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Abstract

This paper deals with the Nash problem, which consists in proving that the number
of families of arcs on a germ of a normal isolated singularity coincides with the number
of essential components of the exceptional set in any resolution of this singularity. We
propose a program for an affirmative solution of the Nash problem for special types
of normal isolated hypersurface singularities. We illustrate this program by giving an
affirmative solution of the Nash problem for the rational double point Eq. We also
prove some results on the algebraic structure of the space of k-jets of an arbitrary
hypersurface singularity and apply them to the specific case of Eg.

1. Introduction

In this paper, k is an algebraically closed field of characteristic 0.

Let (S,0) be a germ of a normal isolated singularity over k and
n:(X,E) — (S,0) a divisorial resolution of singularities of (S,0) (this means
that X is a smooth variety and E = 7~'(0) is of pure codimension one). Let

(1) E:UEi

ieA

be the decomposition of E into its irreducible components. The set £ has two
kinds of irreducible components: essential and inessential. For each i let g,
denote the divisorial valuation determined by E;.

DeriniTION 1.1. We say that E; is an essential divisor if for any other
divisorial resolution 7’ : (X, E’) — (S,0) the center of x; on X’ is an irreducible
component of E’. The divisor E; is inessential if it is not essential.

Remark 1.2. 1In general (that is, when dim S > 3) it is quite difficult to show
that a given component is essential (see [29] for a discussion of this question
as well as some sufficient conditions for essentiality). In dimension two each
exceptional divisor of the minimal resolution is essential.
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In order to study the resolution X of S, J. Nash (around 1968, published
in 1995 [23]) introduced the space H of arcs passing through the singular
point 0.

DErFINITION 1.3. An arc is a k-morphism from the local ring Us to the
formal power series ring Kk[[7]].

Intuitively, an arc should be thought of as a parametrized formal curve,
contained in S and passing through the singular point O.

Nash had shown that H has finitely many irreducible components, called
families of arcs, and that there exists a natural injective map, now called the
Nash map, from the set of families of arcs to the set of essential divisors. The
celebrated Nash problem, posed in [23], is the question of whether the Nash map
is surjective.

Let us fix a divisorial resolution of singularities (X, E) — (S,0). Consider
the decomposition (1) of E into irreducible components, as above. Let A’ = A
denote the set which indexes the essential divisors.

M. Lejeune-Jalabert [17], inspired by Nash’s original paper [23], proposed
the following decomposition of the space H: for i e A’ let N; be the set of arcs
whose strict transform in X intersects the essential divisor E; transversally but
does not intersect any other exceptional divisor E;. M. Lejeune-Jalabert showed
that H = (J,_,/N; and the set N; is an irreducible algebraic subvariety of the
space of arcs; therefore the families of arcs are among the N;’s. Moreover there
are as many N; as essential divisors E;. Then the Nash problem reduces to
showing that the N;, i € A’, are precisely the irreducible components of H, that is,
to proving card(A")(card(A") — 1) non-inclusions:

PrOBLEM 1.4. Is it true that N; ¢ N; for all i # j?

This question has been answered affirmatively in the following special cases:
for A, singularities by Nash, for minimal surface singularities by A. Reguera
[30] (with other proofs by J. Fernandez-Sanchez [7] and C. Plénat [26]), for
sandwiched singularities by M. Lejeune-Jalabert and A. Reguera (cf. [18] and
[31]), for toric vareties by S. Ishii and J. Kollar ([14] using earlier work of C.
Bouvier and G. Gonzalez-Sprinberg [2] and [3]), for rational double points D,
by Plénat [26], for a family of non-rational surface singularities, as well as for
a family of singularities in dimension higher than 2 by P. Popescu-Pampu and
C. Plénat ([28], [29]).

In [14], S. Ishii and J. Kollar gave a counter-example to the Nash problem in
dimension greater than or equal to 4.

In 2008, M. Lejeune and A. Reguera [19] give a characterization of essential
components which belong to the image of the Nash map and deduce that an
irreducible exceptional divisor which is not uniruled is in the image of the Nash
map (for uncountable fields). They also deduce that for general surface singu-
larities over C Nash problem would follow from the special case of quasi-rational
surface singularities.
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In this paper we prove the following theorem:

THEOREM 1.5. The Nash problem has an affirmative answer for the rational
double points Eg.

Once this theorem is proved, we have the following corollary (cf. [26] for a
proof):

CoROLLARY 1.6. Let (S,0) be a normal surface singularity whose dual graph
is obtained from K¢ by increasing the weights (that is, allowing the exceptional
curves to have self-intersection numbers of the form —n for n>=2). Then the
problem also has an affirmative answer for (S,0).

But the principal aim of this paper is to present a general strategy for attack-
ing normal isolated hypersurface singularities which has so far been successful in
the case of D, ([27]) and E¢ (the present paper).

From now on, we shall restrict ourselves to the case of dimension 2. How-
ever, we note that our main technique, that of explicitly computing truncated
wedges on (S,0), generalizes in an obvious way to isolated normal hypersurface
singularities of any dimension. For this reason we hope that this paper will be
useful for studying the Nash problem in higher dimension.

Our study of the Nash problem for a normal 2-dimensional hypersurface
singularity with equation F = ch},x“yﬁz}’ =0 is divided into two main steps.
For the first step we use the following valuative criterion:

ProposITION 1.7.  Let (S,0) be an isolated singularity and E;, E; two essential
divisors. If there exists an element f in (s such that ordg, [ < ordg, f then
N; & N,

This result is stated and proved in ([26], Proposition 1.1) for arbitrary
singularities in any dimension. It was first proved by A. Reguera [30] in a
different, but equivalent formulation for rational surface singularities.

Remark 1.8. Proposition 1.7 allows us to prove at least half of the non-
inclusions appearing in Problem 1.4 in the case of rational surface singularities.
Indeed, let (S,0) be a rational surface singularity and E;, E; two distinct
irreducible exceptional curves on the minimal resolution X of S. Let
n=#A. Since the intersection matrix (E,.E;) is negative definite, there exists
a cycle on X of the form C =3} _,myE, such that

(2) mg >0, CE, <0 forall geA

In fact, n-tuples (mi,...,m,) of rational numbers satisfying (2) form an n-
dimensional cone in Q”, called the Lipman cone. There exists a vector in the
Lipman cone with integer coefficients such that m; # m;, otherwise the Lipman
cone would be contained in the (n — 1)-dimensional hyperplane n; =n;. Say,
m; < mj. Since (S,0) is rational, Artin’s theorem [1] tells us that there exists
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f € OUs.o with ordg, [ = m; and ordg, f = m;, so the non-inclusion N; ¢ N; is given
by the valuative criterion. This proves that for any pair 7, j € A, i # j, at least one
of the two non-inclusions N; ¢ N;, N; ¢ N; is given by the valuative criterion.

The second step consists in proving the remaining non-inclusions. For this,
we use the algebraic machinery developed in §3 of this paper. The idea is the
following: Let E; and E; be two exceptional divisors such that

(3) ordg, f < ordg, f for all f € Us.

For rational surface singularities, the negative definiteness of the intersection
matrix (E;.E;) implies that strict inequality holds for at least one f € ms o, so
N; ¢ N; by the valuative criterion (Proposition 1.7).
The opposite non-inclusion
) N #N,
cannot be obtained from the valuative criterion and must be proved separately.
Assume that (S,0) is a normal hypersurface singularity, embedded in the

three-dimensional affine space spec k[x, y,z]. An arc on (S,0) is described by
three formal power series

whose coefficients ay, by, ¢, satisfy infinitely many polynomial equations, ob-
tained as follows. Substitute the series (5) in F and write F(x(¢), y(¢),z(2)) =
Sy fila,byo)t'. Here a= (ax)iens b= (bi)rens ¢ = (ck)ren> and the f; are
polynomials in @, b and ¢. Let k!*”} denote the direct product of infinitely
many copies of k, indexed by a = (ax),cn: &= (bi)peny and ¢ = (ck)pen- We
think of k{“*¢} as an infinite-dimensional space over k with coordinates a, b, c.
Then H is defined inside k{“? <} by the equations f; = 0, / € N\{0}. Let I denote
the defining ideal of H in ki®*} that is, the ideal generated by (f) = (f}) Jon 1N
kla, b, c].

To each arc as above we can associate in a natural way a closed point of the

kla, b, c]

infinite-dimensional scheme # = Spec This scheme has the following

description as a projective limit of schemes of finite type.
k([4]
(1F+1)

Let us denote the set of all k-jets by H (k). The set H(k) can be naturally
identified with the set of closed points of a scheme of finite type, denoted by

DeriNITION 1.9. A k-jet is a k-morphism Os ¢ —
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A (k). With the natural maps py. : #(k) — #(k'), k' <k, called truncation
maps, the # (k) form a projective system whose inverse limit is #. The natural
maps p, : # — H(k) are also called truncation maps.

For a natural number k and i€ A, let N;(k) denote the image of N; in the
algebraic variety H(k) of k-jets of S.

We prove the non-inclusion (4) by contradiction: suppose that

©) NN

Clearly the inclusion (6) implies that N;(k) = N;(k). Therefore we may work
with #(k) for a sufficiently large k instead of /. The precise meaning of
“sufficiently large” depends on the specific singularity in question, as well as
on the particular non-inclusion (4) we want to show; below we will specify k
precisely in each case. Note that p, need not, in general, be surjective onto
H(k).

