cf. [18] and
[31]), for toric vareties by S. Ishii and J. Kollar ([14] using earlier work of C.
Bouvier and G. Gonzalez-Sprinberg [2] and [3]), for rational double points Dn

by Plénat [26], for a family of non-rational surface singularities, as well as for
a family of singularities in dimension higher than 2 by P. Popescu-Pampu and
C. Plénat ([28], [29]).

In [14], S. Ishii and J. Kollar gave a counter-example to the Nash problem in
dimension greater than or equal to 4.

In 2008, M. Lejeune and A. Reguera [19] give a characterization of essential
components which belong to the image of the Nash map and deduce that an
irreducible exceptional divisor which is not uniruled is in the image of the Nash
map (for uncountable fields). They also deduce that for general surface singu-
larities over C Nash problem would follow from the special case of quasi-rational
surface singularities.
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In this paper we prove the following theorem:

Theorem 1.5. The Nash problem has an a‰rmative answer for the rational
double points E6.

Once this theorem is proved, we have the following corollary (cf. [26] for a
proof ):

Corollary 1.6. Let ðS; 0Þ be a normal surface singularity whose dual graph
is obtained from E6 by increasing the weights (that is, allowing the exceptional
curves to have self-intersection numbers of the form �n for nd 2). Then the
problem also has an a‰rmative answer for ðS; 0Þ.

But the principal aim of this paper is to present a general strategy for attack-
ing normal isolated hypersurface singularities which has so far been successful in
the case of Dn ([27]) and E6 (the present paper).

From now on, we shall restrict ourselves to the case of dimension 2. How-
ever, we note that our main technique, that of explicitly computing truncated
wedges on ðS; 0Þ, generalizes in an obvious way to isolated normal hypersurface
singularities of any dimension. For this reason we hope that this paper will be
useful for studying the Nash problem in higher dimension.

Our study of the Nash problem for a normal 2-dimensional hypersurface
singularity with equation F ¼

P
cabgx

aybzg ¼ 0 is divided into two main steps.
For the first step we use the following valuative criterion:

Proposition 1.7. Let ðS; 0Þ be an isolated singularity and Ei, Ej two essential
divisors. If there exists an element f in OS;0 such that ordEi

f < ordEj
f then

Ni QNj.

This result is stated and proved in ([26], Proposition 1.1) for arbitrary
singularities in any dimension. It was first proved by A. Reguera [30] in a
di¤erent, but equivalent formulation for rational surface singularities.

Remark 1.8. Proposition 1.7 allows us to prove at least half of the non-
inclusions appearing in Problem 1.4 in the case of rational surface singularities.
Indeed, let ðS; 0Þ be a rational surface singularity and Ei, Ej two distinct
irreducible exceptional curves on the minimal resolution X of S. Let
n ¼aD. Since the intersection matrix ðEq:EsÞ is negative definite, there exists
a cycle on X of the form C ¼

P
q AD mqEq such that

mq > 0; C:Eq c 0 for all q A Dð2Þ
In fact, n-tuples ðm1; . . . ;mnÞ of rational numbers satisfying (2) form an n-
dimensional cone in Qn, called the Lipman cone. There exists a vector in the
Lipman cone with integer coe‰cients such that mi 0mj, otherwise the Lipman
cone would be contained in the ðn� 1Þ-dimensional hyperplane ni ¼ nj . Say,
mi < mj. Since ðS; 0Þ is rational, Artin’s theorem [1] tells us that there exists
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f A OS;0 with ordEi
f ¼ mi and ordEj

f ¼ mj, so the non-inclusion Ni QNj is given
by the valuative criterion. This proves that for any pair i; j A D, i0 j, at least one
of the two non-inclusions Ni QNj, Nj QNi is given by the valuative criterion.

The second step consists in proving the remaining non-inclusions. For this,
we use the algebraic machinery developed in §3 of this paper. The idea is the
following: Let Ei and Ej be two exceptional divisors such that

ordEi
f c ordEj

f for all f A OS;0:ð3Þ
For rational surface singularities, the negative definiteness of the intersection
matrix ðEi:EjÞ implies that strict inequality holds for at least one f A mS;0, so
Ni QNj by the valuative criterion (Proposition 1.7).

The opposite non-inclusion

Nj QNið4Þ
cannot be obtained from the valuative criterion and must be proved separately.

Assume that ðS; 0Þ is a normal hypersurface singularity, embedded in the
three-dimensional a‰ne space spec k½x; y; z�. An arc on ðS; 0Þ is described by
three formal power series

xðtÞ ¼
Py
k¼1

akt
k

yðtÞ ¼
Py
k¼1

bkt
k

zðtÞ ¼
Py
k¼1

ckt
k

8>>>>>>><
>>>>>>>:

ð5Þ

whose coe‰cients ak, bk, ck satisfy infinitely many polynomial equations, ob-
tained as follows. Substitute the series (5) in F and write FðxðtÞ; yðtÞ; zðtÞÞ ¼Py

l¼1 flða; b; cÞtl . Here a ¼ ðakÞk AN, b ¼ ðbkÞk AN, c ¼ ðckÞk AN, and the fl are

polynomials in a, b and c. Let kfa;b; cg denote the direct product of infinitely
many copies of k, indexed by a ¼ ðakÞk AN, b ¼ ðbkÞk AN and c ¼ ðckÞk AN. We
think of kfa;b; cg as an infinite-dimensional space over k with coordinates a, b, c.
Then H is defined inside kfa;b; cg by the equations fl ¼ 0, l A Nnf0g. Let I denote
the defining ideal of H in kfa;b; cg, that is, the ideal generated by ð f Þ ¼ ð flÞl AN in
k½a; b; c�.

To each arc as above we can associate in a natural way a closed point of the

infinite-dimensional scheme H ¼ Spec
k½a; b; c�

I
. This scheme has the following

description as a projective limit of schemes of finite type.

Definition 1.9. A k-jet is a k-morphism OS;0 !
k½½t��
ðtkþ1Þ .

Let us denote the set of all k-jets by HðkÞ. The set HðkÞ can be naturally
identified with the set of closed points of a scheme of finite type, denoted by
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HðkÞ. With the natural maps rkk 0 : HðkÞ ! Hðk 0Þ, k 0 < k, called truncation
maps, the HðkÞ form a projective system whose inverse limit is H. The natural
maps rk : H ! HðkÞ are also called truncation maps.

For a natural number k and i A D, let NiðkÞ denote the image of Ni in the
algebraic variety HðkÞ of k-jets of S.

We prove the non-inclusion (4) by contradiction: suppose that

Nj HNi:ð6Þ
Clearly the inclusion (6) implies that NjðkÞHNiðkÞ. Therefore we may work
with HðkÞ for a su‰ciently large k instead of H. The precise meaning of
‘‘su‰ciently large’’ depends on the specific singularity in question, as well as
on the particular non-inclusion (4) we want to show; below we will specify k
precisely in each case. Note that rk need not, in general, be surjective onto
HðkÞ.

Let KðNjðkÞÞ denote the field of rational functions of NjðkÞ.
By the Curve Selection Lemma (Lemma 3.6 below) there exists a finite

extension L of KðNjðkÞÞ and an L-wedge

fij : Spec
L½½t; s��
ðtkþ1Þ ! Sð7Þ

such that the image of the special arc fs ¼ 0g is the generic point of NjðkÞ, while
the image of the general arc fs0 0g is an L-point of NiðkÞnNjðkÞ. For each pair
i, j such that the non-inclusion (4) does not follow from the valuative criterion
we study equations satisfied by an L-wedge (7) and prove that such an L-wedge
does not exist.

The paper is organized as follows: in §2 we recall the description of the
singularity E6 we will use and carry out the first step of the proof using the
valuative criterion. In §3, we partially describe the spaces of k-jets HðkÞ of a
hypersurface singularity for a general k and apply this description to the specific
case of the E6 singularity. We also describe the image of a family of arcs in
the truncated space HðkÞ. The last section is devoted to the second step of the
proof for E6. Namely, we go one by one through the various non-inclusions (4)
which are not covered by the valuative criterion and prove the non-existence of
the L-wedge (7) as above in each case. On four occasions, when the resulting
system of equations is too complicated to solve by hand, we use MAPLE to
check that it has no non-trivial solutions.

Note that by passing to the k-truncation we avoid using A. Reguera’s non-
trivial theorem [31], which can be viewed as a version of the Curve Selection
Lemma for the pair of infinite dimensional schemes ðNi;NjÞ. In the present
paper, the usual Curve Selection Lemma for finite-dimensional algebraic varieties
su‰ces for our purposes.

1.1. Progress since the first version of this paper. Since the appearance of
the first version of this paper, the status of the Nash problem for surfaces has
changed completely.
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On November 16, 2010 Maria Pe Pereira (based on the work [5] of Javier
Fernandez de Bobadilla) solved the problem a‰rmatively for quotients of C2 by
an action of finite group [24].

On January 30, 2011 Maximiliano Leyton-Alvarez gave an a‰rmative
solution for the following classes of normal hypersurfaces in C3: hypersurfaces
Sðp; hqÞ given by the equation zp þ hqðx; yÞ ¼ 0, where hq is a homogeneous
polynomial of degree q without multiple factors, and pd 2, qd 2 are two rela-
tively prime integers. He also applied his methods to give new proofs for the
rational double points Dn, E6 and E7 [20].

Finally, on February 22, 2011, Javier Fernandez de Bobadilla and Maria Pe
Pereira made public their a‰rmative solution of the Nash problem for all the
surface singularities [6].

Somewhat earlier, Ana Reguera announced a positive solution of the Nash
problem for the rational surface singularities, though at the moment of the
writing of this paper the details of her proof have not yet been made public in
written form.

In any case, all the methods are completely di¤erent. We hope that our
method will one day be useful in a more general context, not covered by the
above results, such as normal hypersurface singularities in Cn.

We would like to thank the referee for a careful reading of the manuscript
and for several suggestions which helped improve the paper.

2. The singularity E6 and the valuative criterion

The singularity E6 is, by definition, the hypersurface singularity defined in k3

by the equation F ¼ z2 þ y3 þ x4 ¼ 0.
The first graph in Figure 1 is the dual graph of E6; the remaining five graphs

show the orders of vanishing of the functions x, y, z, z� ix2 and zþ ix2 on
the exceptional curves E1, E2, E3, E4, E5 and E6. Although we do not have
a conceptual reason for considering these five functions and not others, these
functions will appear naturally below in our calculation of the wedges (note that
y3 ¼ ðz� ix2Þðzþ ix2Þ). The orders of vanishing of x, y, z, z� ix2 and zþ ix2

Figure 1. Dual graph of E6 and order of the functions x, y, z, z� ix2 and zþ ix2
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on the exceptional curves E1, E2, E3, E4, E5 and E6 are calculated explicitly by
considering the four successive point blowings up needed for the resolution of
the E6 singularity and computing the multiplicities in coordinates at each step.

Consider the following partial ordering on the set fE1;E2;E3;E4;E5;E6g.
We say that

Ei < Ejð8Þ

if for all f A mS;0 the inequality (3) holds (as explained in Remark 1.8, together
with the rationality of E6 this implies that strict inequality holds in (3) for some
f A mS;0).

