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Abstract

In this paper we study the r-stability of closed spacelike hypersurfaces with constant

r-th mean curvature in conformally stationary spacetimes of constant sectional curva-

ture. In this setting, we obtain a characterization of r-stability through the analysis of

the first eigenvalue of an operator naturally attached to the r-th mean curvature. As an

application, we treat the case in which the spacetime is the de Sitter space.

1. Introduction

The notion of stability concerning hypersurfaces of constant mean curvature
of Riemannian ambient spaces was first studied by Barbosa and do Carmo in [4],
and by Barbosa, do Carmo and Eschenburg in [5], where they proved that
spheres are the only stable critical points of the area functional for volume-
preserving variations.

In the Lorentz context, in 1993 Barbosa and Oliker [7] obtained an
analogous result, proving that constant mean curvature spacelike hypersurfaces
in Lorentz manifolds are also critical points of the area functional for variations
that keep the volume constant. They also computed the second variation
formula and showed, for the de Sitter space Snþ1

1 , that spheres maximize the
area functional for volume-preserving variations.

More recently, Liu and Junlei [15] have characterized the r-stable closed
spacelike hypersurfaces with constant scalar curvature in the de Sitter space.

The natural generalization of mean and scalar curvatures for an
n-dimensional hypersurface are the r-th mean curvatures Hr, for r ¼ 1; . . . ; n.
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In fact, H1 is just the mean curvature and H2 defines a geometric quantity which
is related to the scalar curvature.

In [10], some of the authors have studied the problem of strong stability
(that is, stability with respect to not necessarily volume-preserving variations)
for spacelike hypersurfaces with constant r-th mean curvature in a Generalized
Robertson-Walker (GRW) spacetime of constant sectional curvature, giving a
characterization of r-maximal and spacelike slices.

Here, motivated by these works, we consider closed spacelike hypersurfaces
with constant r-th mean curvature in a wider class of Lorentz manifolds, the so-
called conformally stationary spacetimes, in order to obtain a relation between
r-stability and the spectrum of a certain elliptic operator naturally attached to
the r-th mean curvature of the hypersurfaces. Our approach is based on the
use of the Newton transformations Pr and their associated second order di¤er-
ential operators Lr (cf. Section 2). More precisely, we prove the following
result.

Theorem 1.1. Let Mnþ1
c be a conformally stationary Lorentz manifold with

constant curvature c. Suppose that Mnþ1
c has a closed conformal vector field V

and a Killing vector field W. Let x : Mn ! Mnþ1
c be a closed spacelike hyper-

surface, with constant, positive ðrþ 1Þ-th mean curvature Hrþ1 such that

l ¼ cðn� rÞ n

r

� �
Hr � nH1

n

rþ 1

� �
Hrþ1 þ ðrþ 2Þ n

rþ 2

� �
Hrþ2

is constant. Assume also that DivM V does not vanish on Mn. Then x is r-stable
if and only if l is the first eigenvalue of Lr on Mn.

As an application of the previous result, we obtain the following corollary in
the de Sitter space.

Corollary 1.2. Let x : Mn ! Snþ1
1 be a closed spacelike hypersurface,

contained in the chronological future (or past) of an equator of Snþ1
1 , with positive

constant ðrþ 1Þ-th mean curvature such that

l ¼ ðn� rÞ n

r

� �
Hr � nH

n

rþ 1

� �
Hrþ1 þ ðrþ 2Þ n

rþ 2

� �
Hrþ2

is constant. Then x is r-stable if and only if l is the first eigenvalue of Lr on Mn.

Finally, it should be said that, although every GRW is a conformally
stationary spacetime, the converse only holds locally, and just for conformally
stationary spacetimes of constant sectional curvature. Moreover, our techniques
and results are quite di¤erent from those of [10], and in particular do not coincide
with them in case our conformally stationary spacetime happens to be a GRW of
constant sectional curvature.
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2. Preliminaries

Let Mnþ1 denote a time-oriented Lorentz manifold with Lorentz metric
g ¼ h ; i, volume element dM and semi-Riemannian connection ‘. In this
context, we consider spacelike hypersurfaces x : Mn ! Mnþ1, namely, isometric
immersions from a connected, n-dimensional orientable Riemannian manifold Mn

into M. We let ‘ denote the Levi-Civita connection of Mn.
If M is time-orientable and x : Mn ! Mnþ1 is a spacelike hypersurface, then

Mn is orientable (cf. [13]) and one can choose a globally defined unit normal
vector field N on Mn having the same time-orientation of M. Such an N is
named the future-pointing Gauss map of Mn. In this setting, let A denote the
shape operator of M with respect to N, so that at each p A Mn, A restricts to a
self-adjoint linear map Ap : TpM ! TpM.