Let K(N;(k)) denote the field of rational functions of N;(k).

By the Curve Selection Lemma (Lemma 3.6 below) there exists a finite
extension L of K(N;(k)) and an L-wedge

L[z, ]]
(tk‘H)

such that the image of the special arc {s = 0} is the generic point of N;(k), while
the image of the general arc {s # 0} is an L-point of N;(k)\N;(k). For each pair
i, j such that the non-inclusion (4) does not follow from the valuative criterion
we study equations satisfied by an L-wedge (7) and prove that such an L-wedge
does not exist.

The paper is organized as follows: in §2 we recall the description of the
singularity E¢ we will use and carry out the first step of the proof using the
valuative criterion. In §3, we partially describe the spaces of k-jets H(k) of a
hypersurface singularity for a general k and apply this description to the specific
case of the Eg singularity. We also describe the image of a family of arcs in
the truncated space H(k). The last section is devoted to the second step of the
proof for E¢. Namely, we go one by one through the various non-inclusions (4)
which are not covered by the valuative criterion and prove the non-existence of
the L-wedge (7) as above in each case. On four occasions, when the resulting
system of equations is too complicated to solve by hand, we use MAPLE to
check that it has no non-trivial solutions.

Note that by passing to the k-truncation we avoid using A. Reguera’s non-
trivial theorem [31], which can be viewed as a version of the Curve Selection
Lemma for the pair of infinite dimensional schemes (N;, N;). In the present
paper, the usual Curve Selection Lemma for finite-dimensional algebraic varieties
suffices for our purposes.

(7) ¢ : Spec — S

1.1. Progress since the first version of this paper. Since the appearance of
the first version of this paper, the status of the Nash problem for surfaces has
changed completely.
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On November 16, 2010 Maria Pe Pereira (based on the work [5] of Javier
Fernandez de Bobadilla) solved the problem affirmatively for quotients of C* by
an action of finite group [24].

On January 30, 2011 Maximiliano Leyton-Alvarez gave an affirmative
solution for the following classes of normal hypersurfaces in C3: hypersurfaces
S(p,hy) given by the equation z”+ h,(x,y) =0, where h, is a homogeneous
polynomial of degree ¢ without multiple factors, and p > 2, ¢ > 2 are two rela-
tively prime integers. He also applied his methods to give new proofs for the
rational double points D,, E¢ and E; [20].

Finally, on February 22, 2011, Javier Fernandez de Bobadilla and Maria Pe
Pereira made public their affirmative solution of the Nash problem for all the
surface singularities [6].

Somewhat earlier, Ana Reguera announced a positive solution of the Nash
problem for the rational surface singularities, though at the moment of the
writing of this paper the details of her proof have not yet been made public in
written form.

In any case, all the methods are completely different. We hope that our
method will one day be useful in a more general context, not covered by the
above results, such as normal hypersurface singularities in C”.

We would like to thank the referee for a careful reading of the manuscript
and for several suggestions which helped improve the paper.

2. The singularity E¢ and the valuative criterion

The singularity Eg is, by definition, the hypersurface singularity defined in k*
by the equation F =z>+ 3 + x* =0.

The first graph in Figure 1 is the dual graph of Eg; the remaining five graphs
show the orders of vanishing of the functions x, y, z, z—ix? and z+ ix?> on
the exceptional curves E|, E;, Es, E4, Es and Eg. Although we do not have
a conceptual reason for considering these five functions and not others, these
functions will appear naturally below in our calculation of the wedges (note that
y3 = (z —ix?)(z +ix?)). The orders of vanishing of x, y, z, z—ix? and z + ix?

El 5 ) 5
(x) )
-2 =2 |2 2 =
E3 E5 E6 E4 E2 1 2 3 2 2 34 3 2
‘ 2
o—(Z)o—f—o—o (Z'—O—I—O—OmZ) | '(Z:X.)—I—.—.
2 4 6 4 2 2 4 6 5 4

3
4 5 6 4 2

FiGURE 1. Dual graph of E¢ and order of the functions x, y, z, z—ix?> and z + ix?
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| T Eg
/
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FIGURE 2. The partial order for Eg.

E;

on the exceptional curves Ej, E,, E3, E4, Es and Eg are calculated explicitly by
considering the four successive point blowings up needed for the resolution of
the E¢ singularity and computing the multiplicities in coordinates at each step.

Consider the following partial ordering on the set {Ei, E», Es, E4, Es, E¢}.
We say that

(8) E;i <E

if for all f e mg o the inequality (3) holds (as explained in Remark 1.8, together
with the rationality of Eg this implies that strict inequality holds in (3) for some
fe ms,o)-

Using the functions x, y, z, z—ix*> and z +ix?, we see that our partial
ordering contains at most the inequalities shown in Figure 2.

Here an inequality (8) is represented by placing E; to the left of E;. We will
now show that Figure 2 shows the entire partial ordering: this is all the infor-
mation we can derive from comparing ordg, f* with ordg, f for various f € mg .
Indeed, take an element f emso and let p; = ordg, f, i€ {l,...,6}. Our de-
scription of the partial ordering follows from the following Proposition:

ProposITION 2.1. We have

3
) P < 51’4
3
(10) P < EPS
4
(11) P < §P5
4
(12) P < §P4
5
(13) P4, Ps < 6176
2

(14) P < §P6~
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Proof.  Write the zero cycle (n*f), on X as F = Zle piE; + C, where the
support of C contains no exceptional curves E;. The inequalities F.E; <0,
ie{l,...,6}, translate into

(15) 2p1 = ps

(16) 2p3 = ps

(17) 2py = pa

(18) 2ps = p3 + pe

(19) 2ps = p2+ pe

(20) 2p6 = p1 + pa+ ps.

Now, (9) follows immediately from (17) and (19). The inequality (10) holds by
symmetry. The inequality (14) now follows from (20), (9) and (10). The in-
equality ps < % pe follows from (20), (9) and (15), and ps < % D¢ 1s obtained by
symmetry. Therefore we have (13). Finally, (11) follows from (18) and (13).
The inequality (12) is obtained by symmetry. ]

The valuative criterion proves all the non-inclusions (4) such that either
E; < E; or E; and E; are not comparable in the partial ordering. By symmetry,
to complete the solution of the Nash problem for Eg, it is sufficient to show the
following non-inclusions:

(21) NN W
(22) P
(23) N ¢ Wi,

For these non-inclusions we work in the space of k-jets of the singularity Eg
(with k depending on the non-inclusion). Let Z and 2 be two prime ideals
in the coordinate ring of the space H(k) of k-jets such that

(24) Ni(k) = V(#) and
(25) Nj(k) = V(Z).-

In order to prove that N; ¢ ]Vj, we show that Zy ¢ Zy. To do this, we partially
describe the ideals % and Zj and the space H(k) of k-jets. This is the aim
of §3.

3. The space of k-jets of a hypersurface singularity

In this section we first recall some lemmas about hypersurface singularities,
found in [26]. We then study the image of a family of arcs in the truncation
spaces H (k).
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In what follows we will look at a hypersuface singularity defined by

x Y,z an/f}Xy

embedded in k® with a singularity at 0.
Assume that f is irreducible.

3.1. Notation. Let N; be the set of arcs determined by the exceptional
divisor E;, as defined in the introduction.

* For an element g € (s o, let y,;(g) be the order of vanishing of gox on E;.

* Let Ry :k[a],...,ak,bl,...,bk,C],...,Ck].

* For ieA, let o; = min{oys;(x) + B () + yui(2) | copy # O}

*ForieA, peN, let

0ip = min{[(« — 1)g;(x) + Bri(y) + y1;(2)] + p,
o (x) + (B — Dy(¥) + y14(2)] + p,
oy (x) + P (v) + (7 = Das(2)] + p | capy # 0}
* Let f; be the coefficient of ¢/ in (fo¢) = ((% y(1),z(1)) = 0.

* Let f; denote the unique element of Kkfa, S aiy by, br,
Cu(z),---,c1] such that f; = f; modulo the 1dea1 (ar, ... a,(x-1,
b, .. by(y)-1,¢1,- -, ¢4 ()—1) (here we adopt the obvious convention that
the list a,(y),...,a is considered empty whenever x;(x) >/, and similarly

for the b and c¢ coefficients).

3.2. The k-jets scheme. Fix an integer k > 0.

Any k-jet ¢(r) passing through the singularity can be represented by three
polynomials of degree k, ¢(t) = (x(2), y(£),2(£)) = (art + - - -+ apt*, byt + - - -+
brtk cit + -+ ct*) (because the singularity is at 0), satisfying the algebraic
constraints given by fo¢=0. Then {f; =0,...,f; =0} are the equations de-
fining the k-jet scheme H(k) in k. Below we shall describe the equations
{fi=0,..., fi =0} more explicitly.

Let [/, m, n be integers such that there exists an exceptional divisor E;
with

(26) () =1
(27) wi(y) =m
(28) #i(z) = n.