Using the functions x, y, z, z� ix2 and zþ ix2, we see that our partial
ordering contains at most the inequalities shown in Figure 2.

Here an inequality (8) is represented by placing Ei to the left of Ej. We will
now show that Figure 2 shows the entire partial ordering: this is all the infor-
mation we can derive from comparing ordEi

f with ordEj
f for various f A mS;0.

Indeed, take an element f A mS;0 and let pi ¼ ordEi
f , i A f1; . . . ; 6g. Our de-

scription of the partial ordering follows from the following Proposition:

Proposition 2.1. We have

p6 c
3

2
p4ð9Þ

p6 c
3

2
p5ð10Þ

p3 c
4

5
p5ð11Þ

p2 c
4

5
p4ð12Þ

p4; p5 c
5

6
p6ð13Þ

p1 c
2

3
p6:ð14Þ

Figure 2. The partial order for E6.
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Proof. Write the zero cycle ðp�f Þ0 on X as F ¼
P6

i¼1 piEi þ C, where the
support of C contains no exceptional curves Ei. The inequalities F :Ei c 0,
i A f1; . . . ; 6g, translate into

2p1 d p6ð15Þ
2p3 d p5ð16Þ
2p2 d p4ð17Þ
2p5 d p3 þ p6ð18Þ
2p4 d p2 þ p6ð19Þ
2p6 d p1 þ p4 þ p5:ð20Þ

Now, (9) follows immediately from (17) and (19). The inequality (10) holds by
symmetry. The inequality (14) now follows from (20), (9) and (10). The in-
equality p5 c

5
6 p6 follows from (20), (9) and (15), and p4 c

5
6 p6 is obtained by

symmetry. Therefore we have (13). Finally, (11) follows from (18) and (13).
The inequality (12) is obtained by symmetry. r

The valuative criterion proves all the non-inclusions (4) such that either
Ej < Ei or Ei and Ej are not comparable in the partial ordering. By symmetry,
to complete the solution of the Nash problem for E6, it is su‰cient to show the
following non-inclusions:

N4;N6 QN1ð21Þ

N4;N5;N6 QN2ð22Þ

N6 QN4:ð23Þ

For these non-inclusions we work in the space of k-jets of the singularity E6

(with k depending on the non-inclusion). Let Pik and Pjk be two prime ideals
in the coordinate ring of the space HðkÞ of k-jets such that

NiðkÞ ¼ VðPikÞ andð24Þ

NjðkÞ ¼ VðPjkÞ:ð25Þ

In order to prove that Ni QNj, we show that Pjk QPik. To do this, we partially
describe the ideals Pjk and Pik and the space HðkÞ of k-jets. This is the aim
of §3.

3. The space of k-jets of a hypersurface singularity

In this section we first recall some lemmas about hypersurface singularities,
found in [26]. We then study the image of a family of arcs in the truncation
spaces HðkÞ.
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In what follows we will look at a hypersuface singularity defined by

f ðx; y; zÞ ¼
X

cabgx
aybzg ¼ 0;

embedded in k3 with a singularity at 0.
Assume that f is irreducible.

3.1. Notation. Let Ni be the set of arcs determined by the exceptional
divisor Ei, as defined in the introduction.

� For an element g A OS;0, let miðgÞ be the order of vanishing of g � p on Ei.
� Let Rk ¼ k½a1; . . . ; ak; b1; . . . ; bk; c1; . . . ; ck�.
� For i A D, let oi ¼ minfamiðxÞ þ bmiðyÞ þ gmiðzÞ j cabg 0 0g.
� For i A D, p A N, let

oip ¼ minf½ða� 1ÞmiðxÞ þ bmiðyÞ þ gmiðzÞ� þ p;

½amiðxÞ þ ðb � 1ÞmiðyÞ þ gmiðzÞ� þ p;

½amiðxÞ þ bmiðyÞ þ ðg� 1ÞmiðzÞ� þ p j cabg 0 0g:

� Let fl be the coe‰cient of tl in ð f � fÞ ¼ f ðxðtÞ; yðtÞ; zðtÞÞ ¼ 0.
� Let fil denote the unique element of k½amiðxÞ; . . . ; al ; bmiðyÞ; . . . ; bl ;
cmiðzÞ; . . . ; cl � such that fil 1 fl modulo the ideal ða1; . . . ; amiðxÞ�1;
b1; . . . ; bmiðyÞ�1; c1; . . . ; cmiðzÞ�1Þ (here we adopt the obvious convention that
the list amiðxÞ; . . . ; al is considered empty whenever miðxÞ > l, and similarly
for the b and c coe‰cients).

3.2. The k-jets scheme. Fix an integer k > 0.
Any k-jet fðtÞ passing through the singularity can be represented by three

polynomials of degree k, fðtÞ ¼ ðxðtÞ; yðtÞ; zðtÞÞ ¼ ða1tþ � � � þ akt
k; b1tþ � � � þ

bkt
k; c1tþ � � � þ ckt

kÞ (because the singularity is at 0), satisfying the algebraic
constraints given by f � f ¼ 0. Then f f1 ¼ 0; . . . ; fk ¼ 0g are the equations de-
fining the k-jet scheme HðkÞ in k3k. Below we shall describe the equations
f f1 ¼ 0; . . . ; fk ¼ 0g more explicitly.

Let l, m, n be integers such that there exists an exceptional divisor Ei

with

miðxÞ ¼ lð26Þ
miðyÞ ¼ mð27Þ
miðzÞ ¼ n:ð28Þ

Let K be the subset of the k-jet scheme defined in HðkÞ by the ideal
ða1; . . . ; al�1; b1; . . . ; bm�1; c1; . . . ; cn�1Þ.

Let r be the smallest integer such that

fr B ða1; . . . ; al�1; b1; . . . ; bm�1; c1; . . . cn�1Þ:
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The subspace K of HðkÞ (k > r) is defined by

ða1; . . . ; al�1; b1; . . . ; bm�1; c1; . . . cn�1; fr; . . . fkÞ
in k3k.

Then one can write, for id 0,

frþi ¼
qfr

qal

� �
alþi þ

qfr

qbm

� �
bmþi þ

qfr

qcn

� �
cnþi

þ Srþiðal ; . . . ; alþi�1; bm; . . . ; bmþi�1; cn; . . . ; cnþi�1Þ;

where Srþi is a polynomial (for a proof see [26], §4.2).
Let us recall the main lemma of [26], §1.3, used for the description of the

image of a family of arcs in the space of k-jets:

Lemma 3.1. Consider the polynomial ring A ¼ k½y1; . . . yv; x21; . . . ; x2u; . . . ;
xq1; . . . ; xqu�, where y1; . . . ; yv, x21; . . . ; x2u; . . . ; xq1; . . . ; xqu are independent vari-
ables. Let f1; . . . ; fq be a sequence of elements of the following form:

f1 ¼ f1ðy1; . . . ; yvÞ ¼ g1 � � � gs
f2 ¼ a1x21 þ � � � þ aux2u þ h2ðy1; . . . ; yvÞ

f3 ¼ a1x31 þ � � � þ aux3u þ h3ðy1; . . . ; yv; x21; . . . ; x2uÞ

..

.

fq ¼ a1xq1 þ � � � þ auxqu þ hqðy1; . . . ; yv; x21; . . . ; xðq�1ÞuÞ

with g1; . . . ; gs distinct irreducible polynomials and a1; . . . ; au A k½y1; . . . ; yv�.
For a fixed j, 1c jc s, let Sj H fa1; . . . ; aug be the set of al such that

al B ðgjÞ.
Let us denote J ¼ ð f1; . . . ; fqÞ. We have:
(1) If Sj 0j, there exists a unique minimal prime ideal Pj of J such that

gj A Pj and aw B Pj for all aw A Sj.
(2) Assume Sj 0j for all j A f1; . . . ; sg. Let Q be a minimal prime ideal of J

di¤erent from P1; . . . ;Ps; then ða1; . . . ; auÞHQ.
(3) Let gi and gj be two irreducible factors of f1. Then Pi 0Pj .

Definition 3.2. We call the prime ideal Pj of the lemma the distinguished
ideal of J, associated to gj.

Lemma 3.1 says that there are exactly s distinguished ideals of J, one
associated to each irreducible factor gj, provided Sj 0j for all j A f1; . . . ; sg.

3.3. Image of a family of arcs in HðkÞ.
In this subsection we describe the defining ideal of NiðkÞ in HðkÞ. Let I

denote the defining ideal of H in kfa;b; cg, that is, the ideal generated by ð f Þ ¼
ð flÞl AN in k½a; b; c�, as defined in the Introduction.
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Proposition 3.3. Take an integer k > oi.
Let

Iik ¼ ða1; . . . ; amiðxÞ�1; b1; . . . ; bmið yÞ�1; c1; . . . ; cmiðzÞ�1; fioi ; . . . ; fioik ÞRk:

and

~IIik ¼ ðI þ ða1; . . . ; amiðxÞ�1; b1; . . . ; bmiðyÞ�1; c1; . . . ; cmiðzÞ�1ÞÞVRk:

Then

Iik H ~IIik:ð29Þ

For d A
qfioi
qamiðxÞ

;
qfioi

qbmiðyÞ
;
qfioi
qcmiðzÞ

� �
, we have

IikðRkÞd ¼ ~IIikðRkÞd :ð30Þ

Proof. The inclusion (29) is obvious. To prove (30), first note that the left

hand side is contained in the right hand side by (29). Conversely, let d ¼ qfioi
qamiðxÞ

;

the proof for the other two possible choices of d is exactly the same. Take an
element g A ð~IIikÞd . By definition of ~IIik, g can be written in the form

g ¼
Xs

l¼oi

hl fil þ ~gg;ð31Þ

where hj A Rd and ~gg A ða1; . . . ; amiðxÞ�1; b1; . . . ; bmiðyÞ�1; c1; . . . ; cmiðzÞ�1ÞRd . Up to

multiplication by a unit of Rd (namely, by
1

qfioi=qamiðxÞ
), fil has the form al þ lil ,

where

lil A k½a1; . . . ; al�1; b1; . . . ; bl ; c1; . . . ; cl �d
Thus by adding a suitable multiple of fil to each hl 0 with l 0 < l, we may assume
that hl 0 does not involve the variable al whenever l 0 < l. Also, we may as-
sume that ~gg ¼ 0 and that none of the hl involve the variables a1; . . . ; amiðxÞ�1;
b1; . . . ; bmiðyÞ�1; c1; . . . ; cmiðzÞ�1. We will now show that under these assumptions

sc oik in (31). Indeed, the right hand side of (31) contains exactly one term
involving as. If we had s > oik then, by definition of oik, we have g B Rk, a
contradiction. This proves the equality (30). r

Let t ¼ fmðxÞ; mðyÞ; mðzÞg be a triple such that there exists i A D with

t ¼ fmiðxÞ; miðyÞ; miðzÞg:

Let EðtÞ ¼ fEl : fmlðxÞ; mlðyÞ; mlðzÞg ¼ tg. For Ei A EðtÞ and j A N, the numbers
oi, oij , miðxÞ, miðyÞ, miðzÞ, the polynomials fij and the ideals Iik, ~IIik depend only on
t and not on the particular choice of Ei A EðtÞ. We will therefore denote these
objects by ot, otj , mtðxÞ, mtðyÞ, mtðzÞ, ftj, and Itk, ~IItk, respectively.
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Proposition 3.4 (Image of a family). Assume that ftot is reduced but not
necessarily irreducible and that it is not divisible by any of amtðxÞ, bmtðyÞ, cmtðzÞ; let
ftot ¼ g1 � � � gs be its factorization into irreducible factors.

