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STABILITIES OF F-STATIONARY MAPS
ZHEN-RONG ZHOU*

Abstract

An F-stationary map is a critical point of the F-energy with respect to variations
in the domain. It is a generalization of F-harmonic maps. In [11, 10], we discuss the
theorems of Liouville type and the monotonicity of F-stationary maps. In this paper,
we discuss the stabilities of F-stationary maps from submanifolds of spheres and the
Euclidean spaces.

1. Introduction

Let F : [0,+00) — [0,+00) be a C>-function. For a smooth map u: M — N
between two Riemannian manifolds (M,g) and (N,h), M. Ara ([1]) introduced
the following F-energy functional

(1 Er(u) = jMF(%)

and discussed the geometry of the critical points. Let u,: M — N (—e < <)
be a variation of u, i.e. u, = ®(¢,-) with uy = u, where @ : (—g,e) x M — N is a
do .
smooth map. Let y = 9| € [(u~'TN) be the variational field, where u~' TN
=0
is the pullback vector bundle on M by u, and T'(u~'TN) is the set of all smooth
cross sections of the bundle. Let I'o(u~!'TN) be a subset of I'(u"'TN) consist-
ing of all elements with compact supports contained in the interior of M. If
M is compact and without boundary, then T'y(u"'TN) = T'(«"'TN). For each
Y e To(u™'TN), there exists a variation u,(x) = exp,(y) tY (for ¢ small enough)
of u, which has the variational field . Such a variation is called to have
dE
a compact support. Let DyEp(u) = %
t=0
a critical point of the F-energy functional, i.e., for any y € [o(u"'TN), one

do . _
has Dy Ep(u) =0, where = Gl € [o(u 'TN) is the variational field. When
=0

An F-harmonic map u is

*Research supported by National Science Fundation of China No.10871149.
Received October 8, 2010; revised December 17, 2010.

272



STABILITIES OF F-STATIONARY MAPS 273

)1)/2

t . . .
F(t)y=1, ( , e, the F-harmonic maps are harmonic maps, p-harmonic maps

and exponential harmonic maps respectively.

It is known that duX e ['(u~!TN) for any vector field X of M. If X has a
compact support which is contained in the interior of M, then duX e Iy(u~'TN).

If Dy,xEr(u) =0 for any vector field X on M with compact support con-
tained in the interior of M, we call u an F-stationary map. Because duX €
To(u~'TN), F-harmonic maps must be F-stationary ones.

In [11, 10], we discussed the theorems of Liouville type and the monotonicity
of F-stationary maps.

Y. L. Xin in [8] proved that any stable harmonic map from S™ (m > 2)
must be constant and P. F. Leung in [5] proved that any stable harmonic
map from M™ (m >2) to some hypersurfaces of Euclidean space is constant.
Q. Chen in [2] generalized them to harmonic maps with potential. Ohnita in [7]
verified that stable harmonic maps from or into minimal submanifolds of the
sphere are constant if the Ricci curvatures of the submanifolds are bigger than
half the dimensions. In this paper, we investigate the stabilitics of F-stationary
maps from more general submanifolds of the sphere and the Euclidean space.

2. F-Stationary maps and the F-conservation law

Let u: M — N be a smooth map. In the following, we will denote the
Riemannian connection of any Riemannian manifold M by V™. The connec-
tion of the pullback vector bundle u~'TN is denoted by V. Taking a local

0 _
field of orthonormal frame {8[’61’ . ,em} on M = (—¢,¢) x M, then we have
Vé%,ei =VM™_ —0. For any fixed point p € M, we can require Vi”ej(p) =0.

ot
By a straightforward calculation, we get the first variational formula:

2) Dy Ex(u) =—j Cop(u), ¥,

M

2
F' (%) due,]

is the F-tension of u. Then u is F-harmonic if and only if
4) tr(u) = 0.

