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THE TANAKA-WEBSTER CONNECTION AND REAL
HYPERSURFACES IN A COMPLEX SPACE FORM

JONG TAEK CHO AND MAYUKO KoN

Abstract

We classify parallel real hypersurfaces in a complex space form for the generalized
Tanaka-Webster connection.

1. Introduction

Tanaka-Webster connection ([16], [18]) is defined as a canonical affine
connection on a non-degenerate CR-manifold. A real hypersurface in a Kéh-
lerian manifold has an (integrable) CR-structure (7,J) which is associated with
an almost contact metric structure (7, ¢, &, g), but the Levi form is not guaranteed
to be non-degenerate, in general. In this context, the first author [5], [6] defined
the generalized Tanaka-Webster connection (in short, the g.-Tanaka-Webster
connection) V® k0 for real hypersurfaces in a Kihlerian manifold. In
particular, if the shape operator 4 of a real hypersurface satisfies pA4 + Ap = 2k,
then its associated CR-structure is strongly pseudo-convex, and further the
g.-Tanaka-Webster connection V¥ coincides with the Tanaka-Webster connec-
tion (see Proposition 2 in section 2).

On the other hand, U-H. Ki [9] proved that there are no real hypersurfaces
with parallel Ricci tensor (for Levi-Civita connection) in a non-flat complex space
form M,(c), (c #0) when n > 3. This is also true when n =2 ([10]). These
results imply, in particular, that there do not exist locally symmetric (VR = 0)
real hypersurfaces in a non-flat complex space form. As the CR-geometric
counterpart of local symmetry, we introduce g.-Tanaka-Webster parallellity in a
real hypersurfaces of a Kdhler manifold, whose g.-Tanaka-Webster torsion tensor
T and g.-Tanaka-Webster curvature tensor R are parallel with respect to V¥

VT =0, VOR=0.

In section 3, we classify such spaces in a non-flat complex space form. Namely,
we prove
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MAIN THEOREM. Let M be a real hypersurface of a non-flat complex space
Jorm M,(c), n>=3, ¢c#0. Then M is g.-Tanaka-Webster parallel if and only if
M is locally congruent to one of the following:

(I) in case that M,(c) = P,C with the Fubini-Study metric of ¢ =4,
(A1) a geodesic hypersphere of radius r, where 0 < r < g,
(A42) a tube of radius r over a totally geodesic PrC (1 <k <n-—2), where

i

O<r<=
r X i
(B) a tube of radius r over a complex quadric Q,_y, where 0 <r < Z;

(I) in case that M,(c) = H,C with the Bergman metric of ¢ = —4,
(Ao) a horosphere,
(A1) a geodesic hypersphere or a tube over a complex hyperbolic hyperplane
anlca
(A42) a tube over a totally geodesic H.C (1 <k <n-—2),
(B) a tube over a totally real hyperbolic space H,R.

In [8], J. T. Cho and M. Kimura gave a classification of real hypersurfaces
in a non-flat complex space form such that the holomorphic sectional curvature
for V¥ is constant. Then we can find that among above examples in Main
Theorem the holomorphic sectional curvature is constant only for type (4p) in
H,C and (4,) in P,C or H,C.

2. Preliminaries

In this paper, all manifolds are assumed to be connected and of class C*
and the real hypersurfaces are supposed to be oriented.

First, we give a brief review of several fundamental notions and formulas
which we will need later on.

— Almost contact metric structures and the associated CR-structures
An odd-dimensional differentiable manifold M has an almost contact struc-
ture if it admits a (1,1)-tensor field ¢, a vector field ¢ and a 1-form # satisfying

(1) P=—T+n1®¢& nl) =1

Then one can find always a compatible Riemannian metric, namely which
satisfies

(2) 99X, ¢Y)=g(X,Y) —n(X)n(Y)

for all vector fields on M. We call (1,¢,&,g) an almost contact metric structure
of M and M = (M;n,¢,¢,g) an almost contact metric manifold. From (1) and (2)
we easily get

3) $&=0, nop=0, nX)=g(X,03).
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For an almost contact metric manifold M, we define its fundamental 2-form ® by
O(X,Y)=9g(¢X,Y). If M satisfies in addition

4) ® = dy,

M is called a contact metric manifold. For more details about the general theory
of almost contact metric manifolds, we refer to [3].

