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ON THE CANONICAL BUNDLE FORMULA FOR
ABELIAN FIBER SPACES IN POSITIVE CHARACTERISTIC

MASAYA Y ASUDA

Abstract

Let X be a non-singular projective (n + 1)-fold defined over an algebraically closed
field k of characteristic p >0, and B be a non-singular complete curve defined over
k. A surjective morphism f : X — B is said to be an n-abelian fiber space if almost all
fibers are n-dimensional abelian varieties. We examine the canonical bundle formula
for n-abelian fiber spaces.

Introduction

Let k be an algebraically closed field of characteristic p > 0. Let X be a
non-singular projective (n+ 1)-fold defined over k, and B be a non-singular
complete curve defined over k. A surjective morphism f : X — B is said to be
an n-abelian fiber space if f,0y = Op and almost all fibers are n-dimensional
abelian varieties. Let b be a point of B. We set F, = f~!(b). A fiber Fj is
said to be a multiple fiber of f with multiplicities m if m > 2 and F, = mP
with P=>"" | mE; such that (ny,...,n,) =1, where E/s are prime divisors on
X. Sometimes we simply call F, = mP a multiple fiber of f or a multiple
fiber. In this paper, we study the structure of r-abelian fiber spaces in positive
characteristic.

In Section 1, we mainly study the structure of 2-abelian fiber spaces under
certain conditions and examine the canonical bundle formula. We can similarly
treat the higher dimensional case. We define the notion of tame fibers and wild
fibers in the case of n-abelian fiber spaces like in the case of elliptic fibra-
tions. Let f:X — B be an n-abelian fiber space with (K% - H" ') =0, where
H is a hyperplane section on X. Since B is a non-singular curve, we have
Rif,O0y = L; ® T;, where L; is a locally free sheaf and T; is a torsion sheaf
(i=1,2,...,n). We call a multiple fiber F, = mP a wild fiber if one of the
following equivalent conditions is satisfied.

1. b e Supp T,,

2. dim H'(mP, w,p) > 2.
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If a multiple fiber is not a wild fiber, it is called a tame fiber. The main purpose
of this paper is to give a canonical bundle formula for n-abelian fiber spaces.
The following is one of the main theorems of this paper.

THEOREM 0.1. Let f: X — B be an n-abelian fiber space with (K3 - H" 1)
=0, where H is a hyperplane section on X. Let R'f,Ox = L; ® T;, where L; is a
locally free sheaf and T; is a torsion sheaf (i =1,2,...,n). Let [(T;) be the length
of T;. Then we have

wy = f*(L,;1 @ wp) ® Oy (Z aiPi>,
-1

where
1. m;P; = Fy, are the multiple fibers of f
2.0<aq;<m;—1
3. a=m; —n; if Fy, is a tame fiber, where n; = min{n € Z-|dim H°(w,p)
> 0} ,
- x(Ox) = 3515 (=1) (deg Li + I(T7)).

~

We call n; a jumping value of the multiple fiber m;P,. We note that
the condition that (K3 - H""') =0, in a sense, corresponds to the minimality
of elliptic fibration and this condition is equivalent to the condition that Ky is
f-nef. In Section 2, we investigate special phenomena in positive characteristic.
Let f: X — B be an n-abelian fiber spaces. By [1], we see that deg f.wy/p >0
if char(k) =0. In this paper, we give an example of 2-abelian fiber space
S+ X — B with deg f.wy/p <0 in positive characteristic. Next we consider a
2-abelian fiber space f : X — B with Kodaira dimension x(X) = 1. For such an
abelian fiber space f, there exists a positive integer m such that the multi-
canonical system |mKy| gives a unique structure of abelian fiber space. We
consider the problem: “Find the smallest integer M such that the multicanonical
system |mKy| gives the structure of abelian fiber space for any 2-abelian fiber
space and any integer m > M.” In this paper, we give an example which shows
the following theorem does not hold in positive characteristic.

THEOREM 0.2 (see [1]). Assume char(k) =0. Let f: X — B be a 2-abelian
fiber space with k(X) =1 such that Ky is f-nef and the jumping values for
all multiple fibers are equal to 1. Then the multicanonical system |mKy| gives
the structure of abelian fiber space if m > 14. Also 14 is the best possible
bound.