Let u: M — N be an F-stationary map, X € I'o(TM). Then by (2) and the
definition of F-stationary maps, we have

where € To(u~'TN), and

(3) TF(”) = Z Ve,

(5) DauxEr(u) = — JM (rp(u),duXy = 0.
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Ara in [1] defined an F-stress-energy tensor of u by

r_p(ld (el
(6) SM—F<2>g F<2 u*h,

and the divergence of the F-stress-energy tensor by
() (div $,;)(X) = > (V'S (er, X)
=Y VYIS (en, X)) = Sk (e V) X),

where, X is any smooth vector field of M.

LemMmA 1. For any smooth vector field X of M, we have (see [1])
(8) (div SF)(X) = —Cep(u), duX.

By a straightforward calculation similar to [8], we have

LemMA 2. Let D = M be a compact smooth domain of M. If u:(M,g) —
(N,h) is a smooth map and X is a smooth vector field of M, then

9) J:D ('d”| )(X n = JDF ('d”| ><duX dun

+ J (div SF)(X) + J (SF. VX,
D D

where, 0D is the boundary of D, n is the outward unit normal vector field of 0D,
and VX is defined by VX(V, W) :={(Vy X, W).

Proof. 1t is not difficult to check that

(TR TIE
_ XF('d? >+ ('d”| ) S VX e,

and by the symmetry of Vdu:=VT™¥ ®uTN 4y (the second fundamental form
of u), we have

(11) XF('dgl ) F’ <|d”| )Z< Vy due;, due:d
()
=F' > L(Ve, du) X, due;

(10) div
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—Z V. (duX), F’ M due;
= e; ) B i
2
—F’<|d;| ) Z(duVilX,dueQ
,(1duf?

:Zei duX,F 7 due;
Z<duX Ve, (ld 4 ) due,1>
F <|d;‘|> Z(duVﬁX,dueO
F' ( du )Z(duX due,>e,]

2
—{duX,tr(u)) — F' (d;| )(VX,u*h>.

= div

Here, we have used that
Z <duVe/:4X, due;) = Z u*h(Vi”X7 e

= Zg(VfX, ej)u"h(ej,e;) = <VX,u"h).
Inserting (11) into (10), we obtain

F(%) X] —div|F (d”| ) Y <dux, due,)e,] (duX, tr(u)d

.y ('d”| ><VX wh +F<|d”| ) S (VYN e
F' (%) > dux, due,»)e,-] — (duX , tp (1))
_F ('d”| ><VX *h>+F<|du| >Z<VX @
F' (d”| ) Y <dux, due,)e,]

(12)  div

= div

= div




276 ZHEN-RONG ZHOU

Integrating both sides of (12) on D, and taking use of (8) and Green’s formula,
we have

2 2
(13) J~DF<|d;| ><X,n> = J“D F' <|d;| )(duX, dun)

+ J (div SF)(X) + J (SFVX. O
D D

CoROLLARY 3. If X is a smooth vector field with a compact support con-
tained in the interior of M, then

(14) J (div S)(X) + J (SFvxy=0.
M M
From Lemma 1 and (5), we get
(15) Da,xEr(u) = —J {rp(u),duX )y = J (div SF)(X),
M M

if X eTo(TM).

If div S} = 0, we call u to satisfy the F-conservation law; if [, div Sf(X) =0
for all X e T(TM), we call u to satisfy the integral F-conservation law.

From (15), we have

THEOREM 4. A smooth map u: M — N is an F-stationary map if and only
if [,,(divSF)(X) =0 for all X e To(TM). Especially, if M is compact and
without boundary, then u is an F-stationary map if an only if u satisfies the integral
F-conservation law.

Apparently, if u satisfies the F-conservation law or the integral
F-conservation law, then u must be an F-stationary map.

3. Stabilities

Let M be an m + ko-submanifold of R™™* Ric* and RY the Ricci operator
and the Ricci curvature tensor of M respectively, hf; the second fundamental
tensor, b a function. In this section, we suppose that M satisfied the following
condition (with respected to any local orthonormal frame field):

(16) —2R} 4> Wikl < boy.
By Gauss equations, (16) is equivalent to

(17) —R' +> " hihly < boy
or to

(18) =" hthly+ 23" hils < boy.
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Note: a; <0 means that ) a;{¢ <0 for any (&,...,&¢,)€R™, and
a; < b; means that a; —b; <O0.

