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THE TANAKA-WEBSTER CONNECTION AND REAL

HYPERSURFACES IN A COMPLEX SPACE FORM

Jong Taek Cho and Mayuko Kon

Abstract

We classify parallel real hypersurfaces in a complex space form for the generalized

Tanaka-Webster connection.

1. Introduction

Tanaka-Webster connection ([16], [18]) is defined as a canonical a‰ne
connection on a non-degenerate CR-manifold. A real hypersurface in a Käh-
lerian manifold has an (integrable) CR-structure ðh; JÞ which is associated with
an almost contact metric structure ðh; f; x; gÞ, but the Levi form is not guaranteed
to be non-degenerate, in general. In this context, the first author [5], [6] defined
the generalized Tanaka-Webster connection (in short, the g.-Tanaka-Webster
connection) ‘̂‘ðkÞ, k0 0 for real hypersurfaces in a Kählerian manifold. In
particular, if the shape operator A of a real hypersurface satisfies fAþ Af ¼ 2kf,
then its associated CR-structure is strongly pseudo-convex, and further the
g.-Tanaka-Webster connection ‘̂‘ðkÞ coincides with the Tanaka-Webster connec-
tion (see Proposition 2 in section 2).

On the other hand, U-H. Ki [9] proved that there are no real hypersurfaces
with parallel Ricci tensor (for Levi-Civita connection) in a non-flat complex space
form ~MMnðcÞ, ðc0 0Þ when nb 3. This is also true when n ¼ 2 ([10]). These
results imply, in particular, that there do not exist locally symmetric ð‘R ¼ 0Þ
real hypersurfaces in a non-flat complex space form. As the CR-geometric
counterpart of local symmetry, we introduce g.-Tanaka-Webster parallellity in a
real hypersurfaces of a Kähler manifold, whose g.-Tanaka-Webster torsion tensor
T̂T and g.-Tanaka-Webster curvature tensor R̂R are parallel with respect to ‘̂‘ðkÞ:

‘̂‘ðkÞT̂T ¼ 0; ‘̂‘ðkÞR̂R ¼ 0:

In section 3, we classify such spaces in a non-flat complex space form. Namely,
we prove
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Main Theorem. Let M be a real hypersurface of a non-flat complex space
form ~MMnðcÞ, nb 3, c0 0. Then M is g.-Tanaka-Webster parallel if and only if
M is locally congruent to one of the following:
(I) in case that ~MMnðcÞ ¼ PnC with the Fubini-Study metric of c ¼ 4,

ðA1Þ a geodesic hypersphere of radius r, where 0 < r <
p

2
,

ðA2Þ a tube of radius r over a totally geodesic PkC ð1a ka n� 2Þ, where

0 < r <
p

2
,

ðBÞ a tube of radius r over a complex quadric Qn�1, where 0 < r <
p

4
;

(II) in case that ~MMnðcÞ ¼ HnC with the Bergman metric of c ¼ �4,
ðA0Þ a horosphere,
ðA1Þ a geodesic hypersphere or a tube over a complex hyperbolic hyperplane

Hn�1C,
ðA2Þ a tube over a totally geodesic HkC ð1a ka n� 2Þ,
ðBÞ a tube over a totally real hyperbolic space HnR.

In [8], J. T. Cho and M. Kimura gave a classification of real hypersurfaces
in a non-flat complex space form such that the holomorphic sectional curvature
for ‘̂‘ðkÞ is constant. Then we can find that among above examples in Main
Theorem the holomorphic sectional curvature is constant only for type ðA0Þ in
HnC and ðA1Þ in PnC or HnC.

2. Preliminaries

In this paper, all manifolds are assumed to be connected and of class Cy

and the real hypersurfaces are supposed to be oriented.
First, we give a brief review of several fundamental notions and formulas

which we will need later on.

– Almost contact metric structures and the associated CR-structures
An odd-dimensional di¤erentiable manifold M has an almost contact struc-

ture if it admits a (1,1)-tensor field f, a vector field x and a 1-form h satisfying

f2 ¼ �I þ hn x; hðxÞ ¼ 1:ð1Þ

Then one can find always a compatible Riemannian metric, namely which
satisfies

gðfX ; fY Þ ¼ gðX ;Y Þ � hðX ÞhðY Þð2Þ

for all vector fields on M. We call ðh; f; x; gÞ an almost contact metric structure
of M and M ¼ ðM; h; f; x; gÞ an almost contact metric manifold. From (1) and (2)
we easily get

fx ¼ 0; h � f ¼ 0; hðX Þ ¼ gðX ; xÞ:ð3Þ
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For an almost contact metric manifold M, we define its fundamental 2-form F by
FðX ;YÞ ¼ gðfX ;YÞ. If M satisfies in addition

F ¼ dh;ð4Þ
M is called a contact metric manifold. For more details about the general theory
of almost contact metric manifolds, we refer to [3].