Acknowledgments. 1 would like to thank Professor Toshiyuki Katsura, who
gave me various advice and useful comments. 1 also would like to thank Natsuo
Saito and Shunsuke Takagi for giving me some comments.
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Notation

Throughout this paper, we fix an algebraically closed field k of characteristic
p=>0. Let X be a non-singular projective (n+ 1)-fold defined over k, and B be
a non-singular complete curve defined over k. A surjective morphism f : X — B
is said to be an m-abelian fiber space if f,0x = Op and almost all fibers are n-
dimensional abelian varieties. Let b be a point of B. We set F, = f~1(b). A
fiber F, is said to be a multiple fiber of f with multiplicities m if m > 2 and
F, =mP with P=>"_ mE; such that (n,...,n,) =1, where E;’s are prime
divisors on X. Sometimes we simply call F, = mP a multiple fiber of f or a
multiple fiber.

For a non-singular complete algebraic variety X defined over k, we use the
following notation.

Oy : the structure sheaf on X.
wy :a canonical sheaf of X.

H ’(X ,7 ) : the i-th cohomology group of a coherent sheaf # on X.
h'(X,7) : the dimension of i-th cohomology group of a coherent # on X.
x(Z) : the Euler characteristic of a coherent sheaf % on X.

Ky :a canonical divisor of X.
@k, : the rational mapping associated with the multicanonical system
|me|

k(X) : the Kodaira dimension of X.

g(C) : the genus of a non-singular curve C.
Pic(X) : the Picard group of X.
NS(X) : the Néron-Severi group of X.

[#] : the largest integer which does not exceed a real number o.

For Cartier divisors D, D’ on X, we denote by D ~ D' the linear equiv-
alence. For a group G and elements oy,...,0, of G, we denote by {ay,...,0;)
the subgroup generated by oy,...,0,. Sometimes, a Cartier divisor and the
associated invertible sheaf will be identified.

1. A canonical bundle formula for abelian fiber spaces

In this section, we mainly consider 2-abelian fiber spaces. We can easily
generalize almost all results in this section to n-abelian fiber spaces with arbitrary
n.

The following two theorems are well known (cf [4]).

TaEOREM 1.1. If f: X — Y is a proper morphism of locally noetherian
schemes and F a coherent sheaf of Ox-modules on X for all p >0, the direct
image sheaves RPf.(F) are coherent sheaves of Oy-modules.
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For any morphism f: X — Y and ye Y, we denote by X, the fiber of
J over y, and for # a quasi-coherent on X, we denote by %, the sheaf
ﬁ®@yk(y) on A/)

THEOREM 1.2. Let f: X — Y is a proper morphism of locally noetherian
schemes and F a coherent sheaf of Ox-module on X, flat on Y. Assume Y is
reduced and connected. Then for all p the following are equivalent:

1.y dimy,y H?(X,,#,) is a constant function,

2. RPf(F) is a locally free sheaf on Y, and for all y € Y, the natural map:

RIfA(T) ®o, k(y) — H' (X, 7).

is an isomorphism.
If these conditions are satisfied,

RV(F) ®¢, k() — H' (X, 7).

is an isomorphism for any ye Y.

Let f: X — B be an n-abelian fiber space. Note that f is flat because B
is a non-singular curve, and all the fibers of f are connected by Zariski’s con-
nected theorem. By the definition of f, there exists a finite number of points
bi,...,b, € B such that, for every point b e B\{b;,...,b,}, the fiber F, is an
n-dimensional abelian variety, and Fj,, is a non-multiple singular fiber or Fj, =
m;P; is a multiple fiber. By above two theorems, we see that R"f,0Oy is a co-
herent Og-module such that (R"f.0x) ® k(b) =~ H"(Fp, OF,) for all b e B. Since
dim H"(Fp, Op,) =1 for all b e B\{by,...,b:}, R"f.0x is invertible over the open
set B\{b1,...,b,}. On the other hand, since B is a non-singular curve, we have
Rif,Ox =L, ® T, fori=1,2,...,n, where L; is a locally free sheaf of finite rank
and T; is a torsion part. Putting these observations together, we see that L, is
an invertible sheaf and the support of 7, is contained in the set {bi,...,b,}.
Since the fibers of f over b € B\{b,...,b,} are n-dimensional abelian varieties,
we get that R'f.0y @ k(b) = H'(Fy, Ur,) over be B\{by,...,b,} for i=1,2,...,

n—1 by Theorem 1.2. On the other hand, we have dim H'(F,,Of,) = (IZ)
for all be B\{by,...,b,} and i=1,2,... ,n— 1. Therefore we see that L; is a
locally free sheaf of rank <n> for i=1,2,...,n— 1.