Then:
� there exists a uniquely determined injective map

c : f1; . . . ; sg ! EðtÞ
such that for j A f1; . . . ; sg and Ei ¼ cð jÞ, the variety NiðkÞ is defined by the
distinguished prime ideal of Itk associated with gj.

� The non-inclusion (4) holds for all Ei;Ej A ImðcÞ. In particular, if the map
c is surjective, (4) holds for all Ei;Ej A EðtÞ.

Remark 3.5. If s ¼ cardðEðtÞÞ then c is necessarily bijective. This is the
case for rational double points An, Dn (in both cases s ¼ cardðEðtÞÞ ¼ 1 for all
values of t [26]). Below, we will see that for the singularity E6 we always have
s ¼ cardðEðtÞÞc 2, so, again, c is bijective. Of course, c is bijective for any
singularity for which the Nash problem has an a‰rmative answer. Thus, a
posteriori, the bijectivity of c is now known for an arbitrary isolated 2-dimensional
hypersurface singularity thanks to the Fernandez de Bobadilla–Pe theorem [6].

Proof of Proposition 3.4. For the first assertion, note that the ideal Itk

satisfies the hypotheses of Lemma 3.1, with the partial derivatives
qftot
qamtðxÞ

,
qftot
qbmtð yÞ

,
qftot
qcmtðzÞ

playing the roles of a1, a2, a3.

By definitions

Vð~IItkÞ ¼ 6
miðxÞdmtðxÞ
miðxÞdmtðxÞ
miðxÞdmtðxÞ

NiðkÞ:ð32Þ

Let d be one of the partial derivatives of ftot , which is not identically zero. The
fact that ftot is reduced implies that ItkRd is not the unit ideal. Now Prop-
osition 3.3 (particularly, (30)) implies that the distinguished prime ideals Pjk,
j A f1; . . . ; sg of Itk are also minimal primes of ~IItk. Since the varieties NiðkÞ are
irreducible, (32) shows that for each j A f1; . . . ; sg there exists i with

miðxÞd mtðxÞ;ð33Þ
miðxÞd mtðxÞ;ð34Þ
miðxÞd mtðxÞ;ð35Þ

such that VðPjkÞ ¼ NiðkÞ. Furthermore, since gj is not divisible by amtðxÞ, bmtð yÞ
or cmtðzÞ and has no common factors with d by assumption, by Nullstellensatz
there exist triples ða 0; b 0; c 0Þ A k3 such that gjða 0; b 0; c 0Þ ¼ 0, dða 0; b 0; c 0Þ0 0
and a 0, b 0, c 0 are di¤erent from 0. Then there exists an arc in VðPjkÞ of
the form fðtÞ ¼ ða0tmtðxÞ þ � � � ; b 0tmtðyÞ þ � � � ; c0tmtðzÞ þ � � �Þ. Namely, we construct
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such an arc by describing the values of amtðxÞþr, bmtðyÞþr and cmtðzÞþr. We put

ðamtðxÞ; bmtðyÞ; cmtðzÞÞ ¼ ða 0; b 0; c0Þ. Then, for each positive integer r, we let bmtðyÞþr

and cmtðzÞþr be arbitrary elements of k and set

amtðxÞþr ¼ �
ft;otþr � amtðxÞþrd

d
:

This proves that Ei A EðtÞ. We define Ei ¼ cð jÞ.
The injectivity of c is obvious from the definition. Also by definition, the

non-inclusion (4) is satisfied for all Ei;Ej A ImðcÞ. Thus, if c is surjective, (4)
holds for all Ei;Ej A EðtÞ, as desired. This completes the proof. r

Example. Let us apply the above ideas to the special case of the E6 sin-
gularity. According to Figure 1, there are four possible values of t: ð2; 2; 3Þ;
ð1; 2; 2Þ; ð2; 3; 4Þ and ð3; 4; 6Þ. We have Eð2; 2; 3Þ ¼ fE1g, Eð1; 2; 2Þ ¼ fE2;E3g,
Eð2; 3; 4Þ ¼ fE4;E5g, and Eð3; 4; 6Þ ¼ fE6g. Thus, for t ¼ ð2; 2; 3Þ or t ¼ ð3; 4; 6Þ
the bijectivity of the map c is immediate.

Next, let t ¼ ð1; 2; 2Þ. We have ot ¼ 4 and ftot ¼ c22 þ a41 ¼ ðc2 þ ia21Þ �
ðc2 � ia21Þ, so ftot is a product of two distinct irreducible factors.

Similarly, if t ¼ ð2; 3; 4Þ, we have ot ¼ 8 and ftot ¼ c24 þ a42 ¼ ðc4 þ ia22Þ �
ðc4 � ia22Þ, so, again ftot is a product of two distinct irreducible factors.

Since in the last two cases ft;ot has two irreducible factors and aEðtÞ ¼ 2,
the map c is bijective also in these two cases. It follows from Proposition 3.4
that for a su‰ciently large k each NiðkÞ is of the form VðPikÞ, where Pik is a
distinguished prime ideal, associated to Iik.

We recall that the goal is to prove that

Pik QPjkð36Þ
whenever

Ei < Ej:ð37Þ

3.4. The strategy for proving the non-inclusion (36).
By the valuative criterion we already have the opposite non-inclusion in (36).

Inequality (37) means that ordEi
gc ordEj

g for all g A OS;0. We thus have the
following inclusions:

Iik HPik

Iik H Ijk HPjk

�

Assume NjðkÞHNiðkÞ for a certain order k.
We will need the Curve Selection lemma (for usual finite-dimensional alge-

braic varieties). The original Curve Selection Lemma was proved by Milnor in
his book [22] (Lemma 3.1, p. 25) in the context of real algebraic varieties. The
elementary lemma which follows is inspired by this. We doubt that this result
is new, but we could not find the exact statement we needed in the literature, so
we include a proof.
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Proposition 3.6 (Curve Selection Lemma). Let V be a reduced algebraic
variety over an algebraically closed field k and W a proper reduced irreducible
subvariety of V. Let KðWÞ denote the field of rational functions of W.

There exists a finite field extension L of KðWÞ and an arc f : Spec L½½s�� ! V
whose generic point maps to VnW , and the special point to the generic point of W.

Proof. Replacing V by a suitable a‰ne open subset of it, we may assume,
without loss of generality, that V is an a‰ne variety. Let A denote the
coordinate ring of V and write W ¼ VðPÞ where P is a prime ideal of A.
Let Q denote a prime ideal of A, contained in P, such that ht Q ¼ ht P� 1. Let

B denote the normalization of the ring
AP

QAP

, B̂B the completion of B at some

fixed maximal ideal and L the residue field of B̂B. The field L is a finite exten-
sion of KðWÞ. Then B̂B is a complete regular 1-dimensional local ring; let s be
a regular parameter of B̂B. We have B̂BGL½½s��; the composition of the natural

maps A ! AP ! AP

QAP

! B ! B̂B induces the morphism f required in the Prop-
osition. r

Let W ¼ NjðkÞ. In our context, the curve is an arc of the form
fij : Spec L½½s�� ! NiðkÞ, which corresponds to a ‘‘truncated’’ L-wedge

fij : Spec
L½½t; s��
ðtkþ1Þ ! ðS; 0Þð38Þ

whose special arc (s ¼ 0) maps to the generic arc of NjðkÞ and whose general
arc maps to an L-point of NiðkÞnNjðkÞ. A wedge as in (38) is given by three
polynomials of the form

xðt; sÞ ¼
Pk
n¼0

anðsÞtn

yðt; sÞ ¼
Pk
n¼0

bnðsÞtn

zðt; sÞ ¼
Pk
n¼0

cnðsÞtn

8>>>>>>>><
>>>>>>>>:

Write the coe‰cients anðsÞ, bnðsÞ, cnðsÞ of the wedge in the form

anðsÞ ¼
Py
p¼0

anps
p

bmðsÞ ¼
Py
p¼0

bmps
p

clðsÞ ¼
Py
p¼0

clps
p;

8>>>>>>>><
>>>>>>>>:
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with anp; bmp; clp A L, where an0, bm0, cl0 satisfy the equations of NjðkÞ. In par-
ticular, an0 ¼ 0 when n < mjðxÞ, bm0 ¼ 0 when m < mjðyÞ and cl0 ¼ 0 when l < mjðzÞ.
Let us denote by an (resp. bm and gl) the smallest order q for which anq (resp.
bmq and clq) is not 0. We need to compute these exponents in order to construct
the wedge fij . Note that an0 0 0 if and only if an ¼ 0, and similarly for the b
and c coe‰cients; we always have an0 0 0 if n ¼ mjðxÞ.

The morphism (38) is given by a ring homomorphism

OS;0 !
L½½t; s��
ðtkþ1Þ :ð39Þ

Localizing
L½½t; s��
ðtkþ1Þ by the element s, we obtain an LððsÞÞ-point of NiðkÞ (infor-

mally, an LððsÞÞ-arc lying in NiðkÞ). Thus the coe‰cients anðsÞ, bmðsÞ, clðsÞ
satisfy the equations fiu of NiðkÞ and their constant terms an0, bm0, cl0 satisfy the
equations fju of NjðkÞ (here fiu is the coe‰cient of tu in Fofij and similarly for
fju; see §3.1 where this notation was introduced).

Let Anp, Bmp, Clp, pd 0, be independent variables and write

AnðsÞ ¼
Py
p¼0

Anps
p

BmðsÞ ¼
Py
p¼0

Bmps
p

ClðsÞ ¼
Py
p¼0

Clps
p:

8>>>>>>>><
>>>>>>>>:

We have finitely many equalities of the form

0 ¼ fiuðAðsÞ;BðsÞ;CðsÞÞ ¼
Xy
v¼0

f 0
ivus

v; uc oij;ð40Þ

where AðsÞ stands for fAnðsÞgn AN, and similarly for B and C. Here the
coe‰cients f 0

ivu are polynomials in Anp, Bmp, Clp which vanish after substituting
Anp ¼ anp, Bmp ¼ bmp, Clp ¼ clp.

Let J denote the ideal of L½A;B;C� generated by all the elements of the
form Anp with p < an, Bmp with p < bm and Clp with p < gl , where A stands
for fAnpgp AN, and similarly for B and C. Let yu ¼ minfv j f 0

ivuðA;B;CÞ B Jg.
Write gyu ¼ f 0

iyuu
. In other words, gyu is the first non-zero coe‰cient of

fi;uðAðsÞ;BðsÞ;CðsÞÞ, viewed as a series in s, not belonging to the ideal J.

Notation. For the rest of this paper, we will write an for anan , bm for bmam

and cl for clgl .