For 1a ra n, let SrðpÞ denote the r-th elementary symmetric function on
the eigenvalues of Ap; this way one gets n smooth functions Sr : M

n ! R, such
that

detðtI � AÞ ¼
Xn

k¼0

ð�1ÞkSkt
n�k;

where S0 ¼ 1 by definition. If p A Mn and fekg is a basis of TpM formed by
eigenvectors of Ap, with corresponding eigenvalues flkg, one immediately sees
that

Sr ¼ srðl1; . . . ; lnÞ;

where sr A R½X1; . . . ;Xn� is the r-th elementary symmetric polynomial on the
indeterminates X1; . . . ;Xn.

For 1a ra n, one defines the r-th mean curvature Hr of x by

n

r

� �
Hr ¼ ð�1ÞrSr ¼ srð�l1; . . . ;�lnÞ:

Also, for 0a ra n, the r-th Newton transformation Pr on Mn is defined by
setting P0 ¼ I (the identity operator) and, for 1a ra n, via the recurrence
relation

Pr ¼ ð�1ÞrSrI þ APr�1:ð2:1Þ

A trivial induction shows that

Pr ¼ ð�1ÞrðSrI � Sr�1Aþ Sr�2A
2 � � � � þ ð�1ÞrArÞ;

so that Cayley-Hamilton theorem gives Pn ¼ 0. Moreover, since Pr is a poly-
nomial in A for every r, it is also self-adjoint and commutes with A. Therefore,
all bases of TpM diagonalizing A at p A Mn also diagonalize all of the Pr at p.

341r-stable spacelike hypersurfaces



Let fekg be such a basis. Denoting by Ai the restriction of A to heii
? HTpS, it

is easy to see that

detðtI � AiÞ ¼
Xn�1

k¼0

ð�1ÞkSkðAiÞtn�1�k;

where

SkðAiÞ ¼
X

1a j1<���< jkan
j1;...; jk0i

lj1 � � � ljk :

With the above notations, it is also immediate to check that Prei ¼
ð�1ÞrSrðAiÞei, and hence (cf. Lemma 2.1 of [6])

trðPrÞ ¼ ð�1Þrðn� rÞSr ¼ brHr;

trðAPrÞ ¼ ð�1Þrðrþ 1ÞSrþ1 ¼ �brHrþ1;

trðA2PrÞ ¼ ð�1ÞrðS1Srþ1 � ðrþ 2ÞSrþ2Þ;

ð2:2Þ

where br ¼ ðn� rÞ n

r

� �
.

Associated to each Newton transformation Pr one has the second order
linear di¤erential operator Lr : DðMÞ ! DðMÞ, given by

Lrð f Þ ¼ trðPr Hess f Þ:
For instance, when r ¼ 0, Lr is simply the Laplacian operator.

According to [3], if Mnþ1 is of constant sectional curvature, then Pr is
divergence-free and, consequently,

Lrð f Þ ¼ divðPr‘f Þ:
If x is as above, a variation of it is a smooth mapping

X : Mn � ð�e; eÞ ! Mnþ1

satisfying the following conditions:
(1) For t A ð�e; eÞ, the map Xt : M

n ! Mnþ1 given by XtðpÞ ¼ X ðt; pÞ is a
spacelike immersion such that X0 ¼ x.

(2) XtjqM ¼ xjqM , for all t A ð�e; eÞ.
In all that follows, we let dMt denote the volume element of the metric

induced on M by Xt and Nt the unit normal vector field along Xt.
The variational field associated to the variation X is the vector field

qX

qt

����
t¼0

. Letting f ¼ � qX

qt
;Nt

� �
, we get

qX

qt
¼ fNt þ

qX

qt

� �>
;ð2:3Þ

where > stands for tangential components.
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The balance of volume of the variation X is the function V : ð�e; eÞ ! R
given by

VðtÞ ¼
ð
M�½0; t�

X �ðdMÞ;

and we say X is volume-preserving if V is constant.
From now on, we will consider only closed spacelike hypersurfaces

x : Mn ! Mnþ1. The following lemma is well known and can be found in
[10].

