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INVARIANCE OF THE GLOBAL MONODROMIES IN FAMILIES
OF NONDEGENERATE POLYNOMIALS IN TWO VARIABLES

Puam TIEN SoN

Abstract

We are interested in a global version of Lé-Ramanujam g-constant theorem for
polynomials. We consider an analytic family { £}, s € [0,1], of complex polynomials in
two variables, that are Newton non-degenerate. We suppose that the Euler charac-
teristic of a generic fiber of f; is constant, then we show that the global monodromy
fibrations of f; are all isomorphic, and that the degree of f; is constant (up to an
algebraic automorphism of C?).

1. Introduction

Let f:C?> — C be a complex polynomial function. It is well-known that
there exists a (minimal) finite set B(f) in C, called the bifurcation set of f, such
that the restriction:

£+ €\ UB) = C\B)
is a C*-locally trivial fibration (see, for example, [28], [29], [17], [26], [7], [11]).
The bifurcation set B(f) contains the set Zy(f) of critical values of f, but in
general it is bigger.
The above fibration permits us to introduce the global monodromy fibration
of f. Namely, for r > max{|c||ce B(f)} and S! := {ce C||c| = r}, this is the
restriction

£ sh —sk

If ceSr1 then by translating the fiber f~!(c) along the circle S,! we obtain a
homeomorphism of f~!(¢) onto itself, and thus isomorphisms

my(f) : Hy(f~'(¢),Z) — Hy(f'(c),Z), ¢=0,1,

which we call the global monodromy operators of f.
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Let {f;}, s€[0,1], be a family of complex polynomials in two variables,
whose coefficients are analytic functions in s. We will be interested in families
such that the Euler characteristic y( f;) of a generic fiber of f; is constant. These
families are interesting in the view of u-constant type theorem, see [8], [10],
[3], [5], [27]. We ask if for such families, the global monodromy fibrations are
isomorphic. In general, the answer is negative, as the following example shows
us:

Example 1.1. Let fi(x,y) = sx*y?> +xy. Then y(f;) =0 for all s but the
generic fibers of f; and f;, s # 0, are isomorphic, respectively, to C* := C\{0}
and C* L C* (disjoint union).

We shall prove that for the class of Newton non-degenerate polynomials,
introduced in [14], the answer of our question is positive.

We will recall some basic facts about Newton polygons, see [14], [19],
[25]. Let f = Z(p-q)elio a, 4x"y? be a given polynomial. We denote supp(f) =
{(p,q)|ap4 #0}, by abuse supp(f) will also denote the set of monomials
{xPy?|(p,q) € supp(f)}. The Newton polygon T_(f) is by definition the convex
hull of the set {(0,0)} Usupp(f). We denote I'(f) to be the union of closed
faces of I'_(f) which do not contain (0,0). Zero dimensional faces are vertices
of the polygon I'_(f) and one dimensional faces are its edges. For a face y, let
fo= Z( p.q)ey p.qx"y?. The polynomial 1 is (Newton) non-degenerate if for all
faces y of I'(f) the system

%
ox

(x,7)=0 and g—f;"’(x,y):o

has no solution in C* x C*. Note that, by the definition, if dim I'_(f) =1 then
the polynomial f is non-degenerate.
Our main result is the following wu-constant type theorem:

THEOREM 1.2. Let {f;}, s€[0,1], be a family of non-degenerate polynomials
in two complex variables. If one of the two following conditions hold:
(i) dim T'_(f;) =1 and T_(f;) is constant for all se|0,1];
(il) dim T_(f;) =2 for all se(0,1], and the Euler characteristic y(f;) is
constant for all s € [0,1];
then the global monodromy fibrations of f; are isomorphic.

Remark 1.3. (i) In fact, in Section 3, we shall prove a stronger form of
Theorem 1.2(i):  Assume that dim T'_(f;) =1 for all se[0,1]. Then T_(f;) is
constant if and only if the global monodromy fibrations of f; are isomorphic.

(i) For non-degenerate polynomial functions with constant Newton polygon,
Theorem 1.2 was obtained in [27], for any number of variables. However, the
hypothesis that the Newton polygon I'_(f;) of f; does not change is a non-
topological hypothesis. What is new here is the improvement in the result when
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I'_(f;) is not constant, and the method of proof is a thorough analysis of the
change of the Newton polygon T'_(f5).