For an almost contact metric manifold M = (M;n, ¢, &, g), the tangent space
T,M of M at each point p € M is decomposed as T,M = D, ® {¢}, (direct sum),
where we denote D, = {ve T,M |n(v) =0}. Then D:p — D, defines a distri-
bution orthogonal to £ The restriction J = ¢| D of ¢ to D defines an almost
complex structure in D. As soon as the following conditions are further satisfied:

(5) [JX,JY]—[X,Y]eD (or [X,JY]+[JX,Y]eD)
and
(6) [J,J](X,Y)ZO

for all X,Y L & where [J,J] is the Nijenhuis torsion of J, then the pair (1, J)
is called an (integrable) CR-structure associated with the almost contact
metric structure (,¢,&,¢g). If its Levi form L defined by L(X,Y) = dy(X,JY),
X,Y 1 & is non-degenerate (positive or negative definite, resp.), then (#,J) is
called a non-degenerate (strongly pseudo-convex, resp.) CR-structure. In par-
ticular, for a contact metric manifold its associated Levi-form is hermitian and
positive definite, but its associated almost complex structure is not in general

integrable. For further details about CR-structures, we refer for example to [1],
[17].

— The generalized Tanaka-Webster connection for real hypersurfaces ~

~ Let M be an (oriented) real hypersurface of a Kéhlerian manifold M =
(M;J,g) and N a global unit normal vector on M. By V, A4 we denote the Levi-
Civita connection in M and the shape operator with respect to N, respectively.
Then the Gauss and Weingarten formulas are given respectively by

ViY =VyY +g(AX,Y)N, VxN=—-AX

for any vector fields X and Y tangent to M, where g denotes the Riemannian
metric of M induced from g. An eigenvector(resp. eigenvalue) of the shape
operator A is called a principal curvature vector(resp. principal curvature). For
any vector field X tangent to M, we put

(7) JX = ¢X +n(X)N, JN = —-¢

We easily see that the structure (77,4, ¢, g) is an almost contact metric structure on
M i.e. satisfies (1) and (2). From the condition VJ = 0, the relations (7) and by
making use of the Gauss and Weingarten formulas, we have

(8) (Vx§)Y =n(Y)AX — g(AX, Y)¢,
) Vyé=¢AX.
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By using (8) and (9), we see that a real hypersurface in a Kdahlerian manifold
always satisfies (5) and (6), the CR-integrability condition. From (4) and (9) we
have

ProposITION 1. Let M = (M;n,¢$,¢,g) be a real hypersurface of a Kdhlerian
manifold.  The almost contact metric structure of M is contact metric if and only

if $A+ Agp =24,

Let M = M,,(c) be a complex space form of constant holomorphic sectional
curvature 4¢ and M a real hypersurface of M. Then we have the following
Gauss and Codazzi equations:

(10) R(X,Y)Z=c{g(Y,Z)X —g(X,2)Y
+9(PY,Z)pX — g(¢X, Z2)¢Y — 29($X, Y)pZ}
+g(AY,Z)AX — g(AX,Z)AY,
(11) (VxA)Y — (VyA)X = c{n(X)pY —n(Y)pX —29(4X, Y)E}

for any tangent vector fields X, Y, Z on M.

The Tanaka-Webster connection ([16], [18]) is the canonical affine connection
defined on a non-degenerate CR-manifold. S. Tanno [17] defined the generalized
Tanaka-Webster connection for contact metric manifolds by the canonical con-
nection which coincides with the Tanaka-Webster connection if the associated
CR-structure is integrable. We define the generalized Tanaka-Webster connec-
tion (in short, the g.-Tanaka-Webster connection) for real hypersurfaces in Kih-
lerian manifolds by the naturally extended one of Tanno’s generalized Tanaka-
Webster connection. Now, we recall the generalized Tanaka-Webster connection

V for contact metric manifolds:
VyY =VyY + (Vyn)(Y)E—n(Y)Vxé —n(X)pY

for all vector fields X and Y. R
Making use of (9), we define the g.-Tanaka-Webster connection V*) for real
hypersurfaces of Kdhlerian manifolds by

(12) VY'Y = V¥ +g($AX, Y)E = n(Y)pAX — kn(X)$Y
for a non-zero real number k. We put
(13) FyY =g(pAX,Y)< —n(Y)pAX — kn(X)¢Y.