For example, if M = S™, the unit sphere of m-dimension, then, we can
choose a local orthonormal frame such that R} = (m — 1)y, hl;-”” 9y, b =
for u>m+2. Hence (16) is satisfied for b=—-(m—2). If M™ is a m1n1mal
submanifold of §”+k < R 0*1 then it is also a submanifold of R™*k+!  We
can choose a local orthonormal frame such that 4 is the second fundamental
tensor of M in S”** for u=m+1,... . m+ ky, and that h’””‘“+1 = ;. Hence

(16) is satisfied for b <0 if RY > T&,-,-.

2

3.1. The second variation

Let M be a compact Riemannian manifold without boundary, u: M — N, u,
a variation of u, ie. u, = ®(t,-) with up =u, where ®: (—¢ge) x M — N is a
smooth map. The first variational formula is given by

%EF(”I) = _J <(13) (“t)>

Please note that (3;) =0, <§) e[(®'TN) and that tz(u,) is the F-tension

of u,;: M — N, not of ®: (—¢,e) x M — N. Let a(x,t) = 7p(u;)(x), then a is a
cross section of ®~'TN, although t7(u,) € T(u;'TN) for any fixed z. In the
following, we don’t distinguish 77(u,) from a.

By a straight-forward calculation, we have (We denote the connection of
®'TN also by V)

19 S =5 (5 o)

= —JM<(112—3)7TF(M;)> —J <(13) Va/c;TF(Mt)>

d*® do
where ——- = V()/@,E.

(20) V“/oz'L'F u;) qu/ttvu< <|d ad ) du,e,)
2
= _ZR(e,-,%> (F’(dzt| ) du,e,)
2
+ZVe,-Va/az (F/<|d1; ) dutei>

Now, we calculate Vg tr(u;).
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2
- —ZRN< ,e,,dq)> (F'<|du'| ) du,e,-)
2
! |d1/l;|2 d
+> Ve |Vosa| F —y | duei

1w P oy do
:—ZF <2 R du,ei,a due;

2
+ZV&. V@/@, (F’<|d§)| > du,e,)],

where, R is the curvature tensor of ®'7N and RY is the Riemannian curvature
tensor of N. Because N is torsion-free, we have

Veyar(due;) = Vi 00 (d0(e)))
0
— Ve <d<I> (a;)) + dcb{ ,e_/}
0
(o) 0

Hence, the second term of the last line of (20) becomes as

> Ve [Voja| F! Jdu* duje;
e o/at > 1€

d
= ZV"' F" <| ] )(V@/(, due;, duse;y duse; + F' <| 2' )V@/@t du,e[]

_ " |dul| . . ! |duf‘ dB
ZV"' F ( >< ST du,ej> du,e,—l—F( > Ve, T

o . . . ., dd
Substituting (21) into (20), and then making an inner product with m yield:

(22) <%,Va/am(ut)> =—F ('d§’| >< > RY (du,e,, i ) du,e,>

do , (|du|? do
+<dl ,Zve, F < 5 Ve T ,due; ) duse;

e ()
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= —F' <|dlg| >< ZRN (du,el, ) du,ei>
do du,|? do
e (22 [ (455 (9,52 ) e
do du,|? dd
_ Z<V"'idZ7F"<| L;f| ><Vejdl,dutej> du,ei>
2

do
+ZV€,.<dZ,F

_ dch |du,|?
dr’ 2
2 2
. A |dul| dg .
F <2 >Z<Vm dl,du,e,
((1de® do o do
F(z Z:V“"dz’ve"dt T

is a divergence. Inserting (22) into (19), and taking use of
the divergence theorem, we obtain a second variational formula of the F-

2
4 ) = — JM<CLT§),rF<u,)>

.