Example 1.4. Let us consider f;(x, ) :=sx*+x%y. An easy calculation
shows that the polynomial f; is non-degenerate and y(f;) =0 for all se[0,1].
By Theorem 1.2, the global monodromy fibrations of f, and f; are isomorphic.
Namely, the following diagram commutes:

fil(sh) s

s - s

where r > 0 and ®(x, y) := (x, y — x) is a homeomorphism. We notice that the
Newton polygon of f; is not constant and that f; has non-isolated critical points,
o(fs) = {0}. Moreover, it follows from Proposition 2.2 below that B(f;) = {0}
for all se[0,1].

As a corollary of Theorem 1.2, we obtain the following result (see also [10,
Theorem 1.3]).

COROLLARY 1.5. With the hypotheses of Theorem 1.2. Then the global
monodromy operators of fo and fi are conjugate.

We are now interested in the constancy of the degree. It is well known that
the degree of a polynomial depends on the coordinate system of C>. Also in
families of non-degenerate polynomial functions with constant Euler characteristic
it can happen that the degree changes (see Example 1.4). On the other hand,
as a by-product of Theorem 1.2, we obtain the following result (see also [4,
Theorem 3]):

COROLLARY 1.6.  With the hypotheses of Theorem 1.2. Then the family f; is
of constant degree up to an algebraic automorphism of CZ.

Remark 1.7. 1In the above results, the polynomials f; can have non-isolated
singularities. Moreover, the Newton polygon I'_(fy) may be of one dimension.

The paper is organized as follows. In Section 2 we recall some useful
notations and results. The proofs are given in Section 3.

2. Tools

2.1. Fibrations. We will denote B%:= {(x,) e C?||(x, )| < R}, Si:=
{(x,») e C*|l|(x,»)ll = R} and D, := {ceC||c| <r}.



INVARIANCE OF THE GLOBAL MONODROMIES 297

Let f:C?> — C be a polynomial function. Let us choose r > 0 such that
the bifurcation set B(f) of f is contained in the open disc D,. The following
lemma is a consequence of transversality properties.

LemMA 2.1. Let Ry be a positive number such that for all c € S} and for all
R > Ry, the fiber f~'(c) intersects the sphere Sy transversally. Then the global
monodromy fibration f : f~1(S}) — 8! is isomorphic to the fibration f: f~1(SHN
B2 — S! for all R > Ry.

Proof.  See [10] or [27, Lemma 3.1]. O

2.2. Bifurcation set. We recall the result of Némethi A. and Zaharia A.
[19] on how to estimate the bifurcation set. A polynomial f:C? — C is
convenient for the x-axis if there exists a monomial x* in supp(f) (a > 0); f
is convenient for the y-axis if there exists a monomial y” in supp(f) (b > 0); f is
convenient if it is convenient for the x-axis and the y-axis. Let 7, and y, be the
two faces of I'_(f) that contain the origin. If f is convenient for the x-axis then
we set €,(f) =0, otherwise 7, is not included in the x-axis and we set

of, of,
6= { £ [ () e € x € and P ) = T (5 =0,

In a similar way we define €,(f). Let Z.(f) := C.(f)UC,(f).
The following result gives an estimation for the bifurcation set B(f) of f in
terms of its Newton boundary at infinity.

PROPOSITION 2.2 [14], [6], [19] (see also, [30], [12], [4]). Let f:C?> — C be a
non-degenerate polynomial function. Then the following statements hold

(i) If f is convenient, then B(f) =Z2o(f).

(i) If f is not convenient, then B(f) < Zo(f)UZ(f)U{f(0)}.

2.3. Euler characteristic. Let us recall the definition of the Newton
number v, see [14]. Let T be a compact polytope T < Z>o X Z>o. The Newton
number of T is defined as follows

WT):=28—a—-b+1,

where S is the area of T, a is the length of the intersection of 7T with the x-axis,
and b is the length of the intersection of 7" with the y-axis.

The following formula gives an explicit expression for the Euler character-
istics y(f) in terms of the Newton number of I'_(f) (see [2], [13], [21], [22], [23],
[24], (23], [1))

PROPOSITION 2.3.  Let f : C* — C be a complex polynomial function. If [ is
non-degenerate then

2(f) =1 =v-(f))
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2.4. Additivity and positivity. We need a variation of the Newton number
v, see [4]. Let T be a compact polytope whose vertices are in Zsg X Zsg. We
define
o(T)=v(T) - 1.