Let K be the subset of the k-jet scheme defined in H(k) by the ideal
(al,...,al_l,bl,...,bm_l,cl,...,c,,_l).
Let r be the smallest integer such that

frd(ar,...,ai-1,b1, .. byt c1y e Cut).
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The subspace K of H(k) (k> r) is defined by
(aty .. ar1,b1, . by, cty Gty fro oo fi)
in k3.
Then one can write, for i > 0,

(¥ o, o
_frJri - (a_a]> aiyi + (@) bm+z + (a—cn> Cnii

+ Sr+i(ala ce 7al+i—labm7 ce ;an-i—val’l? s 7Cn+i—1)7

where S,;; is a polynomial (for a proof see [26], §4.2).
Let us recall the main lemma of [26], §1.3, used for the description of the
image of a family of arcs in the space of k-jets:

LemMa 3.1.  Consider the polynomial ring A =K[y1,... Yo, Xaly -y Xouy- -,
Xgly- ooy Xqu), Where yi,.... Ve, X2l .., X2u, ., Xql, .., Xqu are independent vari-
ables. Let fi,...,f; be a sequence of elements of the following form:

Si=11 5 0) =91 s
fH=aixon+- - Fayxo + (i, )

f=axs+ a3, Ve Xot, -, Xow)

fq = a1Xq1 +"'+auxqu+hq(y17-~~7yv>x21a---7x(q71)u)

with g1,...,gs distinct irreducible polynomials and a,...,a, €K[y1,..., y,.
For a fixed j, 1 <j<s, let S;c{a,...,a,} be the set of a; such that
ar ¢ (g;)-

Let us denote J = (fi,...,f;). We have:

(1) If S; # 0, there exists a unique minimal prime ideal %; of J such that
gj €% and a, ¢ ¥ for all a, € S;.

(2) Assume S; # 0 for all je{l,...,s}. Let 2 be a minimal prime ideal of J
different from Py,..., P then (ai,...,a,) = 2.

(3) Let g; and g; be two irreducible factors of fi. Then #; # %,

DeriNiTION 3.2, We call the prime ideal #; of the lemma the distinguished
ideal of J, associated to g;.

Lemma 3.1 says that there are exactly s distinguished ideals of J, one
associated to each irreducible factor g;, provided S; # 0 for all je{1,...,s}.

3.3. Image of a family of arcs in H(k).

In this subsection we describe the defining ideal of N;(k) in H(k). Let I
denote the defining ideal of H in ki“”¢ that is, the ideal generated by (f) =
(f1);en 1n K[a,b,c], as defined in the Introduction.
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PropPoOSITION 3.3.  Take an integer k > o;.

Let
T = (ar, -y @y -1, 015 -+ D (y)=15 €1y -+ Cu(2)—15 Sions + + - 5 Siog ) Ric-

and

Iy = (T4 (a1, @y =1,015 - by (=15 €15 -+ o5 Cpyz)=1)) N R
Then
(29) Iy = Iy.
For d e { o , o , o }, we have

0y () Oby(y) 0y )
(30) Li(Ri)y = In(Ry),;-

Proof. The inclusion (29) is obvious. To prove (30), first note that the left
, . . Oy, (x)”
the proof for the other two possible choices of d is exactly the same. Take an

element g € (Iy),. By definition of I, g can be written in the form

hand side is contained in the right hand side by (29). Conversely, let d =

(31) g:zs:hlfilJng

I=o0;
where h,‘ €R; and §e(a,... ,aﬂ',(x),l,bl, . ,bﬂ[(y),l, Cly--- ,Cﬂ[<;),1)Rd. Up to

multiplication by a unit of R; (namely,
where

1
————), fu4 has the f i,
by 8fl'()i/a%‘<x)), fir has the form a; + 4y

}vil ek[al,...,a;,l,bl,...,b;,cl,...,c;]d

Thus by adding a suitable multiple of f; to each /&, with I’ < I, we may assume
that s, does not involve the variable a; whenever I’ < I. Also, we may as-
sume that g =0 and that none of the /4, involve the variables ai,...,a, (-1,
biy..bu(y=15€15- -, Cuz—1.  We will now show that under these assumptions
s <oy in (31). Indeed, the right hand side of (31) contains exactly one term
involving a,. If we had s> oy then, by definition of oy, we have g ¢ Ry, a
contradiction. This proves the equality (30). O

Let 7= {u(x),u(y),u(z)} be a triple such that there exists i € A with

© = {u(x), 1(), 1i(2)}-
Let E(t) = {£; : {u(x), (), 1y(2)} = t}. For E; € E(r) and j € N, the numbers
0, 0jj, 1t:(X), 1t;(»), u;(z), the polynomials f; and the ideals I, I depend only on
7 and not on the particular choice of E; € E(r). We will therefore denote these
objects by o;, 04, u(x), u(y), u.(2), fy, and Iy, Iy, respectively.
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ProposITION 3.4 (Image of a family). Assume that f,, is reduced but not
necessarily irreducible and that it is not divisible by any of a,_(v), by (y), Cu () let
Jro. = g1---gs be its factorization into irreducible factors.

Then:

* there exists a uniquely determined injective map

v:A{l,...,s} = E(7)

such that for je{l,...,s} and E; = Y(j), the variety N;(k) is defined by the
distinguished prime ideal of I associated with g;.

* The non-inclusion (4) holds for all E;, E; € Im(\y). In particular, if the map
W is surjective, (4) holds for all E;, E; € E(7).

Remark 3.5. If s = card(E(z)) then y is necessarily bijective. This is the
case for rational double points A,, D, (in both cases s = card(E(z)) =1 for all
values of 7 [26]). Below, we will see that for the singularity E¢ we always have
s = card(E(1)) <2, so, again, ¥ is bijective. Of course, y is bijective for any
singularity for which the Nash problem has an affirmative answer. Thus, a
posteriori, the bijectivity of y is now known for an arbitrary isolated 2-dimensional
hypersurface singularity thanks to the Fernandez de Bobadilla—Pe theorem [6].

Proof of Proposition 3.4. For the first assertion, note that the ideal I
Ofro.  Ofro,
0y ()" Oby(y)”

satisfies the hypotheses of Lemma 3.1, with the partial derivatives

0fo.

playing the roles of aj, ay, as.

0cu(z) N
By definitions
(32) Vo= N,
(%) > (%)
(%) > (%)
wi(X) 2 1 (x)

Let d be one of the partial derivatives of f;, , which is not identically zero. The
fact that f;, 1is reduced implies that I;;R; is not the unit ideal. Now Prop-
osition 3.3 (particularly, (30)) implies that the distinguished prime ideals 2y,

je{l,... s} of I are also minimal primes of I. Since the varieties N;(k) are
irreducible, (32) shows that for each je {1,...,s} there exists i with

(33) #i(x) = p(x),

(34) #i(x) Z pte (%),

(35) 1i(x) = p(x),

such that V(#) = N;(k). Furthermore, since g; is not divisible by a,_(x), b, (y)
or ¢, (-) and has no common factors with d by assumption, by Nullstellensatz
there exist triples (a’,b’,c') ek’ such that g;(a’,b’,c') =0, d(a’,b',c") #0
and a', b', ¢’ are different from 0. Then there exists an arc in V(%) of
the form ¢(¢) = (@'t 4 - b't) ... ¢ 4 ...). Namely, we construct
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such an arc by describing the values of @, (v4r, by () and ¢, (4. We put

(@ ()5 by () () = (a',b’,c"). Then, for each positive integer r, we let b, (y).
and ¢, (-4, be arbitrary elements of k and set

_ Jr 0000 — Ay (x)40d
B () +r = — 7 :

This proves that E; € E(r). We define E; = ().

The injectivity of i is obvious from the definition. Also by definition, the
non-inclusion (4) is satisfied for all E;, E; € Im(y). Thus, if y is surjective, (4)
holds for all Ej, E; € E(t), as desired. This completes the proof. O

Example. Let us apply the above ideas to the special case of the Eg sin-
gularity. According to Figure 1, there are four possible values of 7: (2,2,3),
(1,2,2),(2,3,4) and (3,4,6). We have E(2,2,3) ={Ei}, E(1,2,2) ={E,, E5},
E(2,3,4) = {E4, Es}, and E(3,4,6) = {Es}. Thus, for t = (2,2,3) or 7= (3,4,6)
the bijectivity of the map ¢ is immediate.

Next, let 7=(1,2,2). We have o, =4 and f,, =3 +a} = (c2+ia})-
(c2 —iat), so fr, is a product of two distinct irreducible factors.

Similarly, if 7= (2,3,4), we have o, =8 and f,, =c+da5= (cs+ia3)-
(ca —ia3), so, again f,,, is a product of two distinct irreducible factors.

Since in the last two cases f;, has two irreducible factors and #E(7) = 2,
the map s is bijective also in these two cases. It follows from Proposition 3.4
that for a sufficiently large k each N;(k) is of the form V(2), where 2 is a
distinguished prime ideal, associated to Iy.

We recall that the goal is to prove that

(36) Pk & Pk
whenever
(37) E; < E;.

3.4. The strategy for proving the non-inclusion (36).

By the valuative criterion we already have the opposite non-inclusion in (36).
Inequality (37) means that ordg, g < ordg, g for all g€ (Us. We thus have the
following inclusions:

Ly = Py,
Ly < I = Py

Assume N;(k) < Nj(k) for a certain order k.

We will need the Curve Selection lemma (for usual finite-dimensional alge-
braic varieties). The original Curve Selection Lemma was proved by Milnor in
his book [22] (Lemma 3.1, p. 25) in the context of real algebraic varieties. The
elementary lemma which follows is inspired by this. We doubt that this result
is new, but we could not find the exact statement we needed in the literature, so
we include a proof.
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ProposITION 3.6 (Curve Selection Lemma). Let V' be a reduced algebraic
variety over an algebraically closed field k and W a proper reduced irreducible
subvariety of V. Let K(W) denote the field of rational functions of W.