Lemma 2.1. Let Mnþ1 be a time-oriented Lorentz manifold and x : Mn !
Mnþ1 a closed spacelike hypersurface. If X : Mn � ð�e; eÞ ! Mnþ1 is a variation
of x, then

dV

dt
¼

ð
M

f dMt:

In particular, X is volume-preserving if and only if
Ð
M

f dMt ¼ 0 for all t.

We remark that Lemma 2.2 of [5] remains valid in the Lorentz context, i.e.,
if f0 : M ! R is a smooth function such that

Ð
M

f0 dM ¼ 0, then there exists a
volume-preserving variation of M whose variational field is f0N.

In order to extend [6] to the Lorentz setting, we define the r-area functional
Ar : ð�e; eÞ ! R associated to the variation X by

ArðtÞ ¼
ð
M

FrðS1;S2; . . . ;SrÞ dMt;

where Sr ¼ SrðtÞ and Fr is recursively defined by setting F0 ¼ 1, F1 ¼ �S1 and,
for 2a ra n� 1,

Fr ¼ ð�1ÞrSr �
cðn� rþ 1Þ

r� 1
Fr�2:

We notice that if r ¼ 0, the functional A0 is the classical area functional.
The next results were proved in [10] and the first of them is the Lorentz

analogue of Proposition 4.1 of [6].

Lemma 2.2. Let x : Mn ! Mnþ1
c be a closed spacelike hypersurface of the

time-oriented Lorentz manifold Mnþ1
c with constant curvature c, and let X : Mn �

ð�e; eÞ ! Mnþ1
c be a variation of x. Then,

qSrþ1

qt
¼ ð�1Þrþ1½Lr f þ c trðPrÞ f � trðA2PrÞ f � þ

qX

qt

� �>
;‘Srþ1

* +
:ð2:4Þ
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Proposition 2.3. Under the hypotheses of Lemma 2.2, if X is a variation
of x, then

A 0
r ðtÞ ¼

ð
M

½ð�1Þrþ1ðrþ 1ÞSrþ1 þ cr� f dMt;ð2:5Þ

where cr ¼ 0 if r is even and cr ¼ � nðn� 2Þðn� 4Þ � � � ðn� rþ 1Þ
ðr� 1Þðr� 3Þ � � � 2 ð�cÞðrþ1Þ=2

if r is
odd.

In order to characterize spacelike immersions of constant ðrþ 1Þ-th mean
curvature, let l be a real constant and Jr : ð�e; eÞ ! R be the Jacobi functional
associated to the variation X , i.e.,

JrðtÞ ¼ ArðtÞ � lVðtÞ:
As an immediate consequence of (2.5) we get

J 0
r ðtÞ ¼

ð
M

½brHrþ1 þ cr � l� f dMt;

where br ¼ ðrþ 1Þ n

rþ 1

� �
. Therefore, if we choose l ¼ cr þ brHrþ1ð0Þ, where

Hrþ1ð0Þ ¼
1

A0ð0Þ

ð
M

Hrþ1ð0Þ dM

is the mean of the ðrþ 1Þ-th curvature Hrþ1ð0Þ of M, we arrive at

J 0
r ðtÞ ¼ br

ð
M

½Hrþ1 �Hrþ1ð0Þ� f dMt:

Hence, a standard argument (cf. [4]) shows that M is a critical point of Jr for all
variations of x if and only if M has constant ðrþ 1Þ-th mean curvature.

We wish to study spacelike immersions x : Mn ! Mnþ1 that maximize Ar

for all volume-preserving variations X of x. The above dicussion shows that
M must have constant ðrþ 1Þ-th mean curvature and, for such an M, one is
naturally lead to compute the second variation of Ar. This motivates the
following

Definition 2.4. Let Mnþ1
c be a time-oriented Lorentz manifold of constant

curvature c, and x : Mn ! Mnþ1 be a closed spacelike hypersurface having
constant ðrþ 1Þ-th mean curvature. We say that x is r-stable if A 00

r ð0Þa 0, for
all volume-preserving variations of x.