It is clear that 7 is additive: (71U T,) = t(T1) + ©(T2) — ©(T1 N T3), and in par-
ticular if 77N T, has null area then (77U T) = 7(7T}) + t(7>). This formula
enables us to argue on triangles only (after a triangulation of T).

We denote U to be the set of triangles 7" such that 7" has two edges contained
in the x-axis and the y-axis, and the length of one of these edges is 1. Then
7(T) = —1 for every triangle T € 2. Moreover, we have the following facts

* y(T) > 0; and

+y(T) =0 if and only if T €.

2.5. Families of polytopes. We consider a family { £}, s € [0, 1], of complex
polynomials in two variables. We will always assume that the only critical
parameter is s =0. We will say that a monomial x?y? disappears if (p,q) €
supp(fs)\supp(fo) for s # 0. By extension a triangle of Z.( X Zs( disappears
if one of its vertices does. We triangulate I'(f;) such that a finite number of
triangles 7 disappear (see Figure 1, on pictures of the Newton polygon, a plain
circle is drawn for a monomial that does not disappear and an empty circle for
monomials that disappear).

We have the following simple results (see also [4, Lemma 9]).

LemmA 2.4. With the hypotheses of Theorem 1.2(ii). Suppose that there
exists a triangulation of T'(f;), s # 0, with a triangle T € W that disappears. Then

either deg,(f;) = 1 or deg,(f;) = 1 for all s € [0,1], where deg,(f;) (resp., deg,(f;))
is the degree of f in x (resp., y).

Proof. By assumption, it is not hard to see that I'(f;) coincides with T
for s € (0,1]. Then either deg,(fs) =1 or deg,(f;) =1 for se (0,1]. Moreover,
x(fs) = —7(T) =1. As the Euler characteristic y(f;) is constant, we must have
either deg,(fo) =1 or deg,(fo) = 1. O

Y

FiGUure 1. Triangles that disappear.
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Lemma 2.5. With the hypotheses of Theorem 1.2(i1). Let T ¢ A be a
triangle that disappears then ©(T) = 0.

Proof. The proof is analogous to that of [4, Lemma 9]. In fact, we
suppose that 7(7) > 0. By the additivity and positivity of 7(7) we have for
se (0,1]:

v(T-(f5)) =2 v(T- (/o)) +2(T) > v(I'-(fo))-
By Proposition 2.3, then

x(fs) =1 =v(I-(fs)) < 1=v(T-(fo)) = x(fo)-
This gives a contradiction with y(f;) = x(fo)- O

We will widely use the following observation.

LEMMA 2.6. Under the hypotheses of Theorem 1.2(ii), we have

(i) A4 vertex xPy4, p>0, ¢ >0, of I'(f) cannot disappear.

(ii) If a vertex x? (resp., y*) of T'(f;) disappears, then there exists a monomial
xy (resp., xy?) of supp(fs).

Proof. We will adapt the proof of [4, Section 3].

(i) We suppose that a vertex x’y?, p >0, ¢ > 0, of ['(f;) disappears. Let T
be a triangle that contains x”y?. Then T disappears and 7 ¢ 2. By Lemma
2.5,7(T) =0. Hence, T has an edge contained in either the x-axis or the y-axis,
but not both, and the height of T (with respect to this edge) is 1 (see Figure
2).  Then certainly we have I'(f;) coincides with T for s € (0, 1], otherwise there
exists a region 7"’ that disappears with 7(7’) > 0, which contradicts Lemmas 2.4
and 2.5. Now an easy calculation shows that y(f;) =0 < x(fy) for se (0,1],
which is a contradiction.

) Y

T WY

(a) (b)

FIGURE 2. Case where a vertex x”y? of I'(f) disappears: (a) ¢ =1; (b) p=1.
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(ii) Suppose that a vertex x“ of T'(f;) disappears (a similar proof holds
for yb). Let x”y? ¢ >0, be a monomial of supp(f;) with ¢ minimal. Since
dim I'(f;) = 2 for all s (0,1], such a monomial exists. Then certainly we have
g =1, otherwise there exists a region 7' that disappears with (7") > 0, which
contradicts Lemmas 2.4 and 2.5 (see Figure 3). O

Y

T

:I/,CL

FIGURE 3. Case where a monomial x“ of T'(f;) disappears: no monomial x”y? in ['(f;) with p >0
and ¢ = 1.