There exists a finite field extension L of K(W) and an arc ¢ : Spec L[[s]] — V
whose generic point maps to VAW, and the special point to the generic point of W.

Proof. Replacing V' by a suitable affine open subset of it, we may assume,
without loss of generality, that } is an affine variety. Let A4 denote the
coordinate ring of V' and write W = V(P) where P is a prime ideal of A.
Let Q denote a prime ideal of A4, contained in P, such that it Q = ht P — 1. Let

. . A . .
B denote the normalization of the ring QTP’ B the completion of B at some
P

fixed maximal ideal and L the residue field of B. The field L is a finite exten-
sion of K(W). Then B is a complete regular 1-dimensional local ring; let s be
a regular parameter of B. We have B =~ L[[s]]; the composition of the natural

maps A — Ap — ? ., B— B induces the morphism ¢ required in the Prop-
osition. 0 P

Let W = N;(k). In our context, the curve is an arc of the form
¢;;  Spec L[[s]] — Ni(k), which corresponds to a “truncated” L-wedge

(38) 4, : Spec L(l“ki fy . (S,0)

whose special arc (s =0) maps to the generic arc of N;(k) and whose general
arc maps to an L-point of N;(k)\N;(k). A wedge as in (38) is given by three
polynomials of the form

x(t,8) = zk: a,(s)t"
n=0

E5) = S0

z(t,s) = z]j:ocn(s)t”

Write the coefficients a,(s), b,(s), ¢,(s) of the wedge in the form
a,(5) = 3 dps”
p=0
o0
b (8) = > byyps?
p=0

o0

c(s) = > eps?,
=0
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with ayp, byp, ¢y € L, where ayo, by, cjo satisfy the equations of N;(k). In par-
ticular, a0 = 0 when n < 1;(x), by = 0 when m < p;(y) and ¢jp = 0 when 7 < y,(z).
Let us denote by a, (resp. f5,, and y,) the smallest order ¢ for which a,, (resp.
bmqg and c¢j;) is not 0. We need to compute these exponents in order to construct
the wedge ¢;. Note that a, # 0 if and only if &, =0, and similarly for the b
and ¢ coefficients; we always have a,0 # 0 if n = 1;(x).

The morphism (38) is given by a ring homomorphism

L[z, s]]
(39) Us.o — (Y
Localizin Lllts]] by the element s, we obtain an L((s))-point of N;(k) (infor-
g (l‘k+1) y bl p 1

mally, an L((s))-arc lying in N;(k)). Thus the coefficients a,(s), b,(s), ¢(s)
satisfy the equations f;, of N;(k) and their constant terms a9, bno, cjo satisfy the
equations f; of Nj(k) (here f;, is the coefficient of ¢* in Fo¢; and similarly for
Jus see §3.1 where this notation was introduced).

Let A4,,, By, Cp, p =0, be independent variables and write

o0
Au(s) =Y Apps?
p=0
o0
B, (s) =Y Bups”
=0
C/(S) = Z C/psp.
p=0

We have finitely many equalities of the form

@
(40) 0= fulA(s), B(s), C(s)) = D frnus", u<op,
v=0

where A(s) stands for {A4,(s)},.n, and similarly for B and C. Here the
coefficients f;,, are polynomials in A4,,, B, Cj which vanish after substituting
Anp = dyp, Bmp = bmp, Clp = Clp.

Let J denote the ideal of L[A, B, C| generated by all the elements of the
form 4,, with p <a,, B,, with p <p, and C, with p <y, where 4 stands
for {4,},cn, and similarly for B and C. Let 0, =min{v|f;,(4,B,C) ¢ J}.

Write gy, = f;l’,uu. In other words, gy, is the first non-zero coefficient of

Siu(A(s),B(s), C(s)), viewed as a series in s, not belonging to the ideal J.

NoraTiON. For the rest of this paper, we will write a, for a,,,, b, for by,
and ¢; for ¢,

Remark 3.7. + The coefficient gy, depends only on A,,, By,
Since a, #0, b, #0, ¢; #0 and

9o, (ana bma C/) = 07

and Cp,,.

m
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the coefficient gy, cannot be a monomial in ay,, b, c¢;. In general, gy, is a
quasi-homogeneous polynomial in which A,,, has weight o,, B,y weight f,
and Cp,, weight ;. Equality of weights of different monomials appearing in
go, will give us a system of conditions on the exponents oy, f,, and y,. More
precisely, we are not interested in the values of o, p,, and y, per se but

o
rather in the ratios of the form gn, where 0 is some fixed element of the set

{04,00 Buy()s Vu(s)}- - In other words, we are interested in the “‘normalized”
weights oy, f,, and y;, where we set, for example, the first non-trivial weight
Uy (x) equal to 1.
The hardest part of the proof is to recover the coefficients gy,. In order to
do this, we will use the fact that gg, are not monomials to give lower bounds
on oy, B, and 7y,

The equation gy, = 0 plus the equations fi(d@no, bmo,cn) =0 form a system
satisfied by the coefficients of the wedge. If this system has no solutions then the
wedge does not exist.

In some exceptional cases, the above system of equations does not suffice
and one is led to use f/, ., . the next coeflicient of fi(Ax(s), Bu(s), Ci(s)) after
g, to arrive at a contradiction. In our work on Eg such will be the case for the
non-inclusion N4 & Ns.

In the next section we compute the weights «,, f5,, and y, for the singularity
Eg¢ and show that the system

{gyu =0
ﬁ”(anm bmm ClO) =0

for the remaining non-inclusions other than N; ¢ N,, as well as the augmented
system

g0, =0

fl',l0u+1,u =0

];'u(anmmea Cl()) =0

in the case of the non-inclusion Ny ¢ N>, have no solutions.

4. Computations and proof for the Eq singularity

Let us consider the Eg singularity and study the different non-inclusions.
For each non-inclusion N; ¢ N; appearing in (21)-(23), we will denote

Ry

NotaTioN: When talking about the non-inclusion N; ¢ N;, the notation al|b

will mean ““a divides b in R(k)”, unless otherwise specified (here R(k) stands for

LX)
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the integral closure of R(k) in its field of fractions). For some non-inclusions,
we will study divisibility in a suitable localization of R(k), which will be specified
explicitly in each case.

For each of the six non-inclusions involved, it is sufficient to prove that

(41) P & Pk

for some k, in particular for k = o(j). Take k = o()).

We prove the non-inclusion (41) by contradiction. Assume that 2y < 2.
By the Curve Selection lemma there exists an L-wedge whose special arc is the
generic point of N;(k) and whose generic arc is in N;(k). The first coefficient
go, of fiu cannot be a monomial as generically on N;(k) each monomial in a,, by,
¢; 18 not zero.

As explained above, we are interested in computing ratios of the form %,
where J is some fixed element of the set {o(y), ﬁ s V(o) o and p(x) <n <
#;(x), and similarly for &, w(y) <m < p(y), and g, wi(z) << y(z2) (we will

pick and fix a specific 6 in the proof of each non-inclusion, but the choice of
0 will depend on the non-inclusion we want to prove). For example, suppose
0 = o,(x)- Then our problem is closely related to studying, for each n, the
totality of pairs (a,0’) € N* such that

(42) 2,(5)" 2,0 (5)°,

and similarly for b,,(s)” la, (v (s)‘jl and ¢;(s)" [a, (v (s)él. Precisely, we have

S inf{ﬁ}
%y (x) o')’

where (o,6’) runs over all the pairs satisfying (42).

Remark 4.1. In [26] and [27] a different method is used to prove the non-
inclusions not covered by the valuative criterion. Namely, we use the fact that
the ideal Py can be expressed as the saturation (ZyR(k):d*), where de
{(x), by (y)s Cu(z) }-  For most non-inclusions, we explicitly construct elements of
(P (k) dw), not belonging to #, which settles the problem. In both the
saturation and the wedge methods, the key point is to compute the weight ratios

on Fm

f the f
of the form —, =

it gives a more geometric vision of the proof.

and 5 as above. One advantage of the wedge method is that

In what follows we truncate at the order o;.

(1) * Ny ¢ N;. In this case we truncate at the order o4 =8. We have
0] = 6.
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Assume that N4(8) = N;(8), aiming for contradiction. Let ¢, be a
wedge with generic arc living in N;(8) and special arc mapping to N4(8).
Then the wedge is of the form:

bz(s) = sz'BZ + 2 bzqsq
q=p,+1

0
C3(S) =387 + Z C3qsq
q=y3+1

o0
(43) a,(8) =@, + 3. auys?, n=2
q=1

b, (s) = by + 2 bugs, m =3
q=1

o0
C[(S) =+ Z clqsq, =4
q=1

where a,, b, ¢; satisfy the equations of N4(6), and are non-zero elements
of L.
The following equations hold on N;(8):

aj=b =c¢c=c=0
fie=¢5+b; =0
fi.7 = 2¢ese4 + 3b3by = 0.
The following equations hold on N4(8):
ag=b=ci=ca=c3=b=0
Jas :cﬁ—i—a;:O.