1

Now we define the notion of tame fibers and wild fibers.

DeFINITION.  Let f: X — B be an n-abelian fiber space and let ROy =
L;® T;, where L; is a locally free sheaf and 7; is a torsion part. Let b be a
point of B. The fiber F, of f is said to be a wild fiber if beSupp T,,. If a
multiple fiber is not a wild fiber, it is called a tame fiber.

Remark. Let f: X — B be an n-abelian fiber space and let » be a point of
B. By the Serra duality and Theorem 1.2, the fiber Fj, is a wild fiber if and only
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if dim H"(Fy, O,) = dim H°(Fy,wp,) > 2. Aerdts showed that in characteristic
0, R'f.0x is a locally free sheaf for any i. Therefore, a wild fiber appears only in
positive characteristic.

To give a canonical bundle formula for 2-abelian fiber space, we need the
following two lemmas (due to [2]).

Lemma 1.3. Let f: X — B be a 2-abelian fiber space and let H be a
hyperplane section on X. Let b be a point of B and let D be a connected
component of the fiber Fy. Then (D*>-H) <0. Also (D?>-H) =0 if and only if
there exists a € Q such that D = aF,.

Proof. We can write F, = >.7 | n;E;, where E;’s are integral surfaces. We
see that (E;- F,- H)=0and (E;-E;-H) >01if i # j. We denote by ¢; (resp. h)
the class of E; (resp. H) in NS(X) ®7Q. Let M be a Q-vector subspace of
NS(X) ®, Q which is generated by e¢;’s. Then, using the intersection form on

NS(X), we have a symmetric bilinear form
MxM>s((x,p)— (x-y-h)eQ

which satisfies (e;-¢;-h) >0 if i# j. Replacing each e; with me;, we may
assume that (e;-z-h) =0 where z=73); ,e. It suffices to prove (x-x-/) <0
for x =) cie; (¢; € Q) and to prove (x-x-/) =0 if and only if ¢; = ¢; whenever
(ej-ej-h)>0. Then

(x-x-h) :Zciz(e,--ej-h)—i—ZZcicj(e,»-ej-h)
i i<j

< Zciz(ei e h) + Z:(cl2 + cjz)(ei -ej-h)

i<j

:ch-z(ei-ej-h) :Zcf(e,--zh) =0.
ij i

Using this inequality, we see that (x-x-4) =0 if and only if ¢; = ¢; whenever
(6['6]'h)>0. O

Lemma 1.4, Let f: X — B be a 2-abelian fiber space and let H be a
hyperplane section on X. Let F,=mP be a multiple fiber of f, where P =
S mE; such that E;'s are integral surfaces and (ny,...,n) =1, and let D be a
divisor on P such that (D - E;- H) =0 for every i=1,...,t. Then H°(P,0p(D))
#0 if and only if Op(D) = Op and H°(P,0p) = k.

Proof. Tt suffices to show that every nonzero section se H°(P,p(D))
generates (Op(D), that is, it defines an isomorphism of (p onto Op(D). This
would show also that H'(P,0p) is a field. Since H°(P,0p)/k is a finite exten-
sion and k is algebraically closed, we see that H(P,(p) = k.
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Let s, =s|z € H'(E;, Op(D) ® Of,). Since (Dl -H|g) = (D-E;-H)=0,
we have that either s; is identically zero on E;, or s; does not vanish anywhere
on E; (in which case s; generates Op(D) ® Uf,). If s; is identically zero on a
component E;, then s; is also identically zero for every j, for P is connected.
Therefore, if 5; does not vanish anywhere on E;, then s does not vanish anywhere
on P, so that s generates Op(D).