3. Proofs of the results

Proof of Theorem 1.2. We will always suppose that s = 0 is the only prob-
lematic parameter. In particular ['(f;) is constant for all se (0, 1].

(i) We assume that dim I'_(f;) =1 for all s€[0,1]. Then I'(f;) is a single
point. Hence, there exist integers p, ¢ and d > 1 such that I'(fy) = {(p,¢)} and
I'(f;) ={(dp,dq)}, s #0, (see Figure 4). By [27, Theorem 1], the global mono-
dromy fibrations of fy and f;, s # 0, are isomorphic, respectively, to ones of the
polynomials x?y¢ and x?y%. On the other hand, it is not hard to see that the
global monodromy fibrations of the polynomials x”y¢ and x%y% are isomorphic
if and only if d =1. Therefore, the global monodromy fibrations of f; are

wdpydq

.’L'pyq

X

FIGURE 4. Case where dim I'_(f;) = 1.



INVARIANCE OF THE GLOBAL MONODROMIES 301

isomorphic if and only if d = I, that means that the Newton polygon I'_(f;) is
constant.

(i) Assume that we have proved the following claims:

+ There exists a positive constant r such that

Zo(f5)UZ (f;) U{fs(0)} = D, for all sel0,1].

+ There exists a positive number Ry such that for all R > Ry, for all s € [0, 1],
and all ce S/, the fiber f'(c) intersects the sphere Sj transversally.
Then it follows from Proposition 2.2 that

B(f;) =« Zo(f5) UZo (f5) U{fs(0)} = D, for all se]0,1].

Hence, by Lemma 2.1, the global monodromy fibration of the polynomial func-
tion fi:

VAN ACHEH
is isomorphic to the following fibration
S /71 (S)NBR — S,

Now, with arguments similar to the ones used in the proof of the classical Lé
D. T. and Ramanujam C. P. theorem (see [15], [10, Lemma 2.1] or [3, Lemma
12]), we have that the fibrations f; : £-'(S!)NB% — S!, s €0, 1], are isomorphic.
As a conclusion, the global monodromy fibrations of the polynomials f; are
isomorphic. Consequently, the statement (ii) is proved. O

So we are left with proving the above claims. Firstly, we have the following
observation.

Remark 3.1. We suppose that a vertex x* of I'(f;) disappears. By Lemma
2.6(ii), there exists a monomial x”y € supp(f;). We choose x”y in supp(f;) with
maximal p. We assume that p =0. Then deg,(f;) =1 for se (0,1]. An easy
calculation shows that y(f;) = 1. As the Euler characteristic y(f;) is constant,
we must have either deg, fo =1 or deg, fo = 1. Therefore the polynomials f;
are all topologically equivalent. In particular, the conclusion of Theorem 1.2(ii)
holds. We exclude this case for the end of the proof.

3.1. Boundedness of affine singularities. The following result says that the
set Xo(f;) of critical values of f; is contained in some open disc of radius
independent of s.

LeEMMA 3.2. There exists a positive number r such that
%o (fs) = D, for all se]0,1].

Proof. 1t is enough to prove the lemma on an interval [0,s9] with a small
so > 0. Assume the contrary. Then by the Curve Selection Lemma [18], [20],
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there exist an analytic curve (x(s), y(s)) and an analytic function A(s), s € (0,¢),
such that:

(al) lims ol (x(s), y(s))|| = oo;
(a2) lim;o f5(x(s), ¥(5)) = 003
(a3) %(x(s), y(s)) =0; and

(ad) % (x(s), ¥(5))

0.

If x(s) =0 (resp., y(s) =0) we let m:=0 (resp., n:=0), otherwise, we put
m := val(x(s)) (resp., n:=val(y(s))), here val A(s) for A(s) =>"72, ais’, ar #0,
meromorphic at infinity is defined as follows: val A:=k. By Condition (al),
min{m,n} < 0. Let y be the face of I'(f;), s #0, where the linear function
mp + ng defined on y takes its minimal value. If the face y does not disappear,
then we obtain a contradiction as in the proof of [27, Lemma 3.2]. So we
suppose that the face y disappears, i.e., at least one vertex of the boundary of y
disappears. By Lemma 2.6(i), we may assume without loss of generality that a
monomial x“ of y disappears (a similar proof holds for y?). Then it follows
from Lemma 2.6(ii) that there exists a monomial x”y € supp(f;). We choose x?y
in supp(f;) with maximal p. Remark 3.1 now yields p > 0 (see Figure 5).