The generic arc lives in N;(8), and thus satisfies the equations of
N;(8). This leads to finitely many equations (as we are in R(8)):

0= fi.6(a(s),b(s), e(s)) = ¢35 + bys™> + -
0 = f1.7(a(s),b(s), c(s)) = 2c3ca8” + 3b§b3s2ﬂ2 + -

As ¢3 #0 and by # 0, we obtain a relation between p; and f,:

2y; =3p,
which implies that

Br <73 < 2B,
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and that
032 + b; =0
2C3C4 =0.
Thus for the equation f33 we have g =yp; and gy, = 2c3c4, which is

impossible.

(2) - Ns ¢ N,. In this case we truncate at the order o5 =8. We have
0, = 6. Assume that N5 = N,, aiming for contradiction. Let ¢5, be
a wedge with generic arc living in N,(8) and special arc mapping to
the generic arc in Ns(8).
The following equations hold on N»(8):

by=¢ =0

fra=c3+al=0

fr5s =2¢03 + 4a1332 =0

fr6 =3 +2¢scs + b5 +4daja; + 6alal =0

f2.7 = 2¢3¢4 + 2c205 + 3b§b3 + 4afa4 + 123,2a233 + 4a§’al =0

We have f> 4 = (c2 +ia?)(cy — ia?). As can be seen from Figure 1, 25 ¢
is the distinguished ideal corresponding to the irreducible factor ¢, — iaf.
Let us use the notation

)
ga2 = Cy —iajy.

Combining f> 5 and gp» we see that 2ic;a? + 4a?a, =0 on N,(8). Since
a; does not vanish identically on N(8), we have

f2,3 =C3 — Zialaz =0

on N;(8).

We claim that
(44) vy = 201,
(45) V3 =%
(46) f> 2m
Now,

* (44) holds thanks to the equation g, > = 0.
» (45) holds by the equation f, ; =0 and the fact that o, = 0.
* (46) holds by the equation f, ¢ =0, (44) and (45).
After a suitable automorphism of L[[s]], we may assume that a; = 1.
The vanishing of the first non-trivial coefficients of the power series

fz,3(a1(s),az(s),C3(s)) and f> ;7 gives the equations
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(47) ¢ — 2iay = 0
(48) 2c3¢4 +4a3 =0
and we have (first equation of Ns):
(49) ¢y +iaz = 0.
Subst@tuting (47) into (48) and dividing through by 4ia?, we obtain the
equation
¢4 — ias =0,
wfhich contradicts (49) and the fact that ¢4 and a, are non-zero elements
of L.

(3) * Ny & N,. In this case we truncate at the order o4 = 8.

Assume that Ny (8) = N»(8), aiming for contradiction. We can con-
struct an L-wedge Spec L|[t,s]] — E¢, with the special arc mapping to the
generic arc of N4 and with the general arc lifting to FE».

The following equations hold on N;(8):

b] =C = 0

g22 =€ — z'al2 =0

fZ.,S =c3 —2iaja; =0

fr6 = €3 +2ca¢s + b3 +daja; + 6ajal =0

J2,7 = 2¢e3¢4 + 2¢5¢5 + 3b§b3 + 4af’a4 + 123123233 + 4a§a1 =0

frs = ci + 2¢3¢5 + 2¢¢6 + 3b§b4 + ag + 4af’as + 12a1232a4 + 1231a§a3 + 6::1122132 =0.

Modifying f26 and f 7 by suitable multiples of g>, and f;;, we may
replace them by

fo6 = 2ial(cs — ia3) + b3 +daja; = 0

fo7 = 4diaja(cq — ia3) + 2¢2¢s5 + 3b3bs + 4aja, + 12aiara; =0
172,8 = cﬁ + 4iajascs + 2iayeq + 3b§b4 + ag + 4a1335 + 12a1232a4
+ 12a;a%a; + 6alaZ = 0

Note that the equation fj g = ¢4 —ia5 = 0 vanishes on Ny(8).

Let u# denote the s-adic valuation of L[s]]. We define «:=
p(ea(s) — iax(s)?). We claim that
(50) V2 =20
(51) 73 =%
(52)
(53)

53
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Indeed,
* (50) holds thanks to the equation gy = 0.
* (51) is given by f, 5 and the fact that ay = ay # 0, and hence

(54) Oy = 0.

We have o; > 0. Using (54) once again, we obtain from the equations
f6=0 and f, ; =0 that
~ + 38, >min{3,2 +a}

* o = min{l,24, — 1}.
We will now prove (52) and (53) by contradiction. Assume that at least
one of (52) and (53) is false. Then both (52) and (53) are false according
to the above inequalities. We see that

° 3,82 2 2 =+ o

c o= zﬁz -1
which implies that %—i— o< 2—|— o, hence o > 1, a contradiction. This
completes the proof of the reldtlons (50)—(53).

After a suitable automorphism of Ll[s]], we may assume that

aj(s) = s™.

Generically, each arc lives in N,, and thus satisfies the equations of
N,(8). Let ¢ denote the coefficient of s* in the formal power series
ca(s) — z'az(s_)2 (a priori, ¢ may or may not be zero). Expanding the
equations fz’é(a(é‘),b(S),C(S)), f277(a(s),b(s),c(s)), fZ,S(a(S)7b(S)ac(S)) as

power series in s gives:

0 :]?2_6(3(3), (S)7C(S)) = gz,éshl + 112“,6530(14—1
0 :f_2,7(3(s)7 (s),¢(s)) = 92,7S2°(l + }12,7S2°(1+1
0 = fy.5(a(s),b(s), c(s)) = g2,88™ + hz,SS“'H,

where ¢> 6, 92,7, g2,¢ are polynomials in a,p, by, ¢y and hy ¢, hy 7,28 €
L{[s]]. _ _ _

Since f ¢(a(s), b(s),e(s)),  f57(al(s),b(s),¢(s)), f5(als),b(s),e(s))
must vanish identically as power series in s, we must have g» 6 = g2 7 =
g2,8 =0. Let us look at the g,;’s. They are:

(55) J26—C—2ld3+b211—0
(56) g2.7 = 2i(cs — 6iapas) + 4ic + 3b2,“1b3 =0
(57) 92,8 = 12ia3as + diarcs + 2ia3¢ + 3bs, 5, b3 = 0.

Elements a,, as, b3, ¢s lie in K(N4(8)) = L and are different from 0. Let
us regard (55)—(57) as a system of three equations over L in two un-
knowns b, ,,, ¢; if the wedge exists, these equations should have a
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solution. Let us prove that this is in fact not the case, thus obtaining
the desired contradiction.
The subfield of K(N4(8)) generated by a, asz, b3, ¢s is isomorphic
k[az., a3, b3, ¢3 . Let Y
(b3 + 2ia3cs + 4a3as)
denote the affine subscheme of A% defined by the equations (55)—(57) and
let Y denote its closure in P3. The scheme Y is defined in P} by the
system of three equations

to the field of fractions of the ring B =

(58) Gro=2°C—2iazZ* + B3, =0
(59) Ga,7 = 2i(cs — 6iayas)Z* + 4iCZ + 3B , b3 =0
(60) Gys = (12ia3a3 + diayes)Z + 2ia3C + 3B, b3 = 0,

homogeneous in the variables Z, C, B 4.

Suppose the system (55)—(57) had a solution in L. This means that
the natural map Y — Spec B is dominant, and hence the map Y —
Spec B is surjective by the Proper Mapping Theorem. Thus to prove
non-existence of solutions of (55)—(57) it is sufficient to find one specific
k-rational point of Spec B which is not in the image of Y. In other
words, it suffices to find specific elements of k such that when these
elements are substituted for as, a3, b3, cs, the resulting system of homo-
geneous equations in Z, C, B,, has no non-zero solutions. We can
easily find such elements. For example, put

(61) by =0.

Then

(62) 2iaies + dazaz = 0.
We will take

(63) ay # 0.

Then equation (62) implies that

(64) ¢s — 2iara; = 0.

Substituting (61) and (64) into G, 7 and G, 5, we obtain
(65) Ga7 = 8aazZ*> +4iCZ =0
(66) G5 = (12i — 8)a3as Z + 2ia3C = 0.

If Z =0 then, in view of (63) and the equation G, ¢ =0, we have C =
B, ,, =0. Thus there are no non-trivial solutions with Z =0. Assume
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Z #0 and divide G, 7 by Z. Now it is easy to see that there exist
ay,az € k with a, # 0 such that the system

(67) 8ayaz Z 4 4iC = 0
(68) Gag = (12i — 8)a?as Z + 2ia3C = 0
has

(69) Z=C=0

as the only solution. (69) together with G, ¢ implies that B, ,, =0. We
have proved that there exists a choice of elements ay, as, b3, cs € Kk, satisfy-
ing b3 + 2ia3cs + 4ajaz = 0, such that after substituting these values into
Gy 6 = Gr,7 = Gp3 = 0 the resulting system has no non-trivial solutions.
This completes the proof of the non-inclusion Ny ¢ Nb.

(4) * N¢ & Na.