Remark 3.7. � The coe‰cient gyu depends only on Anan , Bmbm and Clgl .
Since an 0 0, bm 0 0, cl 0 0 and

gyuðan; bm; clÞ ¼ 0;
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the coe‰cient gyu cannot be a monomial in an, bm, cl . In general, gyu is a
quasi-homogeneous polynomial in which Anan has weight an, Bmbm weight bm
and Clgl weight gl . Equality of weights of di¤erent monomials appearing in
gyu will give us a system of conditions on the exponents an, bm and gl . More
precisely, we are not interested in the values of an, bm and gl per se but

rather in the ratios of the form
an

d
, where d is some fixed element of the set

famiðxÞ; bmiðyÞ; gmiðzÞg. In other words, we are interested in the ‘‘normalized ’’
weights an, bm and gl , where we set, for example, the first non-trivial weight
amiðxÞ equal to 1.

� The hardest part of the proof is to recover the coe‰cients gyu . In order to
do this, we will use the fact that gyu are not monomials to give lower bounds
on an, bm and gl .

The equation gyu ¼ 0 plus the equations fjkðan0; bm0; cl0Þ ¼ 0 form a system
satisfied by the coe‰cients of the wedge. If this system has no solutions then the
wedge does not exist.

In some exceptional cases, the above system of equations does not su‰ce
and one is led to use f 0

i;yuþ1;u, the next coe‰cient of fiuðAnðsÞ, BmðsÞ, ClðsÞÞ after

gyu , to arrive at a contradiction. In our work on E6 such will be the case for the
non-inclusion N4 QN2.

In the next section we compute the weights an, bm and gl for the singularity
E6 and show that the system

gyu ¼ 0

fjuðan0; bmu; cl0Þ ¼ 0

�

for the remaining non-inclusions other than N4 QN2, as well as the augmented
system

gyu ¼ 0

f 0
i;yuþ1;u ¼ 0

fjuðan0; bm0; cl0Þ ¼ 0

8><
>:

in the case of the non-inclusion N4 QN2, have no solutions.

4. Computations and proof for the E6 singularity

Let us consider the E6 singularity and study the di¤erent non-inclusions.
For each non-inclusion Nj QNi appearing in (21)–(23), we will denote

RðkÞ ¼ Rk

Pik

.

Notation: When talking about the non-inclusion Nj QNi, the notation ajb
will mean ‘‘a divides b in RðkÞ’’, unless otherwise specified (here RðkÞ stands for
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the integral closure of RðkÞ in its field of fractions). For some non-inclusions,
we will study divisibility in a suitable localization of RðkÞ, which will be specified
explicitly in each case.

For each of the six non-inclusions involved, it is su‰cient to prove that

Pik QPjkð41Þ
for some k, in particular for k ¼ oð jÞ. Take k ¼ oð jÞ.

We prove the non-inclusion (41) by contradiction. Assume that Pik HPjk.
By the Curve Selection lemma there exists an L-wedge whose special arc is the
generic point of NjðkÞ and whose generic arc is in NiðkÞ. The first coe‰cient
gyu of fiu cannot be a monomial as generically on NiðkÞ each monomial in an, bm,
cl is not zero.

As explained above, we are interested in computing ratios of the form
an

d
,

where d is some fixed element of the set famiðxÞ; bmiðyÞ; gmiðzÞg, and miðxÞc n <

mjðxÞ, and similarly for
bm
d
, miðyÞcm < mjðyÞ, and

gl
d
, miðzÞc l < mjðzÞ (we will

pick and fix a specific d in the proof of each non-inclusion, but the choice of
d will depend on the non-inclusion we want to prove). For example, suppose
d ¼ amiðxÞ. Then our problem is closely related to studying, for each n, the
totality of pairs ða; d 0Þ A N2 such that

anðsÞa j amiðxÞðsÞ
d 0 ;ð42Þ

and similarly for bmðsÞb j amiðxÞðsÞ
d 0 and clðsÞa j amiðxÞðsÞ

d 0 . Precisely, we have

an

amiðxÞ
¼ inf

a

d 0

� �
;

where ða; d 0Þ runs over all the pairs satisfying (42).

Remark 4.1. In [26] and [27] a di¤erent method is used to prove the non-
inclusions not covered by the valuative criterion. Namely, we use the fact that
the ideal Pik can be expressed as the saturation ðPikRðkÞ : dyÞ, where d A
famiðxÞ; bmiðyÞ; cmiðzÞg. For most non-inclusions, we explicitly construct elements of
ðPikRðkÞ : dyÞ, not belonging to Pjk, which settles the problem. In both the
saturation and the wedge methods, the key point is to compute the weight ratios

of the form
an

d
,
bm
d

and
gl
d
as above. One advantage of the wedge method is that

it gives a more geometric vision of the proof.

In what follows we truncate at the order oj.

(1) � N4 QN1. In this case we truncate at the order o4 ¼ 8. We have
o1 ¼ 6.
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Assume that N4ð8ÞHN1ð8Þ, aiming for contradiction. Let f42 be a
wedge with generic arc living in N1ð8Þ and special arc mapping to N4ð8Þ.
Then the wedge is of the form:

b2ðsÞ ¼ b2s
b2 þ

Py
q¼b2þ1

b2qs
q

c3ðsÞ ¼ c3s
g3 þ

Py
q¼g3þ1

c3qs
q

anðsÞ ¼ an þ
Py
q¼1

anqs
q; nd 2

bmðsÞ ¼ bm þ
Py
q¼1

bmqs
q; md 3

clðsÞ ¼ cl þ
Py
q¼1

clqs
q; ld 4

8>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>:

ð43Þ

where an, bm, cl satisfy the equations of N4ð6Þ, and are non-zero elements
of L.

The following equations hold on N1ð8Þ:

a1 ¼ b1 ¼ c1 ¼ c2 ¼ 0

f1;6 ¼ c23 þ b32 ¼ 0

f1;7 ¼ 2c3c4 þ 3b22b3 ¼ 0:

The following equations hold on N4ð8Þ:

a1 ¼ b1 ¼ c1 ¼ c2 ¼ c3 ¼ b2 ¼ 0

f4;8 ¼ c24 þ a42 ¼ 0:

The generic arc lives in N1ð8Þ, and thus satisfies the equations of
N1ð8Þ. This leads to finitely many equations (as we are in Rð8Þ):

0 ¼ f1;6ðaðsÞ; bðsÞ; cðsÞÞ ¼ c23s
2g3 þ b32s

3b2 þ � � �

0 ¼ f1;7ðaðsÞ; bðsÞ; cðsÞÞ ¼ 2c3c4s
g3 þ 3b22b3s

2b2 þ � � �

..

.

As c3 0 0 and b2 0 0, we obtain a relation between g3 and b2:

2g3 ¼ 3b2

which implies that

b2 c g3 < 2b2
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and that

c23 þ b32 ¼ 0

2c3c4 ¼ 0:

Thus for the equation f4;8 we have y8 ¼ g3 and gy8 ¼ 2c3c4, which is
impossible.

(2) � N5 QN2. In this case we truncate at the order o5 ¼ 8. We have
o2 ¼ 6. Assume that N5 HN2, aiming for contradiction. Let f52 be
a wedge with generic arc living in N2ð8Þ and special arc mapping to
the generic arc in N5ð8Þ.

The following equations hold on N2ð8Þ:

b1 ¼ c1 ¼ 0

f2;4 ¼ c22 þ a41 ¼ 0

f2;5 ¼ 2c2c3 þ 4a31a2 ¼ 0

f2;6 ¼ c23 þ 2c2c4 þ b32 þ 4a31a3 þ 6a21a
2
2 ¼ 0

f2;7 ¼ 2c3c4 þ 2c2c5 þ 3b22b3 þ 4a31a4 þ 12a21a2a3 þ 4a32a1 ¼ 0

We have f2;4 ¼ ðc2 þ ia21Þðc2 � ia21Þ. As can be seen from Figure 1, P2;8

is the distinguished ideal corresponding to the irreducible factor c2 � ia21 .
Let us use the notation

g2;2 :¼ c2 � ia21 :

Combining f2;5 and g2;2 we see that 2ic3a
2
1 þ 4a21a2 ¼ 0 on N2ð8Þ. Since

a1 does not vanish identically on N2ð8Þ, we have

f2;3 :¼ c3 � 2ia1a2 ¼ 0

on N2ð8Þ.
We claim that

g2 ¼ 2a1;ð44Þ
g3 ¼ a1ð45Þ

b2 d
2

3
a1ð46Þ

Now,
� (44) holds thanks to the equation g2;2 ¼ 0.
� (45) holds by the equation f2;3 ¼ 0 and the fact that a2 ¼ 0.
� (46) holds by the equation f2;6 ¼ 0, (44) and (45).

After a suitable automorphism of L½½s��, we may assume that a1 ¼ 1.
The vanishing of the first non-trivial coe‰cients of the power series

f2;3ða1ðsÞ; a2ðsÞ; c3ðsÞÞ and f2;7 gives the equations
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c3 � 2ia2 ¼ 0ð47Þ

2c3c4 þ 4a32 ¼ 0ð48Þ
and we have (first equation of N5):

c4 þ ia22 ¼ 0:ð49Þ
Substituting (47) into (48) and dividing through by 4ia22 , we obtain the
equation

c4 � ia22 ¼ 0;

which contradicts (49) and the fact that c4 and a2 are non-zero elements
of L.

(3) � N4 QN2. In this case we truncate at the order o4 ¼ 8.
Assume that N4ð8ÞHN2ð8Þ, aiming for contradiction. We can con-

struct an L-wedge Spec L½½t; s�� ! E6, with the special arc mapping to the
generic arc of N4 and with the general arc lifting to E2.

The following equations hold on N2ð8Þ:
b1 ¼ c1 ¼ 0

g2;2 ¼ c2 � ia21 ¼ 0

f2;3 ¼ c3 � 2ia1a2 ¼ 0

f2;6 ¼ c23 þ 2c2c4 þ b32 þ 4a31a3 þ 6a21a
2
2 ¼ 0

f2;7 ¼ 2c3c4 þ 2c2c5 þ 3b22b3 þ 4a31a4 þ 12a21a2a3 þ 4a32a1 ¼ 0

f2;8 ¼ c24 þ 2c3c5 þ 2c2c6 þ 3b22b4 þ a42 þ 4a31a5 þ 12a21a2a4 þ 12a1a
2
2a3 þ 6a21a

2
3 ¼ 0:

Modifying f2;6 and f2;7 by suitable multiples of g2;2 and f2;3, we may
replace them by

f2;6 :¼ 2ia21ðc4 � ia22Þ þ b32 þ 4a31a3 ¼ 0

f2;7 :¼ 4ia1a2ðc4 � ia22Þ þ 2c2c5 þ 3b22b3 þ 4a31a4 þ 12a21a2a3 ¼ 0

f2;8 ¼ c24 þ 4ia1a2c5 þ 2ia2c6 þ 3b22b4 þ a42 þ 4a31a5 þ 12a21a2a4

þ 12a1a
2
2a3 þ 6a21a

2
3 ¼ 0

Note that the equation f4;8 ¼ c4 � ia22 ¼ 0 vanishes on N4ð8Þ.
Let m denote the s-adic valuation of L½½s��. We define a :¼

mðc4ðsÞ � ia2ðsÞ2Þ. We claim that

g2 ¼ 2a1ð50Þ
g3 ¼ a1ð51Þ
b2 d a1ð52Þ
ad a1:ð53Þ
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Indeed,
� (50) holds thanks to the equation g22 ¼ 0.
� (51) is given by f2;3 and the fact that a20 ¼ a2 0 0, and hence

a2 ¼ 0:ð54Þ

We have a1 > 0. Using (54) once again, we obtain from the equations
f2;6 ¼ 0 and f2;7 ¼ 0 that

� 3b2 dminf3; 2þ ag
� adminf1; 2b2 � 1g.