Then we conclude from Lemma 2.6(i) that the monomial x”y of f; cannot
disappear, and hence that

0= g—fj(x(s), »(s)) = ¢s™ + higher order terms in s,
for some ¢ # 0, which is impossible. O
) Y
/
/
(m,n) \ aPy (m,n)
-
~ Py

T T

~ a a

- v S

(a) (b)

FIGURE 5. Case where a monomial x“ of I'(f;) disappears: (a) y = {x“}; (b) y joints the vertices x¢
and x”y.
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3.2. Boundedness of singularities at infinity. The following lemmas show
that the sets X, (f;) and {f;(0,0)} are contained in some open disc of radius
independent of s.

LemMA 3.3. There exists a positive number r such that
() =C(f5)UC,(fs) =€ D, for all sel0,1].

Proof. Let y,(s) and y,(s) be the two faces of I'_(f), s >0, that contain
the origin. We will prove that there exists r > 0 such that the following inclusion
holds

C.(fs) =D, for all sel0,1].

(A similar proof holds for €,(f;).) If y.(s) is constant, then with arguments
similar to the ones used in the proof of [27, Lemma 3.2] we obtain the desired
conclusion.

So we suppose that the face y,.(s) is not constant. We also assume that the
only critical parameter is s =0. By Lemma 2.6(i), there exists a monomial
x* (a > 0) of y.(s) that disappears. Then for se (0,1] the monomial x“ is in
T(f;),s0 €.(f;) =0. If [(fp) contains a monomial x* (a’ > 0), then €,(fy) = 0.
So we suppose that all monomials x* disappear. It follows from Lemma 2.6(ii)
that there exists a monomial x”y e supp(f;). We can suppose that p >0 is
maximal among monomials x“y € supp(f;). By Remark 3.1, p > 0. Note that
the monomial x”y does not disappear by Lemma 2.6(i). Now the edge of I'_(f))
that contains the origin and the monomial x”y begins at the origin and ends at
x”y.  Then it is easy to check that €,(fy) =0. So in case where 7 (s) changes,
we have for all se0,1], €.(f;) = 0. O

LemMma 3.4. There exists a positive number r such that
{£5(0)} = D, for all sel0,1].

Proof. The claim follows easily from the continuity of the family fi(x, y).
]

3.3. Transversality in the neighbourhood of infinity. Let us make the
following observation.

Remark 3.5. We suppose that a monomial x“ of I'(f;) disappears. It
follows from Lemma 2.6(ii) that there exists a monomial x”y € supp(f;). We
also suppose that p > 0 is maximal among monomials xy e supp(f;). Remark
3.1 now gives p > 0. Then we can further assume, for the end of the proof of
Theorem 1.2, that all monomials x* disappear.

LEMMA 3.6.  Let r be a positive number such that the conclusions of Lemmas
3.2, 3.3 and 3.4 are fulfilled. Then there exists Ry sufficiently large such that for
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all R > R() and for all c € S we have that the fiber f.!(c) meets transversally the
sphere S for each s e |0, 1]

Proof. Tt is sufficient to prove the lemma for a family {f;} parameterized
by s in an interval [0,s] for a small 5o > 0. Assume the contrary. Then by the
Curve Selection Lemma [18], [20] there exist an analytic curve (x(s), y(s)) and an
analytic function A(s), s € (0,¢), such that:

(b1) limyo[[(x(s), ¥(s))[| = o0;
(b2) limy o fi(x(s), y(s)) =

(03) L (x(s). () = z(sm; and

(64) 2 (3(5) ) = 4515
By Lemma 3.2, A(s) #0. Thus we can write

A(s) = 2%° + higher order terms in s,

here 1° #0 and d € Q.
We first suppose that y(s) = 0 (a similar proof holds for x(s) = 0). Then we
may write

x(s) = xos™ + higher order terms in s,

where xp #0 and m < 0. Since Condition (b2), there exists a monomial
x? (a > 0) in supp(fs), s # 0. We also suppose that ¢ is maximal among mono-
mials x* e supp(f;). Let u(s) be the coefficient of the monomial x* in f;. If the
monomial x“ does not disappear, then u(0) # 0 and we have that

Iirré fs(x(s), y(s)) = lvirré[u(())xgs'”” + higher order terms in s] = o0,

which contradicts Condition (b2).