Remark 2.5. Let x : Mn ! Mnþ1
c be a closed spacelike hypersurface with

constant ðrþ 1Þ-th mean curvature and denote by G the set of di¤erential
functions f : Mn ! R with

Ð
M

f dMt ¼ 0. Just as [15] we can establish the
following criterion for stability: x is r-stable if and only if J 00

r ð0Þa 0, for all
f A G.
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The sought formula for the second variation of Jr appears, as stated below,
in Proposition 2.5 of [10].

Proposition 2.6. Let x : Mn ! Mnþ1
c be a closed spacelike hypersurface of

the time-oriented Lorentz manifold Mnþ1
c , having constant ðrþ 1Þ-mean curvature

Hrþ1. If X : Mn � ð�e; eÞ ! Mnþ1
c is a variation of x, then J 00

r ð0Þ is given by

J 00
r ð0Þð f Þ ¼ ðrþ 1Þ

ð
M

½Lrð f Þ þ fc trðPrÞ � trðA2PrÞg f � f dM:ð2:6Þ

3. A characterization of r-stable spacelike hypersurfaces

As in the previous section, let Mnþ1 be a Lorentz manifold. A vector field
V on Mnþ1 is said to be conformal if

LVh ; i ¼ 2ch ; ið3:1Þ

for some function c A CyðMÞ, where L stands for the Lie derivative of the
Lorentz metric of M. The function c is called the conformal factor of V .

Since LV ðX Þ ¼ ½V ;X � for all X A XðMÞ, it follows from the tensorial
character of LV that V A XðMÞ is conformal if and only if

h‘XV ;Yiþ hX ;‘YVi ¼ 2chX ;Yi;ð3:2Þ

for all X ;Y A XðMÞ. In particular, V is a Killing vector field relatively to g if
and only if c1 0. Observe that the function c can be characterized as

c ¼ 1

nþ 1
DivM V :

An interesting particular case of a conformal vector field V is that in which
‘XV ¼ cX for all X A XðMÞ; in this case we say that V is closed, an allusion to
the fact that its dual 1-form is closed.

Any Lorentz manifold Mnþ1, possessing a globally defined, timelike con-
formal vector field is said to be a conformally stationary spacetime.

In what follows we need a formula first derived in [3]. As stated below, it is
the Lorentz version of the one stated and proved in [8].

Lemma 3.1. Let Mnþ1
c be a conformally stationary Lorentz manifold having

constant curvature c and a conformal vector field V. Let also x : Mn ! Mnþ1
c

be a spacelike hypersurface of Mnþ1
c and N be the future-pointing Gauss map on

Mn. If h ¼ hV ;Ni, then

LrðhÞ ¼ ftrðA2PrÞ � c trðPrÞgh� brHrNðcÞð3:3Þ

þ brHrþ1cþ br

rþ 1
hV ;‘Hrþ1i;
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where c : Mnþ1 ! R is the conformal factor of V , Hj is the j-th mean curvature
of Mn and ‘Hj stands for the gradient of Hj on Mn.

In particular, we obtain the following

Corollary 3.2. Let Mnþ1
c be a conformally stationary Lorentz manifold

having constant curvature c and a Killing vector field W. Let also x : Mn !
Mnþ1

c be a spacelike hypersurface having constant ðrþ 1Þ-th mean curvature Hrþ1,
N be the future-pointing Gauss map on Mn and h ¼ hW ;Ni, then

LrðhÞ þ fc trðPrÞ � trðA2PrÞgh ¼ 0:

In particular, if x : Mn ! Mnþ1
c is a closed spacelike hypersurface with constant

ðrþ 1Þ-th mean curvature such that l ¼ c trðPrÞ � trðA2PrÞ is constant, then l is an
eigenvalue of the operator Lr in Mn with eigenfunction h.

Remark 3.3. Assuming that the conformal vector field V is closed and such
that DivM V does not vanish on Mn, then there exists an elliptic point in Mn

(cf. Corollary 5.5 of [2]). Moreover, if Mn has an elliptic point and Hrþ1 > 0
on M for some 2a ra n� 1, then Lr is elliptic (cf. Lemma 3.3 of [3]); in the
case r ¼ 1, the hypothesis H2 > 0 garantees the ellipticity of L1 without the
additional assumption on the existence of an elliptic point (cf. Lemma 3.2 of
[3]). In fact, although the manifolds considered in [3] are GRW’s, a careful
inspection on the proofs of these results of [3] will easily convince the reader that
they remain valid in our setting.