We will now prove (52) and (53) by contradiction. Assume that at least
one of (52) and (53) is false. Then both (52) and (53) are false according
to the above inequalities. We see that

� 3b2 d 2þ a
� ad 2b2 � 1

which implies that 2
3 þ 1

3 ac
1
2 þ 1

2 a, hence ad 1, a contradiction. This
completes the proof of the relations (50)–(53).

After a suitable automorphism of L½½s��, we may assume that

a1ðsÞ ¼ sa1 :

Generically, each arc lives in N2, and thus satisfies the equations of
N2ð8Þ. Let ~cc denote the coe‰cient of sa1 in the formal power series
c4ðsÞ � ia2ðsÞ2 (a priori, ~cc may or may not be zero). Expanding the

equations f2;6ðaðsÞ; bðsÞ; cðsÞÞ, f2;7ðaðsÞ; bðsÞ; cðsÞÞ, f2;8ðaðsÞ; bðsÞ; cðsÞÞ as
power series in s gives:

0 ¼ f2;6ðaðsÞ; bðsÞ; cðsÞÞ ¼ g2;6s
3a1 þ h2;6s

3a1þ1

0 ¼ f2;7ðaðsÞ; bðsÞ; cðsÞÞ ¼ g2;7s
2a1 þ h2;7s

2a1þ1

0 ¼ f2;8ðaðsÞ; bðsÞ; cðsÞÞ ¼ g2;8s
a1 þ h2;8s

a1þ1;

where g2;6, g2;7, g2;8 are polynomials in anp, bnp, cnp and h2;6; h2;7; h2;8 A
L½½s��.

Since f2;6ðaðsÞ; bðsÞ; cðsÞÞ, f2;7ðaðsÞ; bðsÞ; cðsÞÞ, f2;8ðaðsÞ; bðsÞ; cðsÞÞ
must vanish identically as power series in s, we must have g2;6 ¼ g2;7 ¼
g2;8 ¼ 0. Let us look at the g2; i’s. They are:

g2;6 ¼ ~cc� 2ia3 þ b32;a1 ¼ 0ð55Þ

g2;7 ¼ 2iðc5 � 6ia2a3Þ þ 4i~ccþ 3b22;a1b3 ¼ 0ð56Þ

g2;8 ¼ 12ia22a3 þ 4ia2c5 þ 2ia22~ccþ 3b2;a1b
2
3 ¼ 0:ð57Þ

Elements a2, a3, b3, c5 lie in KðN4ð8ÞÞHL and are di¤erent from 0. Let
us regard (55)–(57) as a system of three equations over L in two un-
knowns b2;a1 , ~cc; if the wedge exists, these equations should have a
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solution. Let us prove that this is in fact not the case, thus obtaining
the desired contradiction.

The subfield of KðN4ð8ÞÞ generated by a2, a3, b3, c5 is isomorphic

to the field of fractions of the ring B ¼ k½a2; a3; b3; c5�
ðb33 þ 2ia22c5 þ 4a32a3Þ

. Let Y

denote the a‰ne subscheme of A2
B defined by the equations (55)–(57) and

let Y denote its closure in P2
B. The scheme Y is defined in P2

B by the
system of three equations

G2;6 ¼ Z2 ~CC � 2ia3Z
3 þ B3

2;a1
¼ 0ð58Þ

G2;7 ¼ 2iðc5 � 6ia2a3ÞZ2 þ 4i ~CCZ þ 3B2
2;a1

b3 ¼ 0ð59Þ

G2;8 ¼ ð12ia22a3 þ 4ia2c5ÞZ þ 2ia22
~CC þ 3B2;a1b

2
3 ¼ 0;ð60Þ

homogeneous in the variables Z, ~CC, B2;a1 .
Suppose the system (55)–(57) had a solution in L. This means that

the natural map Y ! Spec B is dominant, and hence the map Y !
Spec B is surjective by the Proper Mapping Theorem. Thus to prove
non-existence of solutions of (55)–(57) it is su‰cient to find one specific
k-rational point of Spec B which is not in the image of Y . In other
words, it su‰ces to find specific elements of k such that when these
elements are substituted for a2, a3, b3, c5, the resulting system of homo-
geneous equations in Z, ~CC, B2;a1 has no non-zero solutions. We can
easily find such elements. For example, put

b3 ¼ 0:ð61Þ

Then

2ia22c5 þ 4a32a3 ¼ 0:ð62Þ

We will take

a2 0 0:ð63Þ

Then equation (62) implies that

c5 � 2ia2a3 ¼ 0:ð64Þ

Substituting (61) and (64) into G2;7 and G2;8, we obtain

G2;7 ¼ 8a2a3Z
2 þ 4i ~CCZ ¼ 0ð65Þ

G2;8 ¼ ð12i � 8Þa22a3Z þ 2ia22
~CC ¼ 0:ð66Þ

If Z ¼ 0 then, in view of (63) and the equation G2;6 ¼ 0, we have ~CC ¼
B2;a1 ¼ 0. Thus there are no non-trivial solutions with Z ¼ 0. Assume
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Z0 0 and divide G2;7 by Z. Now it is easy to see that there exist
a2; a3 A k with a2 0 0 such that the system

8a2a3Z þ 4i ~CC ¼ 0ð67Þ

G2;8 ¼ ð12i � 8Þa22a3Z þ 2ia22
~CC ¼ 0ð68Þ

has

Z ¼ ~CC ¼ 0ð69Þ
as the only solution. (69) together with G2;6 implies that B2;a1 ¼ 0. We
have proved that there exists a choice of elements a2; a3; b3; c5 A k, satisfy-
ing b33 þ 2ia22c5 þ 4a32a3 ¼ 0, such that after substituting these values into
G2;6 ¼ G2;7 ¼ G2;8 ¼ 0 the resulting system has no non-trivial solutions.
This completes the proof of the non-inclusion N4 QN2.

(4) � N6 QN4.
In this case we truncate at the order o6 ¼ 12. We argue by con-

tradiction. Assume that N6ð12ÞHN4ð12Þ. Let f64 be a wedge with
generic arc living in N4ð12Þ and special arc mapping to the generic point
of N6ð12Þ. The following equations hold on N4ð12Þ:

a1 ¼ b1 ¼ c1 ¼ c2 ¼ c3 ¼ b2 ¼ 0

f4;8 ¼ c24 þ a42 ¼ 0

f4;9 ¼ 2c4c5 þ b33 þ 4a32a3 ¼ 0

f4;10 ¼ c25 þ 2c4c6 þ 3b23b4 þ 6a22a
2
3 þ 4a32a4 ¼ 0

f4;11 ¼ 2c5c6 þ 2c4c7 þ 3b23b5 þ 3b3b
2
4 þ 12a22a3a4 þ 4a32a5 þ 4a2a

3
3 ¼ 0

We have f4;8 ¼ ðc4 þ ia22Þðc4 � ia22Þ. As can be seen from Figure 1, P4;12

is the distinguished ideal corresponding to the irreducible factor c4 � ia22 .
Let us use the notation

g2;4 :¼ c4 � ia22 ;

we have g2;4 ¼ 0 on N4ð12Þ. We have

a20 ¼ b30 ¼ c40 ¼ c50 ¼ 0;ð70Þ

we want to show that

a2ðsÞ j b3ðsÞð71Þ

a22ðsÞ j c4ðsÞð72Þ
a2ðsÞ j c5ðsÞð73Þ

in L½½s��.
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The equation g2;4 ¼ 0 implies (72).
Now, (71) and (73) are equivalent to saying that

a2 c b3 andð74Þ
a2 c g5:ð75Þ

By (70), we have a2 > 0. Using (72), equations f4;9 ¼ 0 and f4;10 ¼ 0
yield

� b3 dminf23 a2 þ 1
3 g5; a2g

� g5 dminfa2; b3g.
We prove (74) and (75) by contradiction. Suppose at least one of (74)
and (75) is false. Then both (74) and (75) are false by the above
inequalities. Then

� b3 d
2
3 a2 þ 1

3 g5
� g5 d b3.

Hence 2
3 g5 d

2
3 a2, so g5 d a2, a contradiction. This completes the proof

of (71)–(73).
For the purposes of this non-inclusion, we will deviate slightly from

our standard notation. Namely, we will write b3 ¼ b3a2 and c5 ¼ c5a2 .
The meaning of all the other symbols remains unchanged.

Then the first coe‰cients of the wedge have to satisfy:

c4 � ia22 ¼ 0

2c4c5 þ b33 þ 4a32a3 ¼ 0

c25 þ 2c4c6 þ 3b23b4 þ 6a22a
2
3 ¼ 0

2c5c6 þ 3b3b
2
4 þ 4a2a

3
3 ¼ 0

as well as

c26 þ b34 þ a43 ¼ 0:ð76Þ

Substituting c4 for ia22 , the above system rewrites as

2ia22c5 þ b33 þ 4a32a3 ¼ 0

c25 þ ð2ic6 þ 6a23Þa22 þ 3b23b4 ¼ 0

2c5c6 þ 3b3b
2
4 þ 4a2a

3
3 ¼ 0:

We view this system as a system of three homogeneous equations over L
in three unknowns a2, b3, c5. The coe‰cients of the system are poly-
nomials in a3, b4, c6, which are viewed as fixed elements of KðN6ð12ÞÞ.
Moreover, we must have a2 0 0 by definition of a2. As in the previous
non-inclusion, to prove that this system has no non-zero solutions, it
su‰ces to find specific values of a3, b4, c6 in k satisfying (76), such that
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the resulting system of three equations has no non-zero solutions. We
take a3 ¼ 0. Then

c26 þ b34 ¼ 0ð77Þ
and our system becomes

2ia22c5 þ b33 ¼ 0ð78Þ

c25 þ 2ic6a
2
2 þ 3b23b4 ¼ 0ð79Þ

2c5c6 þ 3b3b
2
4 ¼ 0:ð80Þ

We work in a finite extension of KðN6ð12ÞÞ which contains a square root
of b4; we pick and fix one of the two possible square roots and denote
it by b

1=2
4 . From (77) we obtain

c6 ¼ �b
3=2
4 :ð81Þ

Substituting (81) into (80) and dividing through by b
3=2
4 , we obtain

c5 ¼
3

2
b3b

1=2
4 :ð82Þ

Substituting (82) into (78) yields

b23 ¼ �2ib
1=2
4 a22 :ð83Þ

Finally, substituting (82) and (83) into (79), we obtain

� 27

4
� 2� 9

� �
ib

3=2
4 a22 ¼ 0:ð84Þ

Now, substitute suitable non-zero elements of k for b
1=2
4 and c6 in such a

way that (77) is satisfied. By (84), any solution of the resulting system
of equations satisfies a2 ¼ 0. Then b3 ¼ c5 ¼ 0 from (78)–(80). Thus
our system of equations has no non-zero solutions, as desired. This
completes the proof of the non-inclusion N6 QN4.