For an almost contact metric manifold M ¼ ðM; h; f; x; gÞ, the tangent space
TpM of M at each point p A M is decomposed as TpM ¼ Dp l fxgp (direct sum),
where we denote Dp ¼ fv A TpM j hðvÞ ¼ 0g. Then D : p ! Dp defines a distri-
bution orthogonal to x. The restriction J ¼ f jD of f to D defines an almost
complex structure in D. As soon as the following conditions are further satisfied:

½JX ; JY � � ½X ;Y � A D ðor ½X ; JY � þ ½JX ;Y � A DÞð5Þ
and

½J; J�ðX ;YÞ ¼ 0ð6Þ
for all X ;Y ? x, where ½J; J� is the Nijenhuis torsion of J, then the pair ðh; JÞ
is called an (integrable) CR-structure associated with the almost contact
metric structure ðh; f; x; gÞ. If its Levi form L defined by LðX ;YÞ ¼ dhðX ; JY Þ,
X ;Y ? x, is non-degenerate (positive or negative definite, resp.), then ðh; JÞ is
called a non-degenerate (strongly pseudo-convex, resp.) CR-structure. In par-
ticular, for a contact metric manifold its associated Levi-form is hermitian and
positive definite, but its associated almost complex structure is not in general
integrable. For further details about CR-structures, we refer for example to [1],
[17].

– The generalized Tanaka-Webster connection for real hypersurfaces
Let M be an (oriented) real hypersurface of a Kählerian manifold ~MM ¼

ð ~MM; ~JJ; ~ggÞ and N a global unit normal vector on M. By ~‘‘, A we denote the Levi-
Civita connection in ~MM and the shape operator with respect to N, respectively.
Then the Gauss and Weingarten formulas are given respectively by

~‘‘XY ¼ ‘XY þ gðAX ;Y ÞN; ~‘‘XN ¼ �AX

for any vector fields X and Y tangent to M, where g denotes the Riemannian
metric of M induced from ~gg. An eigenvector(resp. eigenvalue) of the shape
operator A is called a principal curvature vector(resp. principal curvature). For
any vector field X tangent to M, we put

~JJX ¼ fX þ hðXÞN; ~JJN ¼ �x:ð7Þ
We easily see that the structure ðh; f; x; gÞ is an almost contact metric structure on
M i.e. satisfies (1) and (2). From the condition ~‘‘ ~JJ ¼ 0, the relations (7) and by
making use of the Gauss and Weingarten formulas, we have

ð‘XfÞY ¼ hðY ÞAX � gðAX ;Y Þx;ð8Þ
‘Xx ¼ fAX :ð9Þ
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By using (8) and (9), we see that a real hypersurface in a Kählerian manifold
always satisfies (5) and (6), the CR-integrability condition. From (4) and (9) we
have

Proposition 1. Let M ¼ ðM; h; f; x; gÞ be a real hypersurface of a Kählerian
manifold. The almost contact metric structure of M is contact metric if and only
if fAþ Af ¼ 2f.

Let ~MM ¼ ~MMnðcÞ be a complex space form of constant holomorphic sectional
curvature 4c and M a real hypersurface of ~MM. Then we have the following
Gauss and Codazzi equations:

RðX ;Y ÞZ ¼ cfgðY ;ZÞX � gðX ;ZÞYð10Þ
þ gðfY ;ZÞfX � gðfX ;ZÞfY � 2gðfX ;YÞfZg

þ gðAY ;ZÞAX � gðAX ;ZÞAY ;

ð‘XAÞY � ð‘YAÞX ¼ cfhðXÞfY � hðYÞfX � 2gðfX ;Y Þxgð11Þ

for any tangent vector fields X , Y , Z on M.
The Tanaka-Webster connection ([16], [18]) is the canonical a‰ne connection

defined on a non-degenerate CR-manifold. S. Tanno [17] defined the generalized
Tanaka-Webster connection for contact metric manifolds by the canonical con-
nection which coincides with the Tanaka-Webster connection if the associated
CR-structure is integrable. We define the generalized Tanaka-Webster connec-
tion (in short, the g.-Tanaka-Webster connection) for real hypersurfaces in Käh-
lerian manifolds by the naturally extended one of Tanno’s generalized Tanaka-
Webster connection. Now, we recall the generalized Tanaka-Webster connection
‘̂‘ for contact metric manifolds:

‘̂‘XY ¼ ‘XY þ ð‘XhÞðY Þx� hðY Þ‘Xx� hðXÞfY

for all vector fields X and Y .
Making use of (9), we define the g.-Tanaka-Webster connection ‘̂‘ðkÞ for real

hypersurfaces of Kählerian manifolds by

‘̂‘
ðkÞ
X Y ¼ ‘XY þ gðfAX ;Y Þx� hðY ÞfAX � khðX ÞfYð12Þ

for a non-zero real number k. We put

FXY ¼ gðfAX ;YÞx� hðYÞfAX � khðX ÞfY :ð13Þ

Then the torsion tensor T̂T is given by:

T̂TðX ;YÞ ¼ FXY � FYXð14Þ
¼ gððfAþ AfÞX ;YÞx� hðY ÞfAX þ hðX ÞfAY

� kðhðXÞfY � hðYÞfX Þ
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Furthermore, by using (2), (3), (8), (9) and (12) we can see that

‘̂‘ðkÞh ¼ 0; ‘̂‘ðkÞx ¼ 0; ‘̂‘ðkÞg ¼ 0; ‘̂‘ðkÞf ¼ 0;ð15Þ
and

T̂TðX ;Y Þ ¼ 2 dhðX ;YÞx; X ;Y A D:

We note that the associated Levi form is LðX ;YÞ ¼ 1
2 gððJAþ AJÞX ; JY Þ,

where we denote by A the restriction A to D. If M satisfies fAþ Af ¼ 2kf,
then we see that the associated CR-structure is strongly pseudo-convex and
further satisfies T̂Tðx; fY Þ ¼ �fT̂Tðx;Y Þ. Hence, the generalized Tanaka-Webster
connection ‘̂‘ðkÞ coincides with the Tanaka-Webster connection (see [5], [6]).
Namely, we have

Proposition 2. Let M ¼ ðM; h; f; x; gÞ be a real hypersurface of a Kählerian
manifold. If M satisfies fAþ Af ¼ 2kf, then the associated CR-structure is
strongly pseudo-convex and further the g.-Tanaka-Webster connection ‘̂‘ðkÞ coin-
cides with the Tanaka-Webster connection.

Remark 1. From Propositions 1 and 2, we can find examples M in PnC
or HnC whose almost contact metric structures are not contact metric but
their associated CR-structures are strongly pseudo-convex and moreover, the
g.-Tanaka-Webster connection ‘̂‘ðkÞ coincides with the Tanaka-Webster connec-
tion. In reality, a real hypersurface M in PnC or HnC satisfies fAþ Af ¼ 2kf
if and only if M is locally congruent to one of real hypersurfaces of type ðA0Þ
in HnC, ðA1Þ or ðBÞ in PnC, HnC (cf. [12] and [14]). But, with the help of the
tables in [2] and [15], we see that k ¼ 1 only for a geodesic hypersphere of radius
p

4
in PnC and for a horosphere in HnC.

3. g.-Tanaka-Webster parallel spaces

We define the g.-Tanaka-Webster curvature tensor of R̂R (with respect to ‘̂‘ðkÞ)
by

R̂RðX ;Y ÞZ ¼ ‘̂‘X ð‘̂‘YZÞ � ‘̂‘Y ð‘̂‘XZÞ � ‘̂‘½X ;Y �Z

for all vector fields X , Y , Z in M. From the definition of R̂R, together with (12)
and (13), we have

R̂RðX ;Y ÞZ ¼ RðX ;YÞZ þ ð‘XFÞYZ þ FXFYZ � ð‘YFÞXZ � FYFXZ

for all vector fields X , Y , Z tangent to M. We put

EðX ;Y ÞZ ¼ ð‘XF ÞYZ þ FXFYZ � ð‘YFÞXZ � FYFXZ:

Use (9) to get
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EðX ;Y ÞZ ¼ ð‘XF ÞYZ � ð‘YFÞXZ þ FXFYZ � FYFXZð16Þ
¼ gðfðð‘XAÞY � ð‘YAÞXÞ;ZÞxþ 2gðfAY ;ZÞfAX

� 2gðfAX ;ZÞfAY þ gðð‘XfÞAY � ð‘YfÞAX ;ZÞx
� hðZÞðfðð‘XAÞY � ð‘YAÞXÞ þ ð‘XfÞAY � ð‘YfÞAX Þ
� kðgððfAþ AfÞX ;YÞfZ þ hðYÞð‘XfÞZ � hðX Þð‘YfÞZÞ
þ gðfAX ;FYZÞx� hðFYZÞfAX � khðX ÞfFYZ

� gðfAY ;FXZÞxþ hðFXZÞfAY þ khðY ÞfFXZ:

Then E is a tensor field of type ð1; 3Þ, and

R̂RðX ;YÞZ ¼ RðX ;YÞZ þ EðX ;Y ÞZð17Þ
for all vector fields X , Y , Z in M.