We can now state and prove our main result.

Theorem 3.4. Let Mnþ1
c be a conformally stationary Lorentz manifold with

constant curvature c. Suppose that Mnþ1
c has a closed conformal vector field V

and a Killing vector field W. Let x : Mn ! Mnþ1
c be a closed spacelike hyper-

surface, with positive constant ðrþ 1Þ-th mean curvature Hrþ1 such that

l ¼ cðn� rÞ n

r

� �
Hr � nH1

n

rþ 1

� �
Hrþ1 þ ðrþ 2Þ n

rþ 2

� �
Hrþ2

is constant. Assume also that DivM V does not vanish on Mn. Then x is r-stable
if and only if l is the first eigenvalue of Lr on Mn.

Proof. From Remark 3.3 the operator Lr is elliptic. On the other hand,
by using the formulas (2.2), it is easy to show that l ¼ c trðPrÞ � trðA2PrÞ.
Therefore, since that l is constant and W is a Killing field on Mnþ1

c , Corollary
3.2 guarantees that l is in the spectrum of Lr.
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Let l1 be the first eigenvalue of Lr on Mn. If l ¼ l1, then the variational
characterization of l1 gives

l ¼ min
f AGnf0g

�
Ð
M

fLrð f Þ dMÐ
M

f 2 dM
:

It follows that, for any f A G,

J 00
r ð0Þð f Þ ¼ ðrþ 1Þ

ð
M

f fLrð f Þ þ lf 2g dM

a ðrþ 1Þð�lþ lÞ
ð
M

f 2 dM ¼ 0;

and x is r-stable.
Now suppose that x is r-stable, so that J 00

r ð0Þð f Þa 0 for all f A G. Let f
be an eigenfunction associated to the first eigenvalue l1 of Lr. As was already
observed, there exists a volume-preserving variation of M whose variational field
is fN. Consequently, by (2.6) we get

0bJ 00
r ð0Þð f Þ ¼ ðrþ 1Þð�l1 þ lÞ

ð
M

f 2 dM

and therefore l1 ¼ l, since that l1 a l. r

4. Applications to GRW spacetimes

A particular class of conformally stationary spacetimes is that of generalized
Robertson-Walker spacetimes, or GRW for short (cf. [2]), namely, warped
products Mnþ1 ¼ �I �f F

n, where I JR is an interval with the metric �ds2,
F n is an n-dimensional Riemannian manifold and f : I ! R is positive and
smooth. For such a space, let pI : M

nþ1 ! I denote the canonical projection
onto I . Then the vector field

V ¼ ðf � pI Þ
q

qs

is a conformal, timelike and closed, with conformal factor c ¼ f 0, where the
prime denotes di¤erentiation with respect to s. Moreover (cf. [12]), for s0 A I ,
the (spacelike) leaf Mn

s0
¼ fs0g � F n is totally umbilical, with umbilicity factor

� f 0ðs0Þ
fðs0Þ

with respect to the future-pointing unit normal vector field N.

If Mnþ1 ¼ �I �f F
n is a GRW and x : Mn ! Mnþ1 is a complete spacelike

hypersurface of Mnþ1, such that f � pI is limited on Mn, then pF jM : Mn ! F n is
necessarily a covering map (cf. [2]). In particular, if Mn is closed then F n is
automatically closed.
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Also, recall (cf. [13]) that a GRW as above has constant sectional curvature
c if and only if F has constant sectional curvature k and the warping function f
satisfies the ODE

f 00

f
¼ c ¼ ðf 0Þ2 þ k

f2
:

In this setting, from Theorem 3.4 we obtain the following

Corollary 4.1. Let x : Mn ! �I �f F
n be a closed spacelike hypersurface

with constant ðrþ 1Þ-th mean curvature Hrþ1 > 0. Suppose also that �I �f F
n is

of constant curvature c, has a Killing vector field and f 0 does not vanish on Mn. If

l ¼ cðn� rÞ n

r

� �
Hr � nH

n

rþ 1

� �
Hrþ1 þ ðrþ 2Þ n

rþ 2

� �
Hrþ2

is constant, then x is r-stable if and only if l is the first eigenvalue of Lr on Mn.