Now assume that s; is identically zero on E; for every i. We shall show that
this assumption leads to a contradiction. Let k; be the order of vanishing of
s along E;. This means that se Ker[H*(P, 0p(D)) — H®(kiE;, Op(D) ® O.E,)]
and if k,‘ < n;, then s ¢ Ker[HO(P, @P(D)) d HO((ki + l)E,‘, @P(D) ® @(ki+1)E’.)].
We put Dy =37, k;E;. Restricting to H, we get (D?-H)=0 by the proof
of [2, Theorem 7.8]. By Lemma 1.3, there exists ¢ e Q such that D; =cP
0<e<]).

Since (ny,...,n;) =1, there exist aj,...,a,€Z such that >/ am; = 1.
Then
ark ak ~aik;
C:L:...ZLZZ’ ! l:ZaikieZ_
aim am;, Y aimn; -
Therefore ¢ =1 and so D; = P. A contradiction. O

DEerFINITION. Let f: X — B be an n-abelian fiber space and let mP be
a multiple fiber of f. The positive integer min{n € Z-¢|dim H°(w,p) > 0} is
called a jumping value of the multiple fiber mP.

In the following, we give a canonical bundle formula for 2-abelian fiber
space.

THEOREM 1.5. Let f: X — B be a 2-abelian fiber space with (K3 - H) =0,
where H is a hyperplane section on X. Let R'f,0x =E® S and R*f.0y =
L®T, where E (resp. L) is a locally free sheaf and S (resp. T) is a torsion
part.  Let I(S) (resp. I(T)) is the length of S (resp. T). Then we have

oy = (L7 ® wp) ® Oy (Z aiPi>7

i=1

where
1. m;P; = Fy, are the multiple fibers of f
2.0<aq,<m;—1
3. a;=m; —n; if Fy, is a tame fiber, where n; is a jumping value of the
multiple fiber m;P;
4. y(Ox)+deg E+1(S) =deg L+ I(T).
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Proof. 1If zy,...,z, are s general points of B, we have an exact sequence

0—wy = oy ® 0y (Z in> — (—D(wx ® Ox(F;,) ® Op,)) — 0
i=1 i=1

Since F.,,...,F. are abelian surfaces, we get oy ® Ox(F;,) ® Or, = wp, = O,
for any i. We get an exact sequence

0— Hwy) — H° <wX ® Oy (Z F>> — (JSBHO(@F:() — H'(wy).
i=1 i=1
From this exact sequence we get the inequality
dim H° <cox ® Oy (ZS:F7,>> > dim H(wy) + Z dim H°(0F . ) — dim H'(wy)
i=1 i=1
= dim H'(wy) + s — dim H'(wy).

Therefore the complete linear system |Ky + Y ;. ,F.| is nonempty if s>
dim H'(wy) — dim H%(wy). Then let De |Ky + .., F.|. Now assume that
there exists an irreducible component E < D such that E ¢ F. for any point
zeB. Since (E-F.-H) >0, we get (D-F.-H)>0. Since D~ Ky+ .., F.
we see that

(DF:H):<KX+2FLF2H>:(KXF2H)

=(Kxy +F.-F.-H) = (Ky + F|p. - H|;) = (Kr. - H|;) > 0.

Zjs

Now we assume that F, is an abelian surface. Then, we have (K. - H|.) =0,
which is a contradiction. Therefore all the components of D are contained in
fibers of f, and Ky has also the same property. Put

Ky ~ ZC/F— +D (ceZ,s>0),

with D > 0, where D is contamed in a finite union of fibers of f, but does not
contain any fiber of f. Let Dj,...,D, be the connected components of the
divisor D such that Supp(D;) NSupp(D;) =0 if i # j. Say D; is contained in the
fiber F., for some point z; € B for each i. By Lemma 1.3, we get (D?-H) <0
for each i. By hypothesis, (K3 -H)= (D>-H)=Y_,_,(D?-H)=0. Therefore
(D[2 -H) =0 for each i. By Lemma 1.3, there exists d; € Q such that D; = d;F.,
for each i. Therefore we can write

(1) oy = (M) ® Oy (Za, > O0<a,<m;—1,a,€Z),

where M is an invertible sheaf on B.
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By the proof of [2, Theorem 7.15], we get

(2) ﬂ(ﬁx(ZaiP,)%(ﬁB if 0<a <m;—1.
i=1

From (1), (2) and the projection formula, we get f.(wy) = M.
Now the duality theorem for a map says that