We proved the following result in [7].

Proposition 3. Let M be a Hopf hypersurface of a non-flat complex space
form ~MMnðcÞ, c0 0. Then M admits a flat g.-Tanaka-Webster structure, namely,
R̂R ¼ 0 if and only if M is locally congruent to a horosphere in HnC, or dim M ¼ 3
and a homogeneous tube over a complex quadric Qn�1 and PnR ðresp. HnRÞ in PnC
ðresp. HnCÞ.

Very recently, the second author [13] proved that for real hypersurfaces of
a complex projective space PnC, nb 3, the g.-Tanaka-Webster Ricci tensor ŜS
vanishes if and only if it is locally congruent to a geodesic sphere with
k2 b 4nðn� 1Þ.

As an analogue of local symmetry in Riemannian geometry, we now
introduce a g.-Tanaka-Webster parallel spaces.

Definition 1. A real hypersurface in a Kähler manifold is a g.-Tanaka-
Webster parallel space (g.-T.-W. parallel space, for short) if its g.-Tanaka-Webster
torsion tensor T̂T and its curvature tensor R̂R satisfy

‘̂‘ðkÞT̂T ¼ 0; ‘̂‘ðkÞR̂R ¼ 0:

For contact strictly pseudo-convex pseudo-Hermitian manifolds, we defined a
g.-Tanaka-Webster parallel space and studied in [4].

In [11], S. Kobayashi and K. Nomizu call a connection invariant by
parallelism if for any points p and q in M and for any curve g from p to
q, there exists a (unique) local a‰ne isomorphism f such that f ðpÞ ¼ q and
such that the di¤erential of f at p coincides with the parallel displacement
tg : TpM ! TqM along g. By [11, Corollary 7.6], this is equivalent to the
connection having parallel torsion and curvature tensor. In other words, a
g.-T.-W. parallel space is one for which the generalized Tanaka-Webster con-
nection is an invariant connection by parallelism.
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In a former paper, the first author proved

Theorem 4 ([5]). Let M be a real hypersurface of a non-flat complex space
form ~MMnðcÞ, c0 0. Then the shape operator is parallel for the g.-Tanaka-Webster
connection if and only if M is locally congruent to one of real hypersurfaces of type
ðAÞ or ðBÞ.

Now, we prove

Lemma 5. If a real hypersurface in a Kählerian manifold satisfies ‘̂‘ðkÞT̂T ¼ 0,
then

ð‘̂‘ðkÞ
X AÞY ¼ 0

for any tangent vector X of M and any tangent vector Y orthogonal to x.

Proof. Since ‘̂‘ðkÞx ¼ 0, ‘̂‘ðkÞg ¼ 0, ‘̂‘ðkÞf ¼ 0 and ‘̂‘ðkÞh ¼ 0, it follows from
(14) that

gðfð‘̂‘ðkÞ
Z AÞX þ ð‘̂‘ðkÞ

Z AÞfX ;YÞx� hðYÞfð‘̂‘ðkÞ
Z AÞX þ hðXÞfð‘̂‘ðkÞ

Z AÞY ¼ 0:ð18Þ
The scalar product with x in (18) yields

gðfð‘̂‘ðkÞ
Z AÞX þ ð‘̂‘ðkÞ

Z AÞfX ;YÞ ¼ 0:ð19Þ

Thus we have fð‘̂‘ðkÞ
Z AÞ ¼ �ð‘̂‘ðkÞ

Z AÞf. Using (19), (18) reduces again to

hðY Þfð‘̂‘ðkÞ
Z AÞX � hðX Þfð‘̂‘ðkÞ

Z AÞY ¼ 0:ð20Þ
Suppose gðX ; xÞ ¼ 0 and Y ¼ x, we have fð‘̂‘ðkÞ

Z AÞX ¼ �ð‘̂‘ðkÞ
Z AÞfX ¼ 0. This

proves our lemma. 9

Lemma 6. If a real hypersurface in a non-flat complex space form ~MMnðcÞ
ðc0 0Þ, nb 3, satisfies ‘̂‘ðkÞT̂T ¼ 0, then it is a Hopf hypersurface.