<(i§) <|d”f| > ZRN( ue;, (I)) d”tei>
" |dut|2 dg . ’

+ F ( 3 Z Ve, T , due;
(1 o o do

+F ( 2 >Z<V"" a Ve

L[5
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2
(1958 799 S~ v (e 92 que
—|—F< 5 ><dt’ZR du,e;, T duge;
2 2
" ‘dut| dﬂ .
i (2 )z<ve, 5 e
( 1du,? do _ do
F L oV —
+ ( 7 ) 2 (Vg Ve

For any fixed X e I'(TM), we take a variation u, = ®(z,-) of u as follows:

£o_do
dez  dt’
()]
do = du(X),
dr |,_,
Uyp = Uu.

Because

2
62

for an F-stationary map u, we have

_ J Cdu(X), zp(u)> = 0
t=0 M

= JM<%,1F(W)> )

t=0

d2
(24) @EF(“I) |0

-,

F |du0|2 v d 2
2 < €,‘l/jﬂ u()e[>

2
+F' <d20| ) (KVets, Ve + <, R™ (duoes, 1) duoes)) |

do

where Yy = Gl = du(X). Let

t=0

" |d'u|2 2
(25) IF(V,V)szF | <VV.duy

2

+] F’('d—g' >[vv|2 £ 3 CRY (duey, V) duer, V),
M

where V e To(u"'TN).

DeriNiTION 5. If for any X € ['o(TM) we have Ir(duX,duX) > 0, then the
F-stationary map u is called to be stable; Otherwise, it is called to be unstable.
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Then we have

THEOREM 6. Let M be a compact m-submanifold of R, which satisfies
the condition (16, 17 or 18) for some function b. If u: M — N is a stable
F-stationary map with F" <0 and F' >0, then

([ 1dul?
JM bF <T> duf® + JM (o), 1) = 0.

Especially, if u is a stable F-harmonic map with F" <0, F'(¢t) > 0 for t > 0 and
b < 0, then it must be constant.

In Theorem 6, we assume that F” <0. In the following theorem, we
suppose that F satisfies another condition.

THEOREM 7. Let M be a compact m-submanifold of R™% which satisfies
the condition (16, 17 or 18) for some function b. If u: M — N is a stable
F-stationary map with 2tF"(t) < pF'(t) for a number p and F' >0, then

J I |du|2 2 2
F (55 ) B+ ol + | <, ey > o
M M

where B is the second fundamental form. Especially, if M = S™, and u is a stable
-2
m and F'(t) >0 for t >0,

F-harmonic map with 2tF"(t) < pF'(t) with p <
then it must be constant.

For expnential stationary maps, we have

THEOREM 8. If u:S™ — N is a stable expnential stationary map, then

J exp M Z(|du|2+2—m)|du|2+J <t(u), to(u)> = 0
M 2 M e 7

where, 1,(u) is the exponential tension of u.  Especially, when |du\2 <m-—2,and u
is an exponential harmonic map, then u must be constant.

3.2. Lemmas

Let M™ and N" be Riemannian manifolds, u: M — N a smooth map.
Denote V¥, V¥ and VR are Riemannian connections of M , N and R
respectively. Assume that M is a submanifold of R  Let V' be the
connection of the normal bundle of M in R"%, and V the induced connection
of w7 !'TN by VV. In the following, the ranges of indices are given by

1<A4,B,C,... <m+ky;
1<i,jk,... <m;
m+1<pups<m;

l<o,f<n
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Let {X,4} be the canonical orthonormal base of R {e;:e,} a local field of
orthonormal frames of M, such that {e;} are tangent to M and that {¢,} are
normal to M. At any fixed point we considered, we can suppose that Vf e =0.
Denote the tangent part of X4 by X! and the normal part by X}. Then we
have