(5) � N6 QN1.
In this case we truncate at the order o6 ¼ 12. We argue by con-

tradiction: suppose that N6ð12ÞHN1ð12Þ. Let f61 be a wedge with the
generic arc living in N1 and the special arc mapping to the generic point
of N6ð12Þ.

The following equations hold on N1ð12Þ:
a1 ¼ b1 ¼ c1 ¼ c2 ¼ 0

f1;6 ¼ c23 þ b32 ¼ 0

f1;7 ¼ 2c3c4 þ 3b22b3 ¼ 0

f1;8 ¼ c24 þ 2c3c5 þ 3b22b4 þ 3b2b
2
3 þ a42 ¼ 0
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f1;9 ¼ 2c4c5 þ 2c3c6 þ b33 þ 6b2b3b4 þ 3b22b5 þ 4a32a3 ¼ 0

f1;10 ¼ c25 þ 2c4c6 þ 2c3c7 þ 3b23b4 þ 3b22b6 þ 6b2b3b5 þ 3b2b
2
4 þ 6a22a

2
3 þ 4a32a4 ¼ 0

f1;11 ¼ 2c5c6 þ 2c4c7 þ 2c3c8 þ 3b22b7 þ 3b23b5 þ 3b3b
2
4 þ 6b2b3b6 þ 6b2b4b5

þ 4a32a5 þ 12a22a3a4 þ 4a2a
3
3 ¼ 0

The following equations come from the equations of N6ð12Þ:

a10 ¼ a20 ¼ b10 ¼ b20 ¼ b30 ¼ c10 ¼ c20 ¼ c30 ¼ c40 ¼ c50 ¼ 0:

We want to prove the following divisibility relations:

b2ðsÞ j a2ðsÞ2ð85Þ

b2ðsÞ j b3ðsÞ2ð86Þ

b2ðsÞ3 j c3ðsÞ2ð87Þ
b2ðsÞ j c4ðsÞð88Þ

b2ðsÞ j c5ðsÞ2:ð89Þ

To do this, it is su‰cient to show that

g3 ¼
3

2
b2ð90Þ

g4 d b2ð91Þ

a2; b3; g5 d
1

2
b2:ð92Þ

We have b2 > 0. The equality (90) is immediate from f1;6 ¼ 0. (91)
follows from f1;6 ¼ f1;7 ¼ 0 and (92). It remains to prove (92), which is
equivalent to saying that

minfa2; b3; g5gd
1

2
b2:ð93Þ

We prove (93) by contradiction. Let M ¼ minfa2; b3; g5g and assume
that

M <
1

2
b2:ð94Þ

Equations f1;6 ¼ f1;7 ¼ 0 can be interpreted as saying that
c3ðsÞ

b2ðsÞ3=2
and

c4ðsÞ
b2ðsÞ1=2b3ðsÞ

is invertible in a suitable finite extension B of L½½s��. Sub-

stituting c3ðsÞ and c4ðsÞ in f1;8, f1;9 and f1;10 by suitable multiples of
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b2ðsÞ3=2 and b2ðsÞ1=2b3ðsÞ by a unit of B, we obtain the following
inequalities:

a2 d
1

4
min

3

2
b2 þ g5; 2b2; b2 þ 2b3

� �
ð95Þ

b3 d
1

3
min

1

2
b2 þ b3 þ g5; b2 þ b3;

3

2
b2; 3a2

� �
ð96Þ

g5 d
1

2
min

1

2
b2 þ b3; 2b3; b2; 2a2

� �
:ð97Þ

Now, (94), (95) and the definition of M imply that

M < a2ð98Þ

(indeed, if we had Md a2, we could use (94) and the definition of M to
show that M is strictly less than each of the three quantities on the right
hand side of (95), which would be a contradiction).

In a similar way, (94), (96), (98) and the definition of M imply that

M < b3:ð99Þ

By (98) and (99), we have M ¼ g5, which contradicts (97) (using (98) and
(99) once again). This completes the proof of (85)–(89).

Replacing s by s2 in the parametrization of the wedge, we may
assume, without loss of generality, that b2 is even. The first coe‰cients
of the wedge must satisfy the following equations (as above we change
the notation by c4 ¼ c4;b2 , c5 ¼ c5;b2=2, b3 ¼ b3;b2=2 and a2 ¼ a2;b2=2):

c23 þ b32 ¼ 0

2c3c4 þ 3b22b3 ¼ 0

c24 þ 2c3c5 þ 3b22b4 þ 3b2b
2
3 þ a42 ¼ 0

2c4c5 þ 2c3c6 þ b33 þ 6b2b3b4 þ 4a32a3 ¼ 0

c25 þ 2c4c6 þ 3b23b4 þ 3b2b
2
4 þ 6a22a

2
3 ¼ 0

2c5c6 þ 3b3b
2
4 þ 4a2a

3
3 ¼ 0

as well as

c26 þ b34 þ a43 ¼ 0:ð100Þ

We view this system as a system of six homogeneous equations over
L in six unknowns a2, b2, b3, c3, c4, c5. The coe‰cients of the system
are polynomials in a3, b4, c6, which are viewed as fixed elements of
KðN6ð12ÞÞ. As in the previous non-inclusion, to prove that this system
has no non-zero solutions, it su‰ces to find specific values of a3, b4, c6 in
k satisfying (76), such that the resulting system of six equations has no
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non-zero solutions. In this case, we take a3 ¼ 0, c6 ¼ 1 and b4 a non-
real root of z3 ¼ �1. We obtain:

c23 þ b32 ¼ 0

2c3c4 þ 3b22b3 ¼ 0

c24 þ 2c3c5 þ 3ð1=2�
ffiffiffi
3

p
=2iÞb22 þ 3b2b

2
3 þ a42 ¼ 0

2c4c5 þ 2c3 þ b33 þ 6ð1=2�
ffiffiffi
3

p
=2iÞb2b3 ¼ 0

c25 þ 2c4 þ 3ð1=2�
ffiffiffi
3

p
=2iÞb23 þ 3ð1=2�

ffiffiffi
3

p
=2iÞ2b2 ¼ 0

2c5 þ 3ð1=2�
ffiffiffi
3

p
=2iÞ2b3 ¼ 0

Then we ask Maple to solve it and the solution that Maple gives
is: fc5 ¼ 0; b3 ¼ 0; a2 ¼ 0; c4 ¼ 0; c3 ¼ 0; b2 ¼ 0g, so that the unique
solution is the zero one.

(6) � N6 QN2.
In this case we truncate at the order o6 ¼ 12. We argue by con-

tradiction: suppose that N6ð12ÞHN2ð12Þ. Let f62 be a wedge with the
generic arc living in N2 and the special arc mapping to the generic point
of N6ð12Þ. The following equations vanish on N2ð12Þ:

b1 ¼ c1 ¼ 0

g2;2 ¼ c2 � ia21 ¼ 0

f2;3 ¼ c3 � 2ia1a2 ¼ 0

f2;6 ¼ c23 þ 2c2c4 þ b32 þ 4a31a3 þ 6a21a
2
2 ¼ 0

f2;7 ¼ 2c3c4 þ 2c2c5 þ 3b22b3 þ 4a31a4 þ 12a21a2a3 þ 4a32a1 ¼ 0

..

.

f2;11 ¼ 3b22b7 þ � � � þ 2c2c9 þ � � � þ 4a32a5 þ � � � ¼ 0;

We write it in the following way:

b1 ¼ c1 ¼ 0

g2;2 ¼ c2 � ia21 ¼ 0

f2;3 ¼ c3 � 2ia1a2 ¼ 0

f2;6 ¼ b32 þ 2ia21ðc4 � ia22 � 2ia1a3Þ ¼ 0

f2;7 ¼ 3b22b3 þ 2ia21ðc5 � 2ia2a3 � 2ia1a4Þ þ 4ia1a2ðc4 � ia22 � 2ia1a3Þ ¼ 0

f2;8 ¼ 3b22b4 þ 3b2b
2
3 þ 2ia21ðc6 � ia23 � 2ia2a4 � 2ia1a5Þ

þ 4ia1a2ðc5 � 2ia2a3 � 2ia1a4Þ þ ðc4 þ ia22 þ 2ia1a3Þðc4 � ia22 � 2ia1a3Þ ¼ 0
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f2;9 ¼ b33 þ 3b22b5 þ 6b2b3b4 þ 2ia21ðc7 � 2ia3a4 � 2ia2a5 � 2ia1a6Þ

þ 4ia1a2ðc6 � ia23 � 2ia2a4 � 2ia1a5Þ

þ ðc4 þ ia22 þ 2ia1a3Þðc5 � 2ia2a3 � 2ia1a4Þ

þ ðc5 þ 2ia2a3 þ 2ia1a4Þðc4 � ia22 � 2ia1a3Þ ¼ 0

f2;10 ¼ 3b22b6 þ 3b23b4 þ 3b24b2 þ 6b2b3b5

þ 2ia21ðc8 � ia24 � 2ia3a5 � 2ia2a6 � 2ia1a7Þ
þ 4ia1a2ðc7 � 2ia3a4 � 2ia2a5 � 2ia1a6Þ

þ ðc4 þ ia22 þ 2ia1a3Þðc6 � ia23 � 2ia2a4 � 2ia1a5Þ
þ ðc5 þ 2ia2a3 þ 2ia1a4Þðc5 � 2ia2a3 � 2ia1a4Þ

þ ðc6 þ ia23 þ 2ia2a4 þ 2ia1a5Þðc4 � ia22 � 2ia1a3Þ ¼ 0

f2;11 ¼ 3b22b7 þ 6b2b3b6 þ 6b2b4b5 þ 3b3b
2
4

þ 3b23b5 þ 2ia21ðc9 � 2ia4a5 � 2ia3a6 � 2ia2a7 � 2ia1a8Þ

þ 4ia1a2ðc8 � ia24 � 2ia3a5 � 2ia2a6 � 2ia1a7Þ

þ ðc4 þ ia22 þ 2ia1a3Þðc7 � 2ia3a4 � 2ia2a5 � 2ia1a6Þ

þ ðc5 þ 2ia2a3 þ 2ia1a4Þðc6 � ia23 � 2ia2a4 � 2ia1a5Þ

þ ðc6 þ ia23 þ 2ia2a4 þ 2ia1a5Þðc5 � 2ia2a3 � 2ia1a4Þ

þ ðc7 þ 2ia3a4 þ 2ia2a5 þ 2ia1a6Þðc4 � ia22 � 2ia1a3Þ ¼ 0:

The following equations come from the equations of N6ð12Þ:
a10 ¼ a20 ¼ b10 ¼ b20 ¼ b30 ¼ c10 ¼ c20 ¼ c30 ¼ c40 ¼ c50 ¼ 0:

In this case, because of the number of variables, the computation is more
di‰cult than for the other cases. We want to compute or at least bound
below the rational numbers

a 0
2 :¼

a2

a1
ð101Þ

b 0
2 :¼

b2
a1

ð102Þ

b 0
3 :¼

b3
a1

ð103Þ

g 04 :¼
g4
a1

ð104Þ

g 05 :¼
g5
a1

:ð105Þ
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We use the following dichotomy.
If a2 d

1
2 a1 then we have

b2 d a1ð106Þ

b3 d
1

2
a1ð107Þ

g4 d a1ð108Þ

g5 d
1

2
a1:ð109Þ

We try to construct a wedge as usual. Replacing s by s2 in the
parametrization of the wedge, we may assume, without loss of generality,
that a1 is even. We deviate from our standard notation (only for the
purposes of the case a2 d

1
2 a1), in that we put a2 ¼ a2;a1=2 b2 ¼ b2;a1 ,

b3 ¼ b3;a1=2, c4 ¼ c4;a1 , c5 ¼ c5;a1=2.
In this case the first equations are of the form

b32 þ 2ia21ðc4 � ia22 � 2ia1a3Þ ¼ 0

3b22b3 þ 2ia21ðc5 � 2ia2a3Þ þ 4ia1a2ðc4 � ia22 � 2ia1a3Þ ¼ 0

3b22b4 þ 3b2b
2
3 þ 2ia21ðc6 � ia23Þ þ 4ia1a2ðc5 � 2ia2a3Þ

þ ðc4 þ ia22 þ 2ia1a3Þðc4 � ia22 � 2ia1a3Þ ¼ 0

b33 þ 6b2b3b4 þ 4ia1a2ðc6 � ia23Þ þ ðc4 þ ia22 þ 2ia1a3Þðc5 � 2ia2a3Þ

þ ðc5 þ 2ia2a3Þðc4 � ia22 � 2ia1a3Þ ¼ 0

3b24b2 þ 3b23b4 þ ðc4 þ ia22 þ 2ia1a3Þðc6 � ia23Þ

þ ðc5 þ 2ia2a3Þðc5 � 2ia2a3Þ þ ðc6 þ ia23Þðc4 � ia22 � 2ia1a3Þ ¼ 0

3b3b
2
4 þ ðc5 þ 2ia2a3Þðc6 � ia23Þ þ ðc6 þ ia23Þðc5 � 2ia2a3Þ ¼ 0:

Thanks to XMaple, taking in this case b4 ¼ 0 and a3 ¼ 1 one can show
that the above system of equations, combined with the first equation
of N6,

a43 þ b34 þ c26 ¼ 0;

has no non-zero solutions, so the wedge cannot be constructed.
From now on we shall assume that a2 <

1
2 a1. One always has

b2 d
2
3 a1 thanks to the equation f2;6.
For each equation, let us write the m-adic orders of monomials

appearing in it, which can possibly be the lowest for this equation:

f2;6 : 3b2; 2a1 þ g4; 2a1 þ 2a2

f2;7 : 2b2 þ b3; 2a1 þ g5; 2a1 þ a2; a1 þ a2 þ g4; a1 þ 3a2
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f2;8 : 2b2; b2 þ 2b3; 2a1; a1 þ a2 þ g5; a1 þ 2a2; 2g4; 4a2

f2;9 : 3b3; 2b2; b2 þ b3; g5 þ g4; 2a2 þ g5; g4 þ a2; 3a2

f2;10 : b2; 2b3; g4; 2a2; 2g5

f2;11 : b2; b3; g4; a2; g5

Note: Here we have used the fact (easy to prove) that the follow-
ing four expressions have m-adic value equal to zero: c6 � ia23 � 2ia2a4 �
2ia1a5, c6 þ ia23 þ 2ia2a4 þ 2ia1a5, c7 � 2ia3a4 � 2ia2a5 � 2ia1a6, c7 þ
2ia3a4 þ 2ia2a5 þ 2ia1a6.

Suppose that b3 d
1
2 a1ð> a2Þ.

Now, if g4 c a2 then from the equation f2;11 we see that g5 d g4
(otherwise the term with m-adic value g5 would be the only dominant
term). But then the term of value g4 is the only dominant term in f2;10,
a contradiction; so

g4 > a2:

Then the m-adic values of possible dominant terms are:

f2;6 : 3b2; 2a1 þ g4; 2a1 þ 2a2

f2;7 : 2b2 þ b3; 2a1 þ g5; a1 þ a2 þ g4; a1 þ 3a2

f2;8 : 2b2; b2 þ 2b3; a1 þ a2 þ g5; 2g4; 4a2

f2;9 : 3b3; 2b2; b2 þ b3; 3a2; g5 þ g4; 2a2 þ g5; g4 þ a2

f2;10 : b2; g4; 2a2; 2g5

f2;11 : a2; g5:

From f2;11 we have a2 ¼ g5.
� First case:

Suppose that g4 > 2a2.
Then the dominant values are:

f2;6 : 3b2; 2a1 þ 2a2

f2;7 : 2b2 þ b3; a1 þ 3a2

f2;8 : 2b2; b2 þ 2b3; 4a2

f2;9 : 2b2; b2 þ b3; 2a2 þ g5 ¼ 3a2

f2;10 : b2; 2a2; 2g5

f2;11 : a2; g5

So by f2;6 we have: 3b2 ¼ 2a1 þ 2a2.
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And by f2;7 we have:

2b2 þ b3 ¼ a1 þ 3a2:

The two equations imply that b3 <
1
2 a1, a contradiction.

� Second case:
Suppose that g4 < 2a2.
Then the possible dominant values are:

f2;6 : 3b2; 2a1 þ g4

f2;7 : 2b2 þ b3; a1 þ g4 þ a2

f2;8 : 2b2; b2 þ 2b3; 2g4

f2;9 : 2b2; b2 þ b3; a2 þ g4

f2;10 : b2; g4

f2;11 : a2; g5

So by f2;6 and f2;10 we have: b2 ¼ a1 ¼ g4, a contradiction (as
a2 <

1
2 a1).

� Last case: g4 ¼ 2a2.
The dominant values are:

f2;6 : 3b2 ¼ 2a1 þ g4 ¼ 2a1 þ 2a2

f2;7 : a2 þ g4 ¼ a1 þ 3a2

f2;8 : 2g4 ¼ 4a2

f2;9 : g5 þ g4 ¼ 2a2 þ g5 ¼ g4 þ a2 ¼ 3a2

f2;10 : g4 ¼ 2a2 ¼ 2g5

f2;11 : a2 ¼ g5

Then the first equations of the wedge are:

f2;6 ¼ b32 þ 2ia21ðc4 � ia22Þ ¼ 0

f2;7 ¼ 4ia1a2ðc4 � ia22Þ ¼ 0

f2;8 ¼ ðc4 þ ia22Þðc4 � ia22Þ ¼ 0

f2;9 ¼ ðc4 þ ia22Þðc5 � 2ia2a3Þ þ ðc5 þ 2ia2a3Þðc4 � ia22Þ ¼ 0

f2;10 ¼ ðc4 þ ia22Þðc6 � ia23Þ þ ðc5 þ 2ia2a3Þðc5 � 2ia2a3Þ þ ðc6 þ ia23Þðc4 � ia22Þ ¼ 0

f2;11 ¼ ðc5 þ 2ia2a3Þðc6 � ia23Þ þ ðc6 þ ia23Þðc5 � 2ia2a3Þ ¼ 0:

f6;12 ¼ a43 þ b34 þ c26 ¼ 0

By definitions, we are looking for solutions with a1, a2, b2 di¤erent
from 0. It is easy to see that this is impossible already from the
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equations f2;6 and f2;7. Indeed, since a1; a2 0 0 we have c4 � ia22 ¼ 0 by

f2;7. Then f2;6 shows that b2 ¼ 0. This completes the proof of the
non-existence of the wedge in the case b3 d

1
2 a1.

Thus we will assume from now on that b3 <
1
2 a1. Then b2 > b3 and

the possible dominant values are:

f2;6 : 3b2; 2a1 þ g4; 2a1 þ 2a2

f2;7 : 2b2 þ b3; 2a1 þ g5; a1 þ a2 þ g4; a1 þ 3a2

f2;8 : 2b2; b2 þ 2b3; a1 þ a2 þ g5; 2g4; 4a2

f2;9 : 3b3; b2 þ b3; g5 þ g4; 2a2 þ g5; g4 þ a2; 3a2

f2;10 : b2; 2b3; g4; 2a2; 2g5

f2;11 : b3; g4; a2; g5

� Suppose that g5 d
1
2 a1.

– If

g4 c a2ð110Þ

then b3 c a2 by f2;11. Hence g4 becomes the only dominant value in
f2;10 which is not possible. Thus g4 > a2, which implies that b3 ¼ a2
by f2;11.

– If

g4 < 2a2;ð111Þ

then b2 ¼ g4 by f2;10 and hence b2 ¼ a1 by f2;6. Thus g4 ¼ a1,
which contradicts (111) and the fact that a2 <

1
2 a1.

– If g4 > 2a2 then b2 ¼ 2a2 by f2;10 and hence a2 ¼ 2
5 a1, b2 ¼ 4

5 a1 by
f2;6. Using the fact that g5 > 0, we see that in f2;7, 2b2 þ a2 is the
only dominant value, a contradiction.

– The remaining case is g4 ¼ 2a2. The dominant values are:

f2;6 : 3b2 d 2a1 þ g4 ¼ 2a1 þ 2a2

f2;7 : 2b2 þ b3 d a1 þ a2 þ g4 ¼ a1 þ 3a2

f2;8 : 2b2; b2 þ 2b3; 2g4 ¼ 4a2

f2;9 : 3b3; b2 þ b3; g4 þ a2 ¼ 3a2

f2;10 : b2 d 2b3 ¼ g4 ¼ 2a2

f2;11 : b3 ¼ a2

If b2 c 2a2 then by f2;6 we would have b2 d a1 and hence a2 d
1
2 a1,

a contradiction. Thus b2 > 2a2.
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Claim. The only dominant values in f2;7 are

a1 þ a2 þ g4 ¼ a1 þ 3a2

Proof of Claim. If not, we would have

2b2 þ b3 ¼ 2b2 þ a2 ¼ a1 þ 3a2

Then 2b2 ¼ a1 þ 2a2 c 3b2 � a1 (by f2;6), thus b2 d a1.
We obtain 2b2 þ b3 d 2a1 þ b3 ¼ 2a1 þ a2 > a1 þ 3a2 a contra-

diction. This proves the Claim.
Then the first two equations of the wedge are

f2;6 ¼ b32 þ 2ia21ðc4 � ia22Þ ¼ 0

f2;7 ¼ 4ia1a2ðc4 � ia22Þ ¼ 0

so there are no solutions with b2 0 0, a2 0 0, a1 0 0, contradiction.
� Thus g5 <

1
2 a1.

First of all, we claim that g4 cannot be dominant in f2;11. Indeed,
suppose it was, in other words, suppose that g4 cminfb3; a2; g5g. In
particular,

g4 <
1

2
a1:ð112Þ

Then by f2;10 we have

b2 ¼ g4:ð113Þ
But then by f2;6 we have

b2 ¼ a1;ð114Þ

which contradicts (112) and (114). This proves that

g4 > minfb3; a2; g5g:ð115Þ

We continue to study the possible dominant values in f2;11. There are
two cases to consider.
– First case: g5 ¼ b3 < a2.