In this case we truncate at the order o = 12. We argue by con-
tradiction. Assume that Ng(12) < N4(12). Let ¢¢ be a wedge with
generic arc living in N4(12) and special arc mapping to the generic point
of N¢(12). The following equations hold on N4(12):

ai=b=ci=c=c3=b,=0

fag = cf + ag =0

Ja.9 = 2c405 + b; + 4a§a3 =0

Ja0 = cg + 2¢4¢6 + 3b§b4 + 6a§a§ + 4a§a4 =0

fa1 = 2¢s5¢6 + 2c4¢7 + 3b3bs + 3bsb? + 12alaza, + 4ajas + 4azal = 0

We have fy 5 = (cs +ia3)(cs — ia3). As can be seen from Figure 1, 24 1>
is the distinguished ideal corresponding to the irreducible factor ¢4 — ia3.
Let us use the notation

go,4 == C4 — ia%;
we have go4 =0 on N4(12). We have
(70) ax = by = cap = ¢s0 = 0;
we want to show that
(71) a(s) [ b3(s)
(72) a3(s) [ ca(s)
(73) a(s) | es(s)
in L[[s]].
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The equation g 4 =0 implies (72).
Now, (71) and (73) are equivalent to saying that

(74) o < f; and
(75) 0 < Ps.

By (70), we have o, > 0. Using (72), equations f49 =0 and fi10=0
yield

* By =min{3on + 1ys, 00}

* 75 = min{oy, fi3}.

We prove (74) and (75) by contradiction. Suppose at least one of (74)
and (75) is false. Then both (74) and (75) are false by the above
inequalities. Then

* Py = 3o +iys

s = P
Hence 275 > 3, 50 75 > 02, a contradiction. This completes the proof
of (71)—(73).

For the purposes of this non-inclusion, we will deviate slightly from
our standard notation. Namely, we will write b3 = b3,, and ¢s = ¢s,,.
The meaning of all the other symbols remains unchanged.

Then the first coefficients of the wedge have to satisfy:

C4 — ia% =0
2c405 + bg + 4a§’a3 =0
2 + 2¢c406 + 3b3by + 6a3a3 = 0
2¢sc6 + 3b3bi + darai =0
as well as
(76) e +bi+ai=0.
Substituting ¢4 for ia3, the above system rewrites as
2iajes + b3 + 4azas = 0
2 + (2icg + 6a3)a; + 3b3by = 0
2¢s¢6 + 3b3bi + 4a2a§ =0.

We view this system as a system of three homogeneous equations over L
in three unknowns a,, b3, ¢s. The coefficients of the system are poly-
nomials in a3, bs, ¢, which are viewed as fixed elements of K(Ng(12)).
Moreover, we must have a, # 0 by definition of a;. As in the previous
non-inclusion, to prove that this system has no non-zero solutions, it
suffices to find specific values of a3, b4, ¢ in k satisfying (76), such that
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the resulting system of three equations has no non-zero solutions. We
take a3 = 0. Then

(77) 2 +b=0

and our system becomes

(78) 2iascs + b3 =0
(79) €3 + 2icea; + 3b3bs = 0
(80) 2¢s¢6 + 3b3b; = 0.

We work in a finite extension of K(Ng(12)) which contains a square root
of by; we pick and fix one of the two possible square roots and denote
it by bi/z. From (77) we obtain

(81) g = —b/%.

Substituting (81) into (80) and dividing through by bi/ ? we obtain
3
(82) s = Ebgbj/z.
Substituting (82) into (78) yields
(83) b3 = —2ib,*d}.
Finally, substituting (82) and (83) into (79), we obtain
2
(84) (— 77 - 9) ib}a} = 0.

Now, substitute suitable non-zero elements of k for bi/ 2 and ¢e In such a
way that (77) is satisfied. By (84), any solution of the resulting system
of equations satisfies @, =0. Then b3 =¢5s =0 from (78)—(80). Thus
our system of equations has no non-zero solutions, as desired. This
completes the proof of the non-inclusion Ng & Nj.

(5) * No & Ni.

In this case we truncate at the order os = 12. We argue by con-
tradiction: suppose that Ng(12) = N1(12). Let ¢ be a wedge with the
generic arc living in N} and the special arc mapping to the generic point
of N6(12).

The following equations hold on N;(12):

a :bl =C :C2:0
fie=¢ci+b3=0
fi.7=2¢cse4 +3b3b; =0
fi.s = € +2¢c3¢s5 + 3b3by + 3bybI +a3 =0
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fi.9 = 2¢4¢5 + 2¢3¢6 + b3 + 6bybsby + 3b3bs + daja; = 0
fi.10 = €2 + 2¢4¢6 + 2¢3¢7 + 3b3by + 3b3bg + 6bybsbs + 3byb; + 6a3a3 +4ajas = 0
fi1 = 2eseg + 2¢4¢7 + 2¢3¢s 4 3b3by + 3b3bs + 3bsb] + 6bybsbg + 6bobsbs
+ 4a3as + 12ajaza, + 4ara; = 0
The following equations come from the equations of Ng(12):
ajo = ax = bio = by = b3g = c10 = 20 = €30 = c40 = ¢50 = 0.

We want to prove the following divisibility relations:

(85) ba(s) |az(s)
(86) by(s) | bs(s)’
(87) ba(s)* | e3(s)?
(88) ba(s) [ €4(s)
(89) bs(s) | es(s)*.
To do this, it is sufficient to show that
(90) n=1b
(91) 74 = P
(92) 062”83,"/5 = %ﬁz

We have f, > 0. The equality (90) is immediate from f;¢=0. (91)
follows from fi ¢ = f1,7 =0 and (92). It remains to prove (92), which is
equivalent to saying that

. 1
(93) min{o, B3, 75} = Eﬂr
We prove (93) by contradiction. Let M = min{a, 5,75} and assume
that
1
(94) M < 3 b
Equations f ¢ = fi,7 =0 can be interpreted as saying that Lﬁ% and
S
C‘I& is invertible in a suitable finite extension B of L][s]]. Sub-
/2
bs(s) "“bs(s)

stituting ¢3(s) and ca(s) in f15, fi,90 and fi 10 by suitable multiples of
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by(s)¥? and by(s)"/b3(s) by a unit of B, we obtain the following
inequalities:

1 . (3

(95) op = 2 mln{§ﬂ2 + 95,205, 2 + 2ﬁ3}
1 . (1 3

(96) By = 3 mln{§ﬂ2 + B3+ 75,5 +ﬂ37§ﬂz> 3052}
1 . (1

(97) Vs = 3 mm{iﬂz +ﬁ3>2ﬁ3,ﬁ2,2062}-

Now, (94), (95) and the definition of M imply that
(98) M <o

(indeed, if we had M > a,, we could use (94) and the definition of M to
show that M is strictly less than each of the three quantities on the right
hand side of (95), which would be a contradiction).

In a similar way, (94), (96), (98) and the definition of M imply that

(99) M < ;.

By (98) and (99), we have M = ys, which contradicts (97) (using (98) and
(99) once again). This completes the proof of (85)—(89).

Replacing s by s? in the parametrization of the wedge, we may
assume, without loss of generality, that f, is even. The first coefficients
of the wedge must satisfy the following equations (as above we change
the notation by ¢4 = ¢4, ¢5 = ¢5,/2, b3 = b3 p,» and ar = ay p, o)

¢;+b3=0
2c¢3¢4 + 3b§b3 =0
i +2¢3¢s + 3b3bs +3b2b3 + a3 =0
2¢4¢s5 4 2036 + b3 + 6babsby + dazaz = 0
€3 + 2¢406 + 3b3by + 3bob] + 6aza3 = 0
2¢sc6 + 3b3bf + 4a2a§ =0
as well as
(100) e +bi+ai=0.

We view this system as a system of six homogeneous equations over
L in six unknowns ay, by, b3, ¢3, ¢4, ¢cs. The coeflicients of the system
are polynomials in a3, b4, cg, which are viewed as fixed elements of
K(Ne(12)). As in the previous non-inclusion, to prove that this system
has no non-zero solutions, it suffices to find specific values of a3, b4, cg in
k satisfying (76), such that the resulting system of six equations has no
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non-zero solutions. In this case, we take a3 =0, ¢s = 1 and b4 a non-
real root of z> = —1. We obtain:

3 +b3=0
2¢3¢4 + 3b§b3 =0
i +2c3cs +3(1/2 — V/3/2i)b3 + 3bybi +a3 =0
2¢4¢5 + 2¢3 + b3 + 6(1/2 — V/3/2i)bybs = 0
24 2¢4 4 3(1/2 = V3/2i)b2 +3(1/2 — V/3/2i)*hy = 0
2es +3(1/2 = V/3/2i) b3 = 0

Then we ask Maple to solve it and the solution that Maple gives
is: {¢5=0,03=0,a2=0,c4=0,c3=0,b2=0}, so that the unique
solution is the zero one.

(6) * No & Ns.