M = f.(wy) = Homg,(R*,Ox,wp) = Homg,(L,wp) =~ L' ® wp,

because R?f,0xy = L @® T and the dual of the torsion part is zero. Therefore
formula (1) becomes

wx%f*(l‘_l ®w3)®@x(2aiﬂ> (OSaiSmi— 1).

i=1

Next we consider the value of a;. For simplicity, we set b = by, a = ay,
ng=n; and F,=mP. Then we can writt oy = f*(M)® Ox(aP)®
Ox(>°_,a;P;), where M is an invertible sheaf on B. We set w, = w,p =
wy ® Ox(nP) ® O,p. To prove that a =m —ny if a multiple fiber mP is a
tame fiber, we need the following lemma (cf [5]).

LEMMA 1.6. Let P and w, be as above. Then,
1. If w, is not trivial, then dim H°(cw,) = dim H®(w,_1).
2. If w, is trivial, then dim H°(w,) = dim H®(w, 1) + 1.

Proof. The exact sequence
0— w1 — Wy, — wylp— 0
induces an exact sequence
0 — H(@,-1) — H(wn) = H(@ulp),

where y is a restriction map.

If w, is trivial, w,|p is trivial, we get H%(w,|p) = k by Lemma 1.4. There-
fore y is surjective and dim H’(w,) = dim H%(w, 1)+ 1. If w, and w,|, are
not trivial, we get H’(w,|p) =0 by Lemma 1.4. Therefore dim H%(w, ;) =
dim H%(w,). If w, is not trivial and w,|, is trivial, we get H'(w,|p) =k by
Lemma 1.4. Assume that there exists ¢ € H%(w,) such that y(G) = ¢ for some
nonzero section ¢ € H(w,|p). Since ¢ doesn’t vanish on P, G doesn’t vanish on
nP. 1t follows that w, is trivial. This is a contradiction. This implies that y
is not surjective. Therefore dim H'(w,) = dim H(w,_1). O

By Lemma 1.6, dim H°(w,p) is a non-decreasing function of n. Since
dim H’(wp) = dim H(wp,) = dim H?(OF,) = dim(R*f,0x ® k(b)) > 0, we have
1<ny<m. If n=m-—a, w, is trivial. Thus, we see no =m —a if mP is a
tame fiber.
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Finally, we will show y(Ox)+deg E+I(S)=deg L+ I(T). Let zy,...,z
be general points of B. Consider the exact sequence

S K}
0— Oy — Oy (Z F> — P(0x(F.) ® OF,) — 0.
i=1 i=1

Since F.’s are abelian surfaces, we get y(Ox(F.) ® O, ) =0 by the Riemann-
Roch theorem for surface. Therefore we have y(Ox) = x(Ox (X7, F,)).
Now consider the spectral sequence

s s
Eé)q = H? (BaRqﬂ@X< FZi)) :>H]7+‘I <X’ (QX (ZFZ‘>>
i=1 =l

By the projection formula, we have RIf.0x(>". | F.) = Rif.0x ® O(> i, zi).
Because of the ampleness of (> ,z;) for any sufficient large s, we have
that H?(B, R1f,0x ® Op(>.7_,z;)) =0 for any p >0. By using this vanishing
and the degenerating spetctral sequence, we get H°(B,Rf.0x(> L, F.)) =
H(X,0x(}._, F,)) for any i >0 and any sufficient large s. By the Riemann-
Roch theorem for curve and the ampleness of Op(3>"7 , z;) for any sufficient large

s, we get
i=1 i=1
= deg ((L‘B <ZS: z,)) —g(B)+1
i=1

=s—g(B)+1,

(o) lomiee(s)
i=1 i=1

=hn (B,E ® Op <zs: z,»)) +1(S)

i=1
=deg(E) +2(s—g(B) + 1)+ {(S),

e (@X < y F)) — 0 (B, R0y ® Up (Z z,->>
i=1 i=1

=deg(L)+s—¢g(B)+ 1+ T),

h? (@( F)) =n° (R%@X ® O <Z z,)) =0,
i=1 i=1
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for any sufficient large s. By putting these observations together, for any
sufficient large s, we get

x(Ox) =x <@x (; F))
£e{el)

= —deg E — I(S) +deg L+ I(T).
Therefore we conclude x(0x) +deg E + [(S) =deg L+ I(T). O

THEOREM 1.7. Let f: X — B be a 2-abelian fiber space as in Theorem 1.5.
Then we have y(0x) = 0.