XAT = Z Xy, eipei = ngen
Xy = Z (X, eupe, =: Zv’jeﬂ,
Xi=XI+x) = vaeg = Z<XA»5’B>€B»
€4 = Z <ea, Xp>Xp.
Lemma 9. We have
ZUAUA =0pC.
VMXA = Zhl]vAe]
VAVIXL = (Wil — vihlgh)e.
Proof. 1t is not difficult to see
(26) ZUAUA —Z<€B,XA><€C,XA>
= <ep, Xa)<ep, Xa)<ep,ec)
= Ces, Xa){Xa,ec) = {ep,ec) = dpc-
By Weingarten’s equations, we have
(27) voxl =D = v - )
— —(VR’"”"XN) — A% (&)

€

— e
E vl A% (e E hivie;.

where, 4% (e;) = Zh;;ej. By Gaussian equations and Weigarten’s equations, we
have '

m+ky m+k0
ka Xy = E (exv’y)e, + E v”VR
. i
= E (exvl)e, + E vy (= A (ek) +Veen)
“p My L
= E ekvA E vy hy ej—i— E UAVekeﬂ

and
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m+k, mk
V:}k oXAT _ Z ekUA e/ +Z:UAVR 0 j
=Y (ewvle+ Y vh(Vile + Blex, )
= (evl)ei+ D viVile + > vhhje,.

Therefore, we have

o Rm+k0 - Rm+k[) T Rm+k0 N
O—Vek XA*VC’/\V XA +V(’k XA
— u g ty L
= E (exv’y)e, — E vahige + E vy Voeu
VAN Av2USS J
+ Y (evl)e + D viVile + Y vihe,

This implies that

i
E (exvy)e E vAhkjeﬂ g Y

Taking dot product of both sides of this equation by e, yields

e’y = — va‘h,’:j - ZUZ‘<V$€V, e
From hl‘; = {B(ei,e;), e,y we have

exhy = <V (Blei,¢))), ey + (Blei, ¢)), Ve
= <(V$B)(eia ej)v eu> + hj]v‘<ew Viep&
= h,’]‘k + hj<ey, Vie,,).

Hence

v MXA =V Zh,]vA

Z ekh’l UAe, + Zh’u ekvj)ei + Zhﬁuﬁvffei
= ZhljkvAel Z vAh"h”e, + Zk,’,‘vﬁjv’fe,-.

At any fixed point, we have

(28) VaVIX T = (i —

Ll p iy,
il vAhklhl-j)e,,

since we have required V,e; = 0.

283
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LemMMA 10. Under the assumptions of Theorem 6, then for any stable
F-stationary map u: M — N, we have

Zl duXAT, duX J ZF" (|du| ) hlflawaq,a/;kaﬁ;
|du| h,uh/t RM X
+ Z (hjjhy — Ry )asjask

4 jM Colu), 7 (1),

where a,; is determined by due; = a,j(e, ou), {e,} is a local field of orthonormal
frame of N, Ri}"’ is the Ricci tensor of M.

Proof. By the second variational formula of F-stationary map u, we have

(29) > I(duxf,dux])
_ ZJ F”('du| ><V(duXAT),du>2

Jrsz <|d”| >{|V(d xT )+ ZRN (due;, duX]) due;, duXx])}.

By Weitzenbock formula (See [4] 1.34, but the curvature operators there are
different from those here by a signature.) we have (V is the connection of
T*M ®u~'TN and A is the Laplacian acting on 7*M ® u~'TN)

(30) (Adu)X] = —(V*du)X] + z:RN(due,-7 duXx]) due; — Z duRM (e;, X Ie,.
On the other hand, because ddu = 0, we have

/ |d”‘2 T T
(31) ZJMF = J<(Adu)X] dux )
EE
M
J 7 ( 2
:J <d*du,d< (du|> >>:J {e(u), tr(u)).
M M

By (29), (30) and (31) we get

) (A du)e;, due;)

) (A du)e;, due;)
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(32) > I(duXf,duxf)
_ZJ F//(|du> V(duxT) d”>2+ZJ

+ ZJM <|du| >{|V(d“XA )P+ (V? du)X [, dux |

+ Z CduRM (e;, X Nesy duX [ >}
On the other hand, we have
(33) (V2 du) X[ = (V. V., du)X
=D Vel(Ve d)X ) = (Ve du)(VYX])
= Z Ve Ve (duX f) — d“(ve]:lXAT)]
= Ve ldu(VY X+ du(VYVYX])
= Ve Ve (duX () =2 Vo [du(VYX])]
+) du(VYvYx])

dul?
(' | Ve Ve (duX ), dux]>

)
ZJ < o (duX ), e; F’(%)] duXAT>

- ('d;" >|v<d XI)P.