Then the torsion tensor 7' is given by:

(14) T(X,Y)=FyY — FyX
=9((¢A + AP)X, Y)E = n(Y)pAX +n(X)pAY
—k(n(X)¢Y —n(Y)pX)
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Furthermore, by using (2), (3), (8), (9) and (12) we can see that
(15) vy =0, vWe=0, Vvlg=0 Vv®g=o,

and

T(X,Y)=2dn(X,Y):, X,YeD.

We note that the associated Levi form is L(X,Y) =1g((JA+ AJ)X,JY),
where we denote by A the restriction 4 to D. If M satisfies ¢4 + Ap = 2k¢,
then we see that the associated CR-structure is strongly pseudo-convex and
further satisfies T'(¢,¢Y) = —¢T(&, Y). Hence, the generalized Tanaka-Webster

connection V®) coincides with the Tanaka-Webster connection (see [5], [6]).
Namely, we have

PROPOSITION 2. Let M = (M;n,$,&,g) be a real hypersurface of a Kdihlerian
manifold. If M satisfies ¢A+ Ap = 2k¢p, then the associated CR-structure is
strongly pseudo-convex and further the g.-Tanaka-Webster connection V& coin-
cides with the Tanaka-Webster connection.

Remark 1. From Propositions 1 and 2, we can find examples M in P,C
or H,C whose almost contact metric structures are not contact metric but
their associated CR-structures are strongly pseudo-convex and moreover, the
g.-Tanaka-Webster connection V) coincides with the Tanaka-Webster connec-
tion. In reality, a real hypersurface M in P,C or H,C satisfies ¢4 + Ap = 2k¢
if and only if M is locally congruent to one of real hypersurfaces of type (A4o)
in H,C, (4,) or (B) in P,C, H,C (cf. [12] and [14]). But, with the help of the
tables in [2] and [15], we see that k = 1 only for a geodesic hypersphere of radius

Z in P,C and for a horosphere in H,C.

3. g.-Tanaka-Webster parallel spaces

We define the g.-Tanaka-Webster curvature tensor of R (with respect to V%))
by

R(X,Y)Z =Vx(VyZ) = Vy(VxZ) = Vix. 1 Z

for all vector fields X, Y, Z in M. From the definition of R, together with (12)
and (13), we have

R(X,Y)Z=R(X,Y)Z+ (VxF)yZ + FxFyZ — (VyF)yZ — FyFxZ
for all vector fields X, Y, Z tangent to M. We put

E(X,Y)Z = (VxF)yZ + FyFyZ — (VyF),Z — FyFyZ.
Use (9) to get
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(16) E(X,Y)Z= (VxF)yZ— (VyF)yZ + FxFyZ — FyFxyZ
— 9((VxA)Y — (VyA)X), Z)E +2g($AY, Z)$AX
— 29($AX, Z)AY +g(Vx$)AY — (Vy$)AX, Z)¢
—n(Z)(p((VxA)Y — (VyA)X) + (Vx¢)AY — (Vy¢)AX)
—k(g((9pA + AP) X, Y)¢Z +3n(Y)(Vx$)Z —n(X)(Vy9)Z)
+9(pAX, FyZ)E — n(FyZ)¢pAX — kn(X)pFyZ
—9(¢AY , FxZ)¢ + n(Fx Z)pAY + kn(Y)$pFx Z.
Then E is a tensor field of type (1,3), and

(17) R(X,Y)Z=R(X,Y)Z+E(X,Y)Z
for all vector fields X, Y, Z in M.
We proved the following result in [7].

PrOPOSITION 3. Let M be a Hopf hypersurface of a non-flat complex space
Jorm M,(c), ¢ #0. Then M admits a flat g.-Tanaka-Webster structure, namely,
R =0 if and only if M is locally congruent to a horosphere in H,C, or dim M =3
and a homogeneous tube over a complex quadric Q"' and P,R (resp. H,R) in P,C
(resp. H,C).