Proof. By Theorem 1.5, there exists m € Z-, such that o§" =~ f*(M) for
some invertible sheaf M on B. Let z|,...,z, be general points of B. Consider
the exact sequence

0—>w§?m—>w§?m®(§X<Zsz>_>@w ® Ox(F.) ® Or, = 0.
i=1

By the Riemann-Roch theorem for surface, we get y(0%" ® Ox(F.,) ® Cr. ) =0.
Therefore 7($") = 7(0$" ® Cx(Ti, F.) = 20/ (M ® O5(S1, 21)).

Consider the spectral sequence

s (nsr wo(552))
i=1

e (woe($52)))
i=1

By the projection formula, we get RIf[*(M® Op(> ", z)) = RIf.0x ®
(M ® Og(>°;_,z)). By the ampleness of Op(> 7 ,z;) for any sufficient large
s, we have H?(B,R,0xy @ M ® Op(}";_,z;)) =0 for any p >0 and any suf-
ficient large 5. By using this vanishing and the degenerating spectral sequence,
we get H'(X, /(M ® 0p(Y),2))) = H'(B,RY.Cx ® (M ® C5(Y) 7)) for
any i >0 and any sufficient large s. By computating the cohomology like in
the proof of Theorem 1.5, we get

2"y = x<w3?'" ® Oy (Z F>) — —deg E—I(S) +deg L+ I(T) = 7(0x).
i=1
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By the Riemann-Roch theorem,

(") = %m(m — 1)@m= 1)(K2) + (1 — 2m)p(Ox) = (1 — 2m)(Oy).

Combining these two equalities, we have y(Ox) = 0 because m € Z. O

DerFINITION. Let f: X — B be an n-abelian fiber space and let D be a
divisor on X. We say that D is f-nef if for any irreducible curve C on X such
that f(C) is a point, we have (D-C) > 0.

Remark. By the proof of Theorem 1.5, if all P; are irreducible, we see that
(K7 -H)=0. We see that the condition that (K3 - H) =0 is equivalent to the
condition that Ky is f-nef. In the case of m-abelian fiber space f: X — B,
we can similarly give the canonical bundle formula under the condition that
(K3 - H" ') =0, where H is a hyperplane section on X. The condition that
(K7 -H"')=0, in a sense, corresponds to the minimality of elliptic fibration.
We also see that the conditon that (K3 - H"~') = 0 is equivalent to the condition
that Ky is f-nef. But Theorem 1.5 is not true for n-abelian fiber spaces. In the
following, we give a canonical bundle formula for n-abelian fiber spaces.

THEOREM 1.8. Let f: X — B be an n-abelian fiber space with (K3 - H"™!)
=0, where H is a hyperplane section on X. Let R'f,Oy = L; ® T;, where L; is a
locally free sheaf and T; is a torsion sheaf (i =1,2,...,n). Let [(T;) be the length
of T;. Then we have

oy = (L, ® wp) ® Oy (Z aiR‘),
P

1. m;P; = F), are the multiple fibers of f

2.0<ag,<m;—1

3. a=m; —n; if Fy, is a tame fiber, where n; is a jumping value of the
multiple fiber m;P;

4. x(0x) = 371, (=1)"(deg L; + [(T7)).

Now we give here easy examples.

Example. (1) Assume char(k)=p>0. Let E be an ordinary elliptic
curve, and ae E a point of order p. Then the group G = (o) = Z/pZ acts
on E by

c:Esx—x+ack.
The group G also acts on the projective line P' by

ot t+1,
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where ¢ is a coordinate of an affine line A' in P'. Therefore the group G acts on
P! x E x E. We have a 2-abelian fiber space

f:X=P'xExE/{(c)—P'/(c) = P!

with a wild fiber pF., over the point at infinity of P!. The canonical bundle
formula is

Ky = f"Opi(—1)+ (p—2)F,.