From (33) and (34) we have

and

(34) 3 JM F

o) | ('d”' >{|V<d XD+ (V? d)(X ), duX D>}

= ZJ ('du| >{|V(d XD 4+ <V Ve (duX T, dux Iy

— 2V, (du(VYX ), duX [ > + <du(Ve, Ve X[ ), duX [ >}

u)y

285
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d

5[ {rwatiefr (id;f)] )

M
Let due; = a,j(e, ou) and (V,, du)e; = ayj(e, ou). Then we have

<V€i (duX AT),

(36) =2 Ve (du(VYx[))
=2 duVVYX] 23 (v, dw)V) X ]
=2 (VIVYX] e due;— 2> (VYX[ eV, du)e;
=2 VIVYX] epay(ejou) — 2> (VMX] eyag(e)ou).

Applying (26), (27) and (28) to (36) we can get

2
(37) ZF’(ld;| )<—2Vel(du(Ve’:4XAT))7duXAT>

dul?
:ZF’(' 2‘ > 2<VMVMXA,e/>axjaakvA 2V x ] , € il )]

dul?
= ZF’ <| 2‘ > 2a1jaakhl”UUAvA + 2h4hY au]aakvsz 2hl]aaj,aakvAv’j]

2
= ZZh,’]‘hl’,‘(aajaakF’ <|d;| )

Again by (26), (27) and (28) we get

|dul? |dul?
(38) ZJM < CuVYVIXT QX ])> = = 3 Wihfayanr! (1%

and
2
39 - Z<Ve,(duXAT), ei|F' (%) duXAT>
=— Z<<Vel d)XT +duv, XTI F" <|d u )aﬁhaﬂ; duX >
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. d 2
- Z<Uﬁaz/i(6; ou), F" < ;| >aﬁ1iaﬁ/vlja7k(e; o u)>
dul?
Z<hﬂ”Aaw(€ o u), F"(' Z' )aﬁziaﬁ/vﬁayk(e;ou)>
du
== Z aleaxjaﬂhaﬁlF <| | ) .

Substituting (37), (38) and (39) into (35), we have

(40) ZJMF<'d”'){|V<d XD + (V2 du) (XD, dux ]}

:Z h”h” F' 7|du|2 —Z ayjiazagiagF" 7|du\2
ij ik Aoy Ak B y wjilajApLiapl > .

By a calculation, we have

2
4 > F” (%) V(duX ]), duy?

2
= Z F" (%) {(Ve, d)XT +duV, X T, due;»*

dul® A
= ZF” <| ;l ) ayiv)y (e, o u) + vhihiay(ey o u), agi(ey o u)»?

dul?
- ZF// <| 5 ) [ayiasiagiag + hg/ﬁ;laajaw-ap/aﬁk]

and

(42) Z <duRM(e,~7 XAT)ei, duXAT> = Z vﬁui(duRM(e,», ex)e;, due;y
=Y <(duRM(e;, ¢))e;, due;)
=— Z R;}f(duek, due; )

M
= — E Rjk yje ey

Taking use of (40), (41), (42) and (32), we have
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dul?
43 I(dux T duxT :J F" | h”h Ayilyiagd
(43) Z ( A 4) MZ ( ki y 4 piEpl

+ ZJ <|du| ) (/1”hlkaqa7k Rﬁlawaw-)

+j Co(u), e ()
M

which is desired.

3.3. Proof of Theorem 6
By Lemma 10, we get

(44) ZI dux [, dux]) J ZF”(ldu| )h“h (i agap)
du .
+ZJ (' | )(hf,h;,i R Yayas

4 jM Ca(u), Tr(u)).