In this case we truncate at the order o = 12. We argue by con-
tradiction: suppose that Ng(12) = N»(12). Let ¢¢, be a wedge with the
generic arc living in N, and the special arc mapping to the generic point
of N¢(12). The following equations vanish on N»(12):

bi=¢ =0

grr=1c¢ —ia; =0

J72,3 =c3—2iaja, =0

fr.6 =¢34+ 2cocq + b3 +4daja; + 6ata; =0

fr.7 = 2¢e3¢4 + 2¢2¢5 4 3b3bs + 4ajay + 12alaya; +daja; =0

foi1 =3b3by + -+ 20000 + -+ + 4ajas + - = 0;
We write it in the following way:
bi=¢ =0
gra=c —ia] =0
fr3=1c¢3—2iaja; =0
fr.6 = b3 + 2ia’(cy — ia3 — 2iaja;) =0
fr1= 3b§b3 + 2iaf(05 — 2iayay — 2iajay) + 4iajay(cq — iag —2iaja3) =0
fr.8 = 3b3by + 3byb3 4 2ial(cs — ia — 2iara, — 2iajas)

+ diajay(cs — 2iaaz — 2iajas) + (¢4 + iaf + 2iaja3)(cq — iag —2iaja3) =0
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f.9 = b3 + 3b3bs + 6bybsby + 2iaf(c; — 2iazay — 2iaras — 2iajag)
+ 4diajay(cs — ia§ — 2iazay — 2iajas)
+ (cq + iaf + 2iajaz)(cs — 2iara; — 2iajay)
+ (cs + 2iaza; + 2iajas)(cqs — iag —2iaja3) =0
f>.10 = 3b3bg + 3b3by + 3b3by + 6bybsbs
+ 2iaf(Cg — iai — 2iazas — 2iayas — 2iajay)
+ 4iajay(c; — 2iazay — 2iaas — 2iajag)
+ (cq + ia% + 2iajas3)(ce — ia§ — 2iazay — 2iajas)
+ (5 + 2iapas + 2iajas)(cs — 2iara; — 2iajaq)
+ (6 + ia§ + 2iazay + 2iajas)(cq — iag —2iaja3) =0
/.11 = 3b3b7 + 6bybsbg + 6babybs + 3bsb
+ 3b§b5 + 2ialz(<:9 — 2iagas — 2iazag — 2iaxa; — 2iajag)
+ 4iajay(cg — iaﬁ — 2iazas — 2iayag — 2iaa;)
+ (cq + ia% + 2iaja3)(c7; — 2iazay — 2iaras — 2iajag)
+ (c5 + 2iaza; + 2iajas)(cs — ia% — 2iajay — 2iaas)
+ (c6 + ia§ + 2iaray + 2iajas)(cs — 2iara; — 2iajay)
+ (c7 + 2iazas + 2iazas + 2iajag)(cs — ia§ —2iajaz) = 0.
The following equations come from the equations of Ng(12):
ayg = ax = b1 = by = byp = c10 = c20 = €30 = cap = ¢50 = 0.

In this case, because of the number of variables, the computation is more
difficult than for the other cases. We want to compute or at least bound
below the rational numbers

(101) o ::Z—?
(102) =2
(103) gyt
(104) y=1t
(105) y=2

o1
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We use the following dichotomy.
If o > $oy then we have

(106) By >
1
(107) By = s
(108) Va = 0
1
(109) s> 5.

We try to construct a wedge as usual. Replacing s by s in the
parametrization of the wedge, we may assume, without loss of generality,
that o; is even. We deviate from our standard notation (only for the
purposes of the case oy > %ocl), in that we put ay =ay , » by = by 4,

by = b3 5,2, C4 = Ca,5y, C5 = C5.4,)2.
In this case the first equations are of the form

b3 + 2iai(cy — ia3 — 2iayaz) = 0
3b§b3 + 2i6112(65 — 2iaraz) + diayaz(ca — ia% —2iajaz) =0
3b§b4 + 3b2b§ + 2ia12(c(, — ia%) + diayay(cs — 2iazas)
+ (ca + ia% + 2iaya3)(cq — ia% —2iayaz) =0
b33 + 6byb3by + diayaz(ce — ia%) + (ca+ ia% + 2iayaz)(¢s — 2iaras)
+ (¢5 + 2iayas)(cq — ia% — 2iajaz) =0
3b3by + 3b3bs + (ca + ia3 + 2iayas)(ce — ia3)
+ (¢s5 + 2iaras)(cs — 2iaras) + (c6 + ia32)(04 — ia% — 2iayaz) =0
3b3b; + (c5 + 2iayas) (6 — ia3) + (c6 + ia3)(cs — 2iaraz) = 0.

Thanks to XMaple, taking in this case b4 = 0 and a3 = 1 one can show
that the above system of equations, combined with the first equation
of N6,

a§+b2+c§:0,

has no non-zero solutions, so the wedge cannot be constructed.

From now on we shall assume that oy <%oc1. One always has
B> = %0y thanks to the equation f5 .

For each equation, let us write the w-adic orders of monomials

appearing in it, which can possibly be the lowest for this equation:
J2.6 03P, 200 4 94, 200 + 200
2.7 1205 + B3, 200 + ps, 200 + o, 000 + 0 + g, 001 + 302



THE NASH PROBLEM OF ARCS AND THE RATIONAL DOUBLE POINT Eg 203

2.8 1205, By + 23, 200, 001 + 0 + ps, 0 + 2000, 24, 4o
ﬁ,g : 3ﬁ372ﬁ27ﬂ2 +ﬁ37y5 + y4,2062 + V5574 + 02, 30‘2
210 1 Boy 2B5, 74, 202, 295
f'2“,11 : ﬁZaﬁBﬂ V4,22, 75
Note: Here we have used the fact (easy to prove) that the follow-
ing four expressions have u-adic value equal to zero: ¢ — ia3 — 2iayay —
2iajas, c¢g+ ia% + 2iaray + 2iajas, ¢y — 2iazay — 2iaras — 2iajag, ¢©7 +
2iazay + 2iaras + 2ia;jag.
Suppose that 3 > Joi(> m).
Now, if y, <o then from the equation f> 11 we see that ys >y,
(otherwise the term with w-adic value y; would be the only dominant

term). But then the term of value y, is the only dominant term in f; i,
a contradiction; so

Vg > 0.

Then the p-adic values of possible dominant terms are:

2.6 2 3B, 200 + 4, 200 + 202

J2,7 1 2By 4 B3, 200 + ps, 00 + oo + 4000 + 302

S2,8 1285, By + 25, 00 + 00 + s, 274, 40

S2,9 0 383,205, By + B3, 300,75 + 745 200 + 75,74 + 02
J2,10 t Bas v4s 202, 2y

St ps.

From f;,; we have oy = ys.
+ First case:
Suppose that y, > 205.
Then the dominant values are:
fr.6 2 305,200 + 20
2.7 0 2By + B3, 00 + 30z
280205, By + 23,400
J2,9 125, By + B3, 200 + p5s = 30
f‘27 10 : ﬂZa 20(27 275

S 0,5

So by fr¢ we have: 3, =20 + 20,.
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And by f, 7 we have:
2ﬂ2 +ﬂ3 = ay + 30.

The two equations imply that f; < %oq, a contradiction.
* Second case:
Suppose that y, < 205.
Then the possible dominant values are:

S2,6 3P, 200 + 94

2.7 2By + By 0 + s + 02
280205, By + 23,274

J2,0 1285, By + 3,00 + 4
S2,10 B2y 74

fa11t o, )s

So by fr6 and fr10 we have: f,=o; =y, a contradiction (as
oy < %O(l)
* Last case: 7y, = 20.
The dominant values are:

J2.6 230y =200 + y4 = 200 + 200
fr7 o+ =0y + 30
S2.8: 2y, =40
2,0 175+ 74 =200+ ys = py + 02 = 3
2,10 1 74 = 200 = 25
S ton =75
Then the first equations of the wedge are:
frs= b3 + 2ia}(cy —ia3) =0
fén = diajay(c4 — ia%) =0
frs = (ca+ia3)(ca —ia3) = 0
fro=(ca+ ia3)(cs — 2iaraz) + (cs + 2iaras)(cq — ia3) = 0
fi’w = (¢4 +ia3)(c6 — ia3) + (cs + 2iaras)(cs — 2iaras) + (c6 + ia3)(cs — ia3) = 0
Fo1 = (¢s + 2iaas)(ce — ia3) + (c6 + ia3)(cs — 2iaraz) = 0.
forn=a;+b;+cg=0

By definitions, we are looking for solutions with a;, ay, b, different
from 0. It is easy to see that this is impossible already from the
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equations fz ¢ and ]7217. Indeed, since aj,a; # 0 we have ¢4 — ia3 = 0 by
Jfa7- Then f, ¢ shows that b, =0. This completes the proof of the
non-existence of the wedge in the case ff; > %ocl.
Thus we will assume from now on that 3 < 1a;. Then 8, > f; and
the possible dominant values are:
262 3B, 200 + g, 200 + 20
J2,7: 2B + B3, 200 + ps5, 00 + 0 + pg, 00 + 302
J2,8 220y, By + 25, 00 + 02 + 5, 274, 4%
S2,9 1303, B2 + B3, vs + 74,200 + 75, 74 + 02, 3
_f2, 10 - ﬁ27 2ﬂ37 V45 2“27 2y5
fZ,ll :ﬁ3ay4aa27y5

* Suppose that ys > 1o;.

- If
(110) V4 S 02
then f; <oy by f2.11. Hence y, becomes the only dominant value in
/2,10 which is not possible. Thus y, > ay, which implies that f; = o,
by fo11.

- If
(111) 74 < 20,

then f, =y, by f210 and hence f, =a; by fo6. Thus y, =ay,
which contradicts (111) and the fact that o < Ja;.

— If 9, > 20, then B, =2u by f>10 and hence o =2ay, B, =%ay by
Jf26. Using the fact that y; > 0, we see that in f, 7, 2, + ay is the
only dominant value, a contradiction.