Very recently, the second author [13] proved that for real hypersurfaces of
a complex projective space P,C, n > 3, the g.-Tanaka-Webster Ricci tensor S
vanishes if and only if it is locally congruent to a geodesic sphere with
k* > dn(n —1).

As an analogue of local symmetry in Riemannian geometry, we now
introduce a g.-Tanaka-Webster parallel spaces.

DerFINITION 1. A real hypersurface in a Kéhler manifold is a g.-Tanaka-
Webster parallel space (g.-T.-W. parallel space, for short) if its g.-Tanaka-Webster
torsion tensor 7 and its curvature tensor R satisfy

vOT =0, V®R=0.

For contact strictly pseudo-convex pseudo-Hermitian manifolds, we defined a
g.-Tanaka-Webster parallel space and studied in [4].

In [I1], S. Kobayashi and K. Nomizu call a connection invariant by
parallelism if for any points p and ¢ in M and for any curve y from p to
¢, there exists a (unique) local affine isomorphism f* such that f(p)=¢ and
such that the differential of f at p coincides with the parallel displacement
7,: T,M — T,M along y. By [l1, Corollary 7.6], this is equivalent to the
connection having parallel torsion and curvature tensor. In other words, a
g.-T.-W. parallel space is one for which the generalized Tanaka-Webster con-
nection is an invariant connection by parallelism.
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In a former paper, the first author proved

Tueorem 4 ([S]). Let M be a real hypersurface of a non-flat complex space
form M,(c), ¢ #0. Then the shape operator is parallel for the g.-Tanaka-Webster
connection if and only if M is locally congruent to one of real hypersurfaces of type
(4) or (B).

Now, we prove

LEMMA 5. If a real hypersurface in a Kéhlerian manifold satisfies VT = 0,

then
vPA Yy =0

for any tangent vector X of M and any tangent vector Y orthogonal to ¢.

Proof.  Since V®¢E =0, VW g =0, VB¢ =0 and V¥y = 0, it follows from
(14) that
(18) gV )X + (VE A)gX, Y)E = n(V)$(VS )X +n(X)p(Vy 4)Y = 0.
The scalar product with & in (18) yields

(19) 9PV AX + (VS 4)gX, ¥) = 0.

Thus we have ¢(@g{)A) = —(V(ZMA)(A Using (19), (18) reduces again to

(20) 1(V)HVL X —n(X)p(Vy 4)Y =0.

Suppose g(X,&) =0 and Y =¢&, we have qﬁ(@g{)A)X = —(@(Z/{>A)¢X = 0. This
proves our lemma. [ ]

LEMMA 6. If a real hypersurface in a non-flat complex space form M,(c)
(c #0), n> 3, satisfies VOT =0, then it is a Hopf hypersurface.

Proof. By the definition of g.-Tanaka-Webster connection, we have
21)  (VPA)Y = (VxA)Y + g(pAX, AY)E — n(AY)pAX
—kn(X)pAY — g(pAX, Y)AE + n(Y)APAX + kn(X)A¢Y.
Using the equation of Codazzi, we obtain
22) VPay - vPax
= c(n(X)PY —n(Y)pX —29(4X, Y)<)

+2g(¢AX, AY)E — n(AY)PAX — kn(X)PAY — g($AX, Y) A

+(Y)APAX + kn(X)AY + n(AX)PAY + kn(Y)pAX

+g(@AY , X)AE —n(X)APAY — kn(Y)ApX.
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We can choose an orthonormal frame {ej,...,ex_2,&} of Ty (M) such that the
shape operator A4 is represented by a matrix form

a - 0 hy

A - ]
0 e doyp-2 h2n—2
hy - oo ‘ o

where we have put h; =g(de;, &), i=1,...,2n—2 and a=g(4& E). By the
direct computation using Lemma 5, we have

= —hja; — ajg(gei, e))g(AE, pe;) — ag(dei, e;)g(AE, pe;) = 0,
(26)  g((VV A)e; — (VO A)E, ¢;) = 2hig(AE, per) = 0,
27)  g(VP A)e; — (VP A)E, ¢))

= (¢ — aik + ajk + ajo — aja;)g(de;, ;) + hig(AE, ge;) + hig(AE, ge;)
—0,

where i # j. From (26), we have h; =0 or g(A&, ¢e;)) =0 for i=1,...,2n— 2.
By the suitable permutation of the orthonormal basis, we can represent 4 as

a hy
g hy
A= g+l 0 ;

a2n72 0

hi - hy 0 o 0 o
where hy,...,h, #0. Let H; and H, be subspaces of the tangent space T',(M)
spanned by {ei,...,e,} and {e;1,...,e2,-2}, respectively. We use indices
s,t,u,... for H; ={e} and x,yz... for H,={e}. We notice that

g(AE, pes) =0 for all e € H.