(2) ([6, Section 16]) Assume char(k) =0. Let E, be an elliptic curve
with period (1,p), where p = exp(2zi/3). Let g denote the automorphism of
E, x E, x E, defined by ¢(z1,z2,23) = (pz1,pz2,pz3). Let V be a non-singular
model of E, x E, x E,/{g>, obtained by the canonical resolution of singularities.
The projection p : E, x E, x E, — E, x E, x E,/{g) to the first factor induces a
2-abelian fiber space f: ¥ — P!. K. Ueno showed that Ky =~ (). This gives
an example of 2-abelian fiber space such that the jumping value of this fibration
is not equal to one (for details, see [6]).

(3) ([6, Section 16]) Assume char(k) =0. Let A be an abelian variety of
dimension three and let 1: 4 — A denote the standard involution on A. The
quotient space W = A4/<{1» has 2% singular points, which corresponds to the 2°
fixed points of the involution 1 on 4. Let V' be a non-singular model of W,
obtained by the canonical resolution of singularities. Then K. Ueno showed that
k(V)=0. More precisely,

26
3
mKy =~ E (—;1—1>Ei,
i=1

where E; >~ P? appears in the canonical resolution of singularities of . He also
showed that y(0y) =4. Thus from Theorem 1.8, we conclude that Kj is not
Jf-nef.

(4) Assume that 0 < char(k) = p=1 (mod 6). Let C be the non-singular
complete model of the curve defined by the equation

2 =x" — x.

The genus of C is given by g(C) =4(p—1). Let E and E’ be ordinary elliptic
curves, a € E a point of order p and a' € E’ a point of order 6. The group
(o) = Z/pZ and () =~Z/6Z act on C, E and E’ by

o:(x,0)— (x+1,0) 7:(x,0) — (wx,—wt) on C
c:z—z+a T:ZHZ on E
g:z — 7z 1.z =z +ad on E’,

where w is a primitive cube root of unity. Since C x E — C x E/{ag) is an étale
morphism, we have an ellpitic fibration

fo:Xo=CxE/{c) — C/{c) =~ P!
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with a canonical bundle formula which is given by
KXO = (p - 3)E003

where pE. is a multiple fiber over the point at infinity of P'. We set X =
Xo x E'/{zy and f:X — P'/(z) = P!. The canonical divisor of X has the
form Ky = f*Opi(l) + 5Fy + bF,, for € Z and 1 < b < 6p, where 6F = f~1(0)
and 6pF, = f~'(0). Since Xo x E' — X is an étale morphism, we have a
canonical bundle formula

Ky = f*@Pl(—l) + 5Fy + (Zp — 3)F30

2. Special phenomena in positive characteristic
In this section, we investigate special phenomena in positive characteristic.

THEOREM 2.1 (Fujita). f: M — C be a Kdihler fiber space over a curve C.
Then f.wyyc is locally free and numerically semipositive.

Let f: X — B be a 2-abelian fiber space as in Theorem 1.5. By Theorem
2.1, we get deg(L™") = deg(R*f.0x)" = deg fiwy,p > 0 if char(k) =0, where ¥
denotes the dual. If char(k) > 0, we have an example such that deg(L~!) < 0.

Example. Assume that char(k) = p > 5. Let C be a non-singular complete
model of the curve defined by the equation
?=x%—1.
Then the group G =<6) =~ Z/2Z acts on C by
g:Ca(x,t)— (x,—1)eC.
The canonical morphism
m: C — C/{c) = P!

has degree 2. Since (2, p) =1, ny is a finite separable morphism of curves. We
see that 7y is ramified only at 6 points. By the Riemann-Hurwitz Theorem,

2g(C) —2=2-(2g(P') —2) +6.

Therefore the genus of C is 2. Let E be an ordinary elliptic curve, and a € E
a point of order 2. The group G also acts on E by

c:Esz—z4ackE.
Then we have an elliptic fibration
fo:Xo=CxE/G— C/G=P!
A canonical bundle formula is given by

Ky, = fo'Op1(=2) + E1 + - + Eg,



68 MASAYA YASUDA

where 2E; (i=1,...,6) are fibers of some points of P!. Let E’ be a super-
singular elliptic curve. Since «, = Spec k[e]/(¢”) = E', the group o, acts on
E’. The group o, also acts on C and E by

Ca(x,t)— (x+¢1)eC,
Esz—zekE.
Then we have a 2-abelian fiber space
f:X=2XyxE')o, — P/, ~PL.
A canonical bundle formula is given by
Ky =f"0p(-3)+F +---+Fs+F,

with a wild fiber pF., over the point at infinity of P!, and F; (i=1,...,6) are
E; x E'. Therefore, if we write R*f,0y = L@® T as in Theorem 1.5, we get
deg(L)=-1<0.