— The remaining case is y, = 2¢,. The dominant values are:

J2.6 1305 =201 + y4 = 2004 + 200

J2.7: 25+ By = o + o2+ ps = o1 + 302
S2,8 1285, By + 2[5, 2y4 = 4o

S2,9 2 3B3, By + B3, 74 + 02 = 30

fo10 1 By 2 23 = y4 =2

S fy=m

If 8, < 20, then by f> 6 we would have 8, > oy and hence o > oy,
a contradiction. Thus S, > 2u,.
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CLAM. The only dominant values in f, 7 are
o + 02 + 4 = o + 302
Proof of Claim. 1If not, we would have
2, + B3 =20+ oy =01 + 30
Then 28, = oy + 20 <38, — oy (by f26), thus f, > .

We obtain 2f, + f3 = 2a; + i3 = 20y + 0o > oy + 30p a contra-

diction. This proves the Claim.
Then the first two equations of the wedge are

‘}36 = b; + 2ia12(64 — ia%) =0

fo.7 = diarax(cs — ia3) = 0

so there are no solutions with by # 0, a, # 0, a; # 0, contradiction.

» Thus ys5 < loy.

First of all, we claim that y, cannot be dominant in f; ;;. Indeed,
suppose it was, in other words, suppose that y, < min{f;,a,ys}. In

particular,

(112) Vs < %ocl.
Then by f;.10 we have

(113) P2 = va-
But then by f> 6 we have

(114) By = o,

which contradicts (112) and (114). This proves that

(115) 74 > min{f;, 02,75}

We continue to study the possible dominant values in f 1;.

two cases to consider.
— First case: y5 = f; < a.
The possible dominant values are:

J2.6 1385, 200 + ya, 2000 + 20

2,70 25 + B3, 200 + ps, 00 + 00 + py, 00 + 3o
S2,8 2 22, By + 23, 001 + 02 + s, 24, 40

S2,9 1 3B3, By + B3, 75 + vay 200 + s

2,10 B2, 2B3, 74, 295

Son By vs

There are
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1) If y, < 2yp5 then y, < 200 < ay,

(116) 3By =201 + 74
by f26. Hence

(117) By <,

)

2y + By =0 + oo+,

by f27. Thus

(118) B3+ o1 =0+ f.
By (117) and (116) we have

(119) 4 =3Py — 200 <.

Then 3f; =y, + 5 (that is, y, = 2f;) by f29 and by f> 3 we obtain

ﬁZ = V45
contradicting (119).

2) Thus y, > 2ys.

We have f, > 2ys, because otherwise 35, would be the only
dominant value in f> 6. Then the unique dominant value in f, 9 is
3f;, a contradiction. This completes the proof in the first case.

— Second case: Thus oy < ps and on < f5.
Then y, > an by (115).
So the possible dominant values are:
f2.6 : 3ﬂ2,20€1 + y4,2061 + 20‘2
S2.7 0205 + Py, 00 + o + p4, 00 + 300
28 285, By + 23, 274, 40
fé,9 . 3ﬂ37ﬂ2 +ﬁ3ay5 + V4,2062 + V5574 + 02, 30(2
fz, 10 * ﬂZa 2ﬂ3a V4> 20(27 2)’5
ﬁ,ll : ﬂS> %2, V5
1) If
(120) Vs < 20
then

(121) va=h
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by f210. From f;¢ we obtain the equality (116), which implies
(122) By =,

which contradicts (120) and (121).

2) Suppose y4 > 2a;. By looking at the dominant terms of f, 6
and f> ; we obtain again the equality (118). If §, <20, then by fo6
we would have a; > Joy, which is false. Hence 8, > 2u. Then by
/2.6 we have f, < oy and now (118) implies /3 > 0. Then the only
possible dominant value in f; g is 4a, a contradiction.

3) So y4 =2as.

Then

(123) By > 20

(if not 3, would be the only dominant value in f> ). Using f3 ¢ and
Jf2,7 we see that

(124) 2B, + B3 =

W

(061 +oc2)+oz2
1
= o +20€2+§(061 + o) > o + 3on.

Let us do another trichotomy:
— A) Suppose oy = y5 < fi3
The possible dominant values are:

f2,6 136y = 200 + 4 = 201 + 200
Sr7 o oo+ = o1 + 300

S8 2p4 = 4oy

J2,9 075+ v =200+ y5 = p4 + 02 = 300
J2.10 1 v4 =200 = 2y5

S oo =75

If 38, > 201 + 20 then the first equations of any wedge with b4 # 0
are:

fre = 2iat(cy —ia3) =0
]72,7 = 4diayar(cy — ia%) =0
fog = (ca+ia3)(cs —iaz) = 0

fro=(ca+ ia3)(cs — 2iaraz) + (¢s + 2iaras)(cs — ia3) =0

fz,lo = (cs + ia%)(c(, - ia%) + (5 + 2iaras)(cs — 2iazas) + (co + ia%)(a; — ia%) =0

]72,11 = (¢s5 + 2iaras)(ce — ia%) + (c6 + ia%)(cs — 2iazaz) = 0.
f6’12 :a§+b2—|—c§ =0.
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Thus ¢4 —ia5 =0 and the last four equations become:
fro=(ca+ ia3)(cs — 2iayaz) = 0
]72“’ 10 = (ca +ia3)(cs — ia3) + (cs + 2iaraz) (cs — 2iazaz) = 0
Fo1 = (¢s + 2iaras) (ce — ia3) + (c6 + ia3)(cs — 2iaraz) = 0.
f6,12=a§‘+b3+c§20

Since by #0, we have ¢g—ia3 #0 and ¢ —ia3 #0. As well,
¢s #0, ay #0, ¢4 #0 which is incompatible with the above equa-

tions.
Thus 3, = 20y + 20,.  The first equations of the wedge are:

frs= b3 + 2iat(cy —ia3) =0
fzj =4iayar(c4 — ia%) =0
Thus as a; #0 and a» #0, we have ¢4 — ia% =0 and then b, =0

(not allowed by definition).
Thus the case A) is impossible and o, = 5.

= B) w=f5<ys.
Using (123) and (124), we see that the possible dominant values

are:
f27(, 2305 = 2004 + py =200 + 200
So,7 00 Fon + 7y =g + 30
So8 02 = 4o
f279 : 3ﬁ3 =Yt o= RIS
J200 0 pg = 200 = 2[5,
Sa o =P
Suppose that 3f, = 20y + y, = 201 + 205, then the first equations of
the wedge are:
(125) fo.s = b3 +2iai(cs — ia3) = 0
(126) fo.7 = diaraz(cs — ia3) =0

Since a; # 0 and a # 0, we obtain ¢4 — ia3 = by = 0, which gives
the desired contradiction.
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Therefore 3, > 201 + y4 = 201 + 20p.  The first equations are:
fre = 2iat(cy —ia3) =0
féj = 4iayar(cy — ia%) =0
f‘zﬂg =(cs + ia%)(q - ia%) =0
fog = b3 +4aya3 =0
f2,10 =(cs + iag)(c(, — iag) + (cq — iag)(c(, + ia%) + 3b§b4 =0
fon = 4ayai + 3b3b3 = 0.
forz=di+b}+cg=0
First we see that ¢4 —ia3 =0 and the equations become:
c4 — ia% =0
J72,9 = b; + 4a§a3 =0
foro = 2ia3(cs — ia3) + 3b3by = 0
fo1 = 4a2a3 + 3bsb; = 0.
f6,12:a§‘+b2+c§:0
By XMaple (one can also do it by hand, as in f; 11 the equation is
linear in b3 and @), these equations imply that b3 = 0, which is not
allowed by definition of 3. Thus case B) is also impossible and the

only remaining case to consider is
- Q)

2
=0 < ﬂz and y4 = 20(2.

1
d2=ﬁ3=y5<—d1, 3

2

Using (123) and (124), we see that the possible dominant values
are:

Sr6:3By =201 + 4 = 200 + 202

So7 o0 o+ =0 + 30

Sa.8 1 2p4 =40

Sr0:3B3 =yt =300 =y, + s =200+ ps
S2,10 1 74 =200 =23 = 275
Sonion=f3=7ys

If 38, = 201 + 20 then the first two equations of the wedge are (125)
and (126). We obtain the same contradiction as before: since a; # 0
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and a, # 0, we have ¢4 — ia% =0 and then b, =0 (not allowed by
definition).
Finally, it remains to solve the case when

3ﬁ2 > 20(1 + 20(2.
The equations of the wedge are:

frs= 2iai(cy —ia3) =0
172,7 = 4iayar(c4 — ia%) =0
frs = (ca+ia3)(ea —ia3) = 0
foo = (ca+ia3)(cs — 2iaras) + b3 =
Foro = (ca+ia3)(ce — ia3) + (¢s + 2iaras)(cs — 2iaras) + 3b3by = 0
fonr = (¢s + 2iaras) (ce — ia3) + (c6 + ia3)(cs — 2iaras) + 3b3b; = 0.
forn=ai+b;+cg=0
As by definition a; # 0, we have ¢4 — ia% =0 and the last four
equations become:
flg = 2ia§(05 — 2iaras) + b33 =0
frro= 2ia3(ce — ia3) + (¢s + 2iaras)(cs — 2iazaz) + 3b3by = 0
]727 11 = (es + 2iaras)(cs — ia3) + (co + ia3)(cs — 2iaras) + 3b3b; = 0.
j%,12:a§+bi+c§:0
By XMaple, one obtains b3 = 0, which is not allowed by definition of

b3. So in this last case one cannot construct the wedge either. This
completes the proof of the last non-inclusion. O
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