Proof. By the definition of g.-Tanaka-Webster connection, we have

ð‘̂‘ðkÞ
X AÞY ¼ ð‘XAÞY þ gðfAX ;AY Þx� hðAY ÞfAXð21Þ

� khðXÞfAY � gðfAX ;YÞAxþ hðY ÞAfAX þ khðXÞAfY :

Using the equation of Codazzi, we obtain

ð‘̂‘ðkÞ
X AÞY � ð‘̂‘ðkÞ

Y AÞXð22Þ
¼ cðhðXÞfY � hðY ÞfX � 2gðfX ;YÞxÞ

þ 2gðfAX ;AY Þx� hðAY ÞfAX � khðX ÞfAY � gðfAX ;YÞAx
þ hðYÞAfAX þ khðX ÞAfY þ hðAX ÞfAY þ khðYÞfAX
þ gðfAY ;XÞAx� hðX ÞAfAY � khðY ÞAfX :
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We can choose an orthonormal frame fe1; . . . ; e2n�2; xg of TxðMÞ such that the
shape operator A is represented by a matrix form

A ¼

a1 � � � 0 h1
..
. . .

. ..
. ..

.

0 � � � a2n�2 h2n�2

h1 � � � h2n�2 a

0
BBBBB@

1
CCCCCA
;

where we have put hi ¼ gðAei; xÞ, i ¼ 1; . . . ; 2n� 2 and a ¼ gðAx; xÞ. By the
direct computation using Lemma 5, we have

gðð‘̂‘ðkÞ
ei

AÞej � ð‘̂‘ðkÞ
ej

AÞei; xÞ ¼ ð�2cþ 2aiaj � aia� ajaÞgðfei; ejÞ ¼ 0;ð23Þ

gðð‘̂‘ðkÞ
ei

AÞej � ð‘̂‘ðkÞ
ej

AÞei; eiÞ ¼ �hiðai þ 2ajÞgðfei; ejÞ ¼ 0;ð24Þ

gðð‘̂‘ðkÞ
ei

AÞej � ð‘̂‘ðkÞ
ej

AÞei; feiÞð25Þ

¼ �hjai � aigðfei; ejÞgðAx; feiÞ � ajgðfei; ejÞgðAx; feiÞ ¼ 0;

gðð‘̂‘ðkÞ
x AÞei � ð‘̂‘ðkÞ

ei
AÞx; eiÞ ¼ 2higðAx; feiÞ ¼ 0;ð26Þ

gðð‘̂‘ðkÞ
x AÞei � ð‘̂‘ðkÞ

ei
AÞx; ejÞð27Þ

¼ ðc� aik þ ajk þ aia� aiajÞgðfei; ejÞ þ higðAx; fejÞ þ hjgðAx; feiÞ
¼ 0;

where i0 j. From (26), we have hi ¼ 0 or gðAx; feiÞ ¼ 0 for i ¼ 1; . . . ; 2n� 2.
By the suitable permutation of the orthonormal basis, we can represent A as

A ¼

a1 h1
. .
. ..

.

aq hq

aqþ1 0

. .
. ..

.

a
2n�2

0

h1 � � � hq 0 � � � 0 a

0
BBBBBBBBBBBB@

1
CCCCCCCCCCCCA

;

where h1; . . . ; hq 0 0. Let H1 and H2 be subspaces of the tangent space TxðMÞ
spanned by fe1; . . . ; eqg and feqþ1; . . . ; e2n�2g, respectively. We use indices
s; t; u; . . . for H1 ¼ fesg and x; y; z; . . . for H2 ¼ fexg. We notice that
gðAx; fesÞ ¼ 0 for all es A H1.

When dim H1 ¼ 0, M is a Hopf hypersurface. In the following we consider
the case that dim H1 0 0. When dim H1 ¼ 1, then the shape operator A can be
represented as follows:
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(i)

A ¼

a1 h1

a2 0

. .
. ..

.

a2n�2 0

h1 0 � � � 0 a

0
BBBBBBB@

1
CCCCCCCA
:

Next, when dim H1 b 2, substituting ei ¼ es, ej ¼ et A H1 in (25), we see that
htas ¼ 0 for any s0 t. If there exists a non-zero as, then ht ¼ 0 for any s0 t.
This is a contradiction. So we have a1 ¼ � � � ¼ aq ¼ 0. Hence the shape op-
erator A can be represented as follows:

(ii)

A ¼

0 h1
. .
. ..