When dim H, =0, M is a Hopf hypersurface. In the following we consider
the case that dim H; # 0. When dim H; = 1, then the shape operator 4 can be
represented as follows:
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a hl
[75) 0
A =
rp—2 0
hy 0 --- 0 o

Next, when dim H; > 2, substituting e; = ey, ¢; = ¢, € H; in (25), we see that
ha; =0 for any s # ¢. If there exists a non-zero a,, then 4, =0 for any s # t.
This is a contradiction. So we have a; =--- =a,=0. Hence the shape op-
erator A can be represented as follows:

(i)

0 hy

0 hy

A= Ag+1 0
aZn—Z 0

h o hy O o 0 o

Case (i). Since dim H; =1, there exists e, € H, such that g(ge;,ey) # 0.
By (24),

h(ar + 2ay)g(ger,ex) =0,

from which we obtain a; = —2a,. On the other hand, putting e¢; =e¢; and
e; = e, in (23),

2¢ — a0+ 4a? = 0.

Thus we have a, # 0. Substituting ¢; = e, and e; =¢; in (25),

0 = —hiax — axg(ex, e1)g(AS, pex) — arg(ex, e1)g(AS, pex)
= —hlax(l - g(¢€x,€1)2),

here we used A& = hjey +aé. Since hja, # 0, we obtain ¢e; = t+e,. We only
have to consider the case that ¢e; =e,. Since dim H; =1 and n >3, we
have dim H, > 3. Taking e, # e,, we have g(¢ge,,e;) =0. Thus (25) implies
hia, = 0, from which we obtain a, = 0 for e, # e,. So there exist 7, j such that
pe; =ej, i,j #1,x and ; = a; = 0. Using (27), we have g(de;,e;) =0. Thisisa
contradiction.

Case (ii). From (23), we have g(es, ge;) =0 for any ey, e, € H;. So we see
that dim H; # 0 and ¢H, < H,. Thus, for any e; € H}, there exists e, € H, such
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that g(gey,e.) # 0. Substituting e; = e, € Hy, ¢ = e, € H, in (23) and (24), w
have

—2c—ayw=0, 2ha,=0

for any e; € H;. From these equations, we get s, =0 for any s. This is a
contradiction.
Therefore, dim H; =0 and M is a Hopf hypersurface. |

LemmA 7. Let M be a real hypersurface of a complex space form M,,(c),
c#0,n>3 Then VT =0 if and only if the shape operator A is parallel with
respect to the g.-Tanaka-Webster connection.

Proof.  First we suppose VX T =0. From Lemma 6, M is a Hopf
hypersurface and the shape operator A satisfies A = al for some constant o.
Using VP& =0 and (12), we have

(VPA) e =VPas - avPe=vP (&) =0.

Together with Lemma 5, we have va =0, o
Conversely, if V%4 =0, then (14) implies VX7 =0. Thus we have our
result. u

By Theorem 4 and Lemma 7, we have

THEOREM 8. Let M be a real hypersurface of a complex space form M, (¢),
¢c#0,n>3 Then VOT =0 if and only if M is locally congruent to one of real
hypersurfaces of type (A) or (B).

If a real hypersurface in a complex space form M, (c), ¢ # 0, n > 3 satisfies
VO T =0, then V k)F 0 by Lemma 7 and (15). Moreover, use (8), (11) and
(15) in (16) to find VWE =0. Hence, from (17) we obtain

(VWRI(X,Y)Z = (V' R)(X, Y)Z.

Using the Gauss equatlon and Lemma 7 again, the righthand side of the equation
vanishes. So we have V¥R = 0.

After all, by Theorem 8 and the mentioned above we have completed our
main Theorem.
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the manuscript and giving the valuable comments for the revised version.
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