A particular example of GRW spacetime is de Sitter space. More precisely,

let Lnþ2 denote the ðnþ 2Þ-dimensional Lorentz-Minkowski space (nb 2), that is,
the real vector space Rnþ2, endowed with the Lorentz metric

hv;wi ¼
Xnþ1

i¼1

viwi � vnþ2wnþ2;

for all v;w A Rnþ2. We define the ðnþ 1Þ-dimensional de Sitter space Snþ1
1 as the

following hyperquadric of Lnþ2

Snþ1
1 ¼ fp A Lnþ2 : hp; pi ¼ 1g:

From the above definition it is easy to show that the metric induced from h ; i
turns Snþ1

1 into a Lorentz manifold with constant sectional curvature 1.
Choose a unit timelike vector a A Lnþ2, then VðpÞ ¼ a� hp; aip, p A Snþ1

1 is
a conformal and closed timelike vector field. It foliates the de Sitter space by
means of umbilical round spheres Mt ¼ fp A Snþ1

1 : hp; ai ¼ tg, t A R. The level
set given by fp A Snþ1

1 : hp; ai ¼ 0g defines a round sphere of radius one which
is a totally geodesic hypersurface in Snþ1

1 . We will refer to that sphere as the
equator of Snþ1

1 determined by a. This equator divides the de Sitter space into
two connected components, the chronological future which is given by

fp A Snþ1
1 : ða; pÞ < 0g;

and the chronological past, given by

fp A Snþ1
1 : ða; pÞ > 0g:

In the context of warped products, the de Sitter space can be thought of as
the following GRW

Snþ1
1 ¼ �R�cosh s S

n;
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where Sn means Riemannian unit sphere. We observe that there is a lot of
possible choices for the unit timelike vector a A Lnþ2 and, hence, a lot of ways
to describe Snþ1

1 as such a GRW (cf. [12], Section 4). We notice that in this
model, the equator of Snþ1

1 is the slice f0g � Sn and, consequently, f 0ðsÞ ¼ sinh s
vanishes only on this slice. Finally, the vector field

V ¼ f 0ðsÞ q
qs

¼ ðsinh sÞ q
qs

is conformal, timelike and closed in Snþ1
1 .

In order to rewrite Theorem 3.4 for the case of closed spacelike hyper-
surfaces immersed in de Sitter space, we recall some facts.

(a) Killing vector fields in de Sitter space Snþ1
1 can be constructed by fixing

two vectors u and v in the Lorentz-Minkowski space Lnþ2 and a non-
zero constant k A R, and considering the vector field W ¼ kfhu; �iv�
hv; �iug. Geometrically, WðxÞ determines an orthogonal direction to
the position vector x on the subspace spanned by u and v (cf. Example 1
of [11]).

(b) Let x : Mn ! Snþ1
1 be a closed spacelike hypersurface with positive

constant ðrþ 1Þ-th mean curvature. Assuming that Mn is contained
in the chronological future (or past) of the equator of Snþ1

1 then DivM V
does not vanish on Mn. Also, there exists an elliptic point in Mn (cf.
Theorem 7 of [1]) and, if Hrþ1 > 0 on M for some 2a ra n� 1, then,
for all 1a ja r, the operator Lj is elliptic (cf. Lemma 3.3 of [3]). In
the case of L1, it is su‰cient to require that R < c (cf. Lemma 3.2
of [3]).

We can now state the following corollary of Theorem 3.4.

Corollary 4.2. Let x : Mn ! Snþ1
1 be a closed spacelike hypersurface,

contained in the chronological future (or past) of an equator of Snþ1
1 , with positive

constant ðrþ 1Þ-th mean curvature such that

l ¼ ðn� rÞ n

r

� �
Hr � nH1

n

rþ 1

� �
Hrþ1 þ ðrþ 2Þ n

rþ 2

� �
Hrþ2

is constant. Then x is r-stable if and only if l is the first eigenvalue of Lr on
Mn.

Remark 4.3. We observe that the round spheres of Snþ1
1 are r-stable (cf. [9],

Proposition 2).
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Universidade Federal do Ceará
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Brazil, 60455-760

E-mail: antonio.caminha@gmail.com

350 f. camargo, a. caminha, h. f. de lima and m. a. velásquez



Henrique Fernandes de Lima

Departamento de Matemática e Estatística

Universidade Federal de Campina Grande

Campina Grande, Paraíba
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