.

0 hq

aqþ1 0

. .
. ..

.

a
2n�2

0

h1 � � � hq 0 � � � 0 a

0
BBBBBBBBBBBB@

1
CCCCCCCCCCCCA

:

Case (i). Since dim H1 ¼ 1, there exists ex A H2 such that gðfe1; exÞ0 0.
By (24),

h1ða1 þ 2axÞgðfe1; exÞ ¼ 0;

from which we obtain a1 ¼ �2ax. On the other hand, putting ei ¼ e1 and
ej ¼ ex in (23),

2c� axaþ 4a2x ¼ 0:

Thus we have ax 0 0. Substituting ei ¼ ex and ej ¼ e1 in (25),

0 ¼ �h1ax � axgðfex; e1ÞgðAx; fexÞ � a1gðfex; e1ÞgðAx; fexÞ

¼ �h1axð1� gðfex; e1Þ2Þ;

here we used Ax ¼ h1e1 þ ax. Since h1ax 0 0, we obtain fe1 ¼Gex. We only
have to consider the case that fe1 ¼ ex. Since dim H1 ¼ 1 and nb 3, we
have dim H2 b 3. Taking ey 0 ex, we have gðfey; e1Þ ¼ 0. Thus (25) implies
h1ay ¼ 0, from which we obtain ay ¼ 0 for ey 0 ex. So there exist i, j such that
fei ¼ ej, i; j0 1; x and ai ¼ aj ¼ 0. Using (27), we have gðfei; ejÞ ¼ 0. This is a
contradiction.

Case (ii). From (23), we have gðes; fetÞ ¼ 0 for any es; et A H1. So we see
that dim H2 0 0 and fH1 JH2. Thus, for any es A H1, there exists ex A H2 such
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that gðfes; exÞ0 0. Substituting ei ¼ es A H1, ej ¼ ex A H2 in (23) and (24), we
have

�2c� axa ¼ 0; 2hsax ¼ 0

for any es A H1. From these equations, we get hs ¼ 0 for any s. This is a
contradiction.

Therefore, dim H1 ¼ 0 and M is a Hopf hypersurface. 9

Lemma 7. Let M be a real hypersurface of a complex space form ~MMnðcÞ,
c0 0, nb 3. Then ‘̂‘ðkÞT̂T ¼ 0 if and only if the shape operator A is parallel with
respect to the g.-Tanaka-Webster connection.

Proof. First we suppose ‘̂‘ðkÞT̂T ¼ 0. From Lemma 6, M is a Hopf
hypersurface and the shape operator A satisfies Ax ¼ ax for some constant a.
Using ‘̂‘ðkÞx ¼ 0 and (12), we have

ð‘̂‘ðkÞ
X AÞx ¼ ‘̂‘

ðkÞ
X Ax� A‘̂‘

ðkÞ
X x ¼ ‘̂‘

ðkÞ
X ðaxÞ ¼ 0:

Together with Lemma 5, we have ‘̂‘ðkÞA ¼ 0.
Conversely, if ‘̂‘ðkÞA ¼ 0, then (14) implies ‘̂‘ðkÞT̂T ¼ 0. Thus we have our

result. 9

By Theorem 4 and Lemma 7, we have

Theorem 8. Let M be a real hypersurface of a complex space form ~MMnðcÞ,
c0 0, nb 3. Then ‘̂‘ðkÞT̂T ¼ 0 if and only if M is locally congruent to one of real
hypersurfaces of type ðAÞ or ðBÞ.

If a real hypersurface in a complex space form ~MMnðcÞ, c0 0, nb 3 satisfies
‘̂‘ðkÞT̂T ¼ 0, then ‘̂‘ðkÞF ¼ 0 by Lemma 7 and (15). Moreover, use (8), (11) and
(15) in (16) to find ‘̂‘ðkÞE ¼ 0: Hence, from (17) we obtain

ð‘̂‘ðkÞ
W R̂RÞðX ;Y ÞZ ¼ ð‘̂‘ðkÞ

W RÞðX ;Y ÞZ:

Using the Gauss equation and Lemma 7 again, the righthand side of the equation
vanishes. So we have ‘̂‘ðkÞR̂R ¼ 0.

After all, by Theorem 8 and the mentioned above we have completed our
main Theorem.
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