Because F” <0, we have

(1dul*Y
(45) > I(dux [, dux]) < ZJMF (' ;" )(h,’/hl’,‘( Ry asja

4 jM Ca(u), r(u)).

By the assumption on the curvatures of M, we get

> I(duxf,dux]) SJ <|d“| )bd 12 +J Co(u), tr(u)).

By the stabilities of u, we have

0< Y I(duX], dux)

J b’ ('d“| >|d E +J (), tp ().
M

3.4. Proof of Theorem 7
If 2¢F"(t) < pF'(t), then by Lemma 10 we have

IA
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u >|B| =+ | <o, zetw)
('d”' )(h,’;h,”k— )
<p| ('d“' >|B| A+ | <ot zrw)

+JMbF’<|du| >|d 2

| ('d 4 ><p|B| o+ | el welw
M

Therefore, from the stability of u, we have

JM F (ld;| ) p|B|2 + b)|du|2 + JM (t(u), tr(u)) = 0.

> I(duX ], dux ) =

>—JMF"<
+3 ] F

-2
Especially, if M = S™, then b =2 —m and |B|* = m. Hence when p < 7,
. . d
and u is a stable F-harmonic map, we have [, F’ <| u’ |du|* = 0, and hence
du=0.

3.5. Proof of Theorem 8
If F(z) =¢', then by Lemma 10 we have

Z (duXAT,duX J Zexp<|dg| )h ht 1 Ol Qo LAY

du .
= eXp <| | ) hj/tkhlla/ﬁa/ﬂ + hgh;uk j/( )aggayk

) (hjihy — Rf,‘(’[)aqfa“k + JM (r(u), Tr(u))

+J {r(u), 7

If M =5"c<R"™!, then hj; =: hy = 0. Hence

2
Zl(duXAT,duXAT) = JM exp<|dg| ) Z(|du|2 +2 — m)|dul* + JM (r(u), Tr(u)).
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If u is a stable expnential stationary map, then

2
| exp('SE) S (auP + 2 e+ | <o, wew) o0

When |du|* < m —2, and u is an exponential harmonic map, then u must be
constant.

REFERENCES

[1] M. Ara, Geometry of F-harmonic maps, Kodai Math. J. 22 (1999), 243-263.
Q. CHEN, Stability and constant boundary-value problems of harmonic maps with potential,
J. Aust. Math. Soc. Ser. A 68 (2000), 145-154.
[3] Q. CHex AND Z. R. ZHOU, On gap properties and stabilities of p-Yang-Mills fields, Canadian
J. Math. 59 (2007), 1245-1259.
[4] J. EeLLs aND L. LEMAIRE, Selected topics on harmonic maps, Expository Lectures from the
CBMS Regional Conf. held at Tulane Univ., Dec. 15-19, 1980.
[5] P.F.LEUNG, On the stability of harmonic maps, Lecture notes in math. 949, 1982, 122-129.
J. T. L1, F-harmonic maps for minimal submanifolds with positive Ricci curvature, Acta.
Math. Sci. Ser. A. 24 (2004), 152-156.
[7] Y. OuniTa, Stability of harmonic maps and standard minimal immersions, Tohoku Math.
J. 38 (1986), 259-267.
[8] Y. L. XN, Some results on stable harmonic Maps, Duke Math. J. 47 (1980), 600-613.
Z. R. ZnHou, Stability and Quantum phenomenen and Liouville theorems of p-harmonic maps
with potential, Kodai Math. J. 26 (2003), 101-118.
[10] Z. R. ZHou, Monotonicity of F-stationary maps, to appear in J. Math. (PRC) (2011).
[11] Z. R. Znrou, Liouville theorems of F-stationary maps, to appear in Acta Math. Sci. Ser. B
(2010).

Zhen-Rong Zhou

DEPARTMENT OF MATHEMATICS
CENTRAL CHINA NORMAL UNIVERSITY
430079, WUHAN

P.R. CHINA

E-mail: zrzhoumath@sina.cn