The possible dominant values are:

f2;6 : 3b2; 2a1 þ g4; 2a1 þ 2a2

f2;7 : 2b2 þ b3; 2a1 þ g5; a1 þ a2 þ g4; a1 þ 3a2

f2;8 : 2b2; b2 þ 2b3; a1 þ a2 þ g5; 2g4; 4a2

f2;9 : 3b3; b2 þ b3; g5 þ g4; 2a2 þ g5

f2;10 : b2; 2b3; g4; 2g5

f2;11 : b3; g5
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1) If g4 c 2g5 then g4 < 2a2 < a1,

3b2 ¼ 2a1 þ g4ð116Þ

by f2;6. Hence

b2 < a1;ð117Þ

so

2b2 þ b3 ¼ a1 þ a2 þ g4

by f2;7. Thus

b3 þ a1 ¼ a2 þ b2:ð118Þ

By (117) and (116) we have

g4 ¼ 3b2 � 2a1 < b2:ð119Þ

Then 3b3 ¼ g4 þ g5 (that is, g4 ¼ 2b3) by f2;9 and by f2;8 we obtain

b2 ¼ g4;

contradicting (119).
2) Thus g4 > 2g5.
We have b2 > 2g5, because otherwise 3b2 would be the only

dominant value in f2;6. Then the unique dominant value in f2;9 is
3b3, a contradiction. This completes the proof in the first case.

– Second case: Thus a2 c g5 and a2 c b3.
Then g4 > a2 by (115).
So the possible dominant values are:

f2;6 : 3b2; 2a1 þ g4; 2a1 þ 2a2

f2;7 : 2b2 þ b3; a1 þ a2 þ g4; a1 þ 3a2

f2;8 : 2b2; b2 þ 2b3; 2g4; 4a2

f2;9 : 3b3; b2 þ b3; g5 þ g4; 2a2 þ g5; g4 þ a2; 3a2

f2;10 : b2; 2b3; g4; 2a2; 2g5

f2;11 : b3; a2; g5

1) If

g4 < 2a2ð120Þ

then

g4 ¼ b2ð121Þ
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by f2;10. From f2;6 we obtain the equality (116), which implies

b2 ¼ a1;ð122Þ

which contradicts (120) and (121).
2) Suppose g4 > 2a2. By looking at the dominant terms of f2;6

and f2;7 we obtain again the equality (118). If b2 c 2a2 then by f2;6
we would have a2 d

1
2 a1, which is false. Hence b2 > 2a2. Then by

f2;6 we have b2 < a1 and now (118) implies b3 > a2. Then the only
possible dominant value in f2;8 is 4a2, a contradiction.

3) So g4 ¼ 2a2.
Then

b2 > 2a2ð123Þ

(if not 3b2 would be the only dominant value in f2;6). Using f2;6 and
f2;7 we see that

2b2 þ b3 d
4

3
ða1 þ a2Þ þ a2ð124Þ

¼ a1 þ 2a2 þ
1

3
ða1 þ a2Þ > a1 þ 3a2:

Let us do another trichotomy:
� A) Suppose a2 ¼ g5 < b3
The possible dominant values are:

f2;6 : 3b2 d 2a1 þ g4 ¼ 2a1 þ 2a2

f2;7 : a1 þ a2 þ g4 ¼ a1 þ 3a2

f2;8 : 2g4 ¼ 4a2

f2;9 : g5 þ g4 ¼ 2a2 þ g5 ¼ g4 þ a2 ¼ 3a2

f2;10 : g4 ¼ 2a2 ¼ 2g5

f2;11 : a2 ¼ g5

If 3b2 > 2a1 þ 2a2 then the first equations of any wedge with b4 0 0
are:

f2;6 ¼ 2ia21ðc4 � ia22Þ ¼ 0

f2;7 ¼ 4ia1a2ðc4 � ia22Þ ¼ 0

f2;8 ¼ ðc4 þ ia22Þðc4 � ia22Þ ¼ 0

f2;9 ¼ ðc4 þ ia22Þðc5 � 2ia2a3Þ þ ðc5 þ 2ia2a3Þðc4 � ia22Þ ¼ 0

f2;10 ¼ ðc4 þ ia22Þðc6 � ia23Þ þ ðc5 þ 2ia2a3Þðc5 � 2ia2a3Þ þ ðc6 þ ia23Þðc4 � ia22Þ ¼ 0

f2;11 ¼ ðc5 þ 2ia2a3Þðc6 � ia23Þ þ ðc6 þ ia23Þðc5 � 2ia2a3Þ ¼ 0:

f6;12 ¼ a43 þ b34 þ c26 ¼ 0:
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Thus c4 � ia22 ¼ 0 and the last four equations become:

f2;9 ¼ ðc4 þ ia22Þðc5 � 2ia2a3Þ ¼ 0

f2;10 ¼ ðc4 þ ia22Þðc6 � ia23Þ þ ðc5 þ 2ia2a3Þðc5 � 2ia2a3Þ ¼ 0

f2;11 ¼ ðc5 þ 2ia2a3Þðc6 � ia23Þ þ ðc6 þ ia23Þðc5 � 2ia2a3Þ ¼ 0:

f6;12 ¼ a43 þ b34 þ c26 ¼ 0

Since b4 0 0, we have c6 � ia23 0 0 and c6 � ia23 0 0. As well,
c5 0 0, a2 0 0, c4 0 0 which is incompatible with the above equa-
tions.

Thus 3b2 ¼ 2a1 þ 2a2. The first equations of the wedge are:

f2;6 ¼ b32 þ 2ia21ðc4 � ia22Þ ¼ 0

f2;7 ¼ 4ia1a2ðc4 � ia22Þ ¼ 0

Thus as a1 0 0 and a2 0 0, we have c4 � ia22 ¼ 0 and then b2 ¼ 0
(not allowed by definition).

Thus the case A) is impossible and a2 ¼ b3.
� B) a2 ¼ b3 < g5.

Using (123) and (124), we see that the possible dominant values
are:

f2;6 : 3b2 d 2a1 þ g4 ¼ 2a1 þ 2a2

f2;7 : a1 þ a2 þ g4 ¼ a1 þ 3a2

f2;8 : 2g4 ¼ 4a2

f2;9 : 3b3 ¼ g4 þ a2 ¼ 3a2

f2;10 : g4 ¼ 2a2 ¼ 2b3

f2;11 : a2 ¼ b3

Suppose that 3b2 ¼ 2a1 þ g4 ¼ 2a1 þ 2a2, then the first equations of
the wedge are:

f2;6 ¼ b32 þ 2ia21ðc4 � ia22Þ ¼ 0ð125Þ

f2;7 ¼ 4ia1a2ðc4 � ia22Þ ¼ 0ð126Þ

Since a1 0 0 and a2 0 0, we obtain c4 � ia22 ¼ b2 ¼ 0, which gives
the desired contradiction.
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Therefore 3b2 > 2a1 þ g4 ¼ 2a1 þ 2a2. The first equations are:

f2;6 ¼ 2ia21ðc4 � ia22Þ ¼ 0

f2;7 ¼ 4ia1a2ðc4 � ia22Þ ¼ 0

f2;8 ¼ ðc4 þ ia22Þðc4 � ia22Þ ¼ 0

f2;9 ¼ b33 þ 4a32a3 ¼ 0

f2;10 ¼ ðc4 þ ia22Þðc6 � ia23Þ þ ðc4 � ia22Þðc6 þ ia23Þ þ 3b23b4 ¼ 0

f2;11 ¼ 4a2a
3
3 þ 3b3b

2
4 ¼ 0:

f6;12 ¼ a43 þ b34 þ c26 ¼ 0

First we see that c4 � ia22 ¼ 0 and the equations become:

c4 � ia22 ¼ 0

f2;9 ¼ b33 þ 4a32a3 ¼ 0

f2;10 ¼ 2ia22ðc6 � ia23Þ þ 3b23b4 ¼ 0

f2;11 ¼ 4a2a
3
3 þ 3b3b

2
4 ¼ 0:

f6;12 ¼ a43 þ b34 þ c26 ¼ 0

By XMaple (one can also do it by hand, as in f2;11 the equation is
linear in b3 and a2), these equations imply that b3 ¼ 0, which is not
allowed by definition of b3. Thus case B) is also impossible and the
only remaining case to consider is

� C)

a2 ¼ b3 ¼ g5 <
1

2
a1;

2

3
a1 c b2 and g4 ¼ 2a2:

Using (123) and (124), we see that the possible dominant values
are:

f2;6 : 3b2 d 2a1 þ g4 ¼ 2a1 þ 2a2

f2;7 : a1 þ a2 þ g4 ¼ a1 þ 3a2

f2;8 : 2g4 ¼ 4a2

f2;9 : 3b3 ¼ g4 þ a2 ¼ 3a2 ¼ g4 þ g5 ¼ 2a2 þ g5

f2;10 : g4 ¼ 2a2 ¼ 2b3 ¼ 2g5

f2;11 : a2 ¼ b3 ¼ g5

If 3b2 ¼ 2a1 þ 2a2 then the first two equations of the wedge are (125)
and (126). We obtain the same contradiction as before: since a1 0 0
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and a2 0 0, we have c4 � ia22 ¼ 0 and then b2 ¼ 0 (not allowed by
definition).

Finally, it remains to solve the case when

3b2 > 2a1 þ 2a2:

The equations of the wedge are:

f2;6 ¼ 2ia21ðc4 � ia22Þ ¼ 0

f2;7 ¼ 4ia1a2ðc4 � ia22Þ ¼ 0

f2;8 ¼ ðc4 þ ia22Þðc4 � ia22Þ ¼ 0

f2;9 ¼ ðc4 þ ia22Þðc5 � 2ia2a3Þ þ b33 ¼ 0

f2;10 ¼ ðc4 þ ia22Þðc6 � ia23Þ þ ðc5 þ 2ia2a3Þðc5 � 2ia2a3Þ þ 3b23b4 ¼ 0

f2;11 ¼ ðc5 þ 2ia2a3Þðc6 � ia23Þ þ ðc6 þ ia23Þðc5 � 2ia2a3Þ þ 3b3b
2
4 ¼ 0:

f6;12 ¼ a43 þ b34 þ c26 ¼ 0

As by definition a1 0 0, we have c4 � ia22 ¼ 0 and the last four
equations become:

f2;9 ¼ 2ia22ðc5 � 2ia2a3Þ þ b33 ¼ 0

f2;10 ¼ 2ia22ðc6 � ia23Þ þ ðc5 þ 2ia2a3Þðc5 � 2ia2a3Þ þ 3b23b4 ¼ 0

f2;11 ¼ ðc5 þ 2ia2a3Þðc6 � ia23Þ þ ðc6 þ ia23Þðc5 � 2ia2a3Þ þ 3b3b
2
4 ¼ 0:

f6;12 ¼ a43 þ b34 þ c26 ¼ 0

By XMaple, one obtains b3 ¼ 0, which is not allowed by definition of
b3. So in this last case one cannot construct the wedge either. This
completes the proof of the last non-inclusion. r
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