Let f: X — B be a 2-abelian fiber space as in Theorem 1.5. By Theorem
1.5, we have Ky = f*(Kg— L)+ >./_;a;P; (0<a; <m;—1). For meZ,

ImKX|:‘ { (Kp— L +Z[’m”] }+Z<ma, mm“Dp

where >/, (mai —m; [r:qa,} )Pl- is the fixed part of [mKy|. We see that xk(X) =

i

K(mKy) = K(m(KB —L)+ Y, {ma,] i). Therefore, we have

K(X):—oo<:>2g(B)—2+degL’1+Z;:1%<0
K(X)=0<:)2g(B)—2+degL’1—&-Z,-r:lﬂzo
K(X)=1<2g(B)—2+deg L7' + 31 1—>0

Now consider a 2-abelian fiber space f: X — B with x(X) =1, and the
rational map @k, : X — PV induced by the complete linear system |mKy|.

ProrosiTION 2.2 (see [1]). Let f: X — B be a 2-abelian fiber space with
k(X) =1 as in Theorem 1.5. Assume ®p,g | : X — Dk, (X) PV is a mor-
phism.  Then @, gives the fibration f: X — B

Proof. Suppose that we have two different fibrations f: X — B and
f':X — B'. First of all we shall prove that there exists ' € B’ such that
FJ, = f'~1(b') satisfies f(Fy,) =b e B. Suppose the contrary, i.e. for any b’ € B,
the fiber F/, projects onto B under f. The canonical bundle formula for X
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with respect to f shows that for a generic hyperplane section H of X, we have
(Kx - Fj, - H) > 0. On the other hand, using the canonical bundle formula for X
we have (Ky - F/,- H) =0 (since Ky consists of fibers of f’). A contradiction.
This immediately implies that for any point 5’ € B’ the fiber F;, projects to a
point under f. Suppose the cotrary, i.e. let b’,¢’ € B’ be two points of B’ such
that f(F/!) =ce B and f maps F;, onto B. Let b e B be a point different from
c. Let H denote a generic hyperplane section of X. Note that F/, c F,. Then
by our choices (Fj, - ), - H) > 0 and (F, - F/,- H) = 0. However, F;, and F/, are
algebraically equivalent, so we arrive at a contradiction. Hence the statement is
proved, by using the irreducibility of the pencil. O

Let f: X — B be a 2-abelian fiber space as in Theorem 1.5. Now we
consider the problem: “Find the smallest integer M such that the multicanonical
system |mKy| gives the structure of 2-abelian fiber space f : X — B with Kodaira
dimension x(X) =1 and for any 2-abelian fiber space and any integer m > M.”
This problem is equivalent to the problem: “Find the smallest integer M such
that

r M ;
M(2g(B) =2 +deg L") + Z{ “} > 2g(B) + 1
under the condition

r
@
2g(B) — 2 +deg L' £ >0
g(B) — 2 + deg +;mi>

THEOREM 2.3 (see [1]). Assume char(k) =0. Let f: X — B be a 2-abelian
fiber space with k(X) =1 such that Kx is f-nef and the jumping values for all
multiple fibers are equal to 1. Then the multicanonical system |mKy| gives the
structure of abelian fiber space if m > 14.  Moreover 14 is the best possible bound.

We give here an example which shows Theorem 2.3 does not hold in positive
characteristic.

Example. Let f: X — P! be as in Example (4) of section 1. We have the
canonical bundle formura

Ky = f*Opi(—1) 4+ 5Fy + (2p — 3)F.,,

. . . 5 2p-3 -3
where 6Fy = f~1(0) and 6pF.,, = f~!(w). Since —1+ =+ PP,
6 6p 6p
we have k(X) = 1. Now assume p =7. Then, putting m = 14, we see that the

5 11 . L
value of —m + [gn} + {4;1 is equal to 0. Therefore, this gives an example

which shows that Theorem 2.3 does not hold in characteristic p = 7.
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