So we suppose that the monomial x¢ disappears. By Lemma 2.6(ii), there
exists a monomial x”y € supp(f;). We choose x”y in supp(f;) with maximal
p. Remark 3.1 now leads to p > 0. It follows from Lemma 2.6(i) that the
monomial x”y of f; cannot disappear. Let v(s) be the coefficient of the mono-
mial x”y in f;. Then v(0) # 0. By Condition (b4), therefore

o
ady
which is impossible.

We now suppose that x(s) #0 and y(s) #0. Let us write

0= —(x(s), »(s)) = v(0)xJs™ + higher order terms in s,

x(s) = xos™ + higher order terms in s,

y(s) = yos” + higher order terms in s,

where xo #0, yo # 0, and min{m,n} <0.
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Let y be the face of T'(f;), s # 0, where the linear function mp + ng defined
on y takes its minimal value. If the face y does not disappear, then we obtain
a contradiction as in the proof of [27, Lemma 3.5]. So we suppose that the face
y disappears, i.e., at least one vertex of the boundary of y disappears. By
Lemma 2.6(i), we may assume without loss of generality that a monomial x* of
y disappears (a similar proof holds for y?). We also suppose that @ is maxi-
mal among monomials x“ € supp(f;), s #0. Again by Lemma 2.6(ii), there
exists a monomial x”y e supp(f;). We choose x”y in supp(f;) with maximal p.
According to Remark 3.1, we have p > 0. Then by a simple Plane Geometry
argument we would have (see Figure 5)

m < 0.

Let u(s) (resp., v(s)) be the coefficient of the monomial x* (resp., x”y) in f;.
As the monomial x“ disappears and x”y does not, we find that

u(s) = ups” + higher order terms in s,
v(s) = vo + v1s + higher order terms in s,
where uy #0, vg #0, and x > 0.

Let us note that all monomials x* disappear (see Remark 3.5). There are
three cases to be considered.

CASE 1I: K+ ma<mp+n. We have

So(x(s), p(5)) = upx§s*"* + higher order terms in s,

Gl . .
a—j:z(x(s), y(s)) = aupx¢ 1" @V t higher order terms in s,

Z—];j(x(s), y(s)) = voxhs™” + higher order terms in s.

Then we conclude from Conditions (b2)—(b4) that
K+ ma=0,

k+m(a—1)=0+m,

mp =90+ n,

hence that 6 = —2m, and finally that n =m(p+2) < 0. This gives a contra-
diction with

0=x+ma<mp+n.
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CASE 2: K+ma>mp+n. We have

S5(x(s), y(s)) = voxh yos™*" + higher order terms in s,

o

oy (x(s), y(s)) = pvonglyos"’“’_l)” + higher order terms in s,
afé P m : .
@(x(s), ¥(s)) = vox{s" + higher order terms in s.

By Conditions (b2)—(b4), we get
mp +n=0,
m(p—1)+n=0+m,
mp =0+ n.
Hence 6 = —2m, and so that n =m(p +2) < 0, which contradicts the equation
mp+n=0.
CASE 3: xk+ma=mp+n. We have

S5(x(8), ¥(s)) = (uox§ + voxh yo)s*™* + higher order terms in s,

o

o (x(5), p(5)) = (auox¢™" + proxt~'yo)s* @V 4 higher order terms in s,

o

= (x(s), ¥(s)) = voxhs™ + higher order terms in s.
oy

CaSE 3.1t upx{ + voxg yo =0. We first suppose that
auox(‘)”l + pvoxé’*lyo =0.

Then we must have a = p, and hence x =n. It follows from Conditions (b3)-
(b4) that

Kk+mla—1) <d+m,
mp =0+ n.

Therefore n < m. Consequently, mp = ma < xk +ma =mp +n < mp +m. Thus
0 <m. This gives a contradiction.
We now suppose that

auox{™ + pvox{)’flyo # 0.
Observe that
kK+m(a—1)=0+m,
mp =0+ n.
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These constraints, together with the equation x + ma = mp +n, imply that
n=m < 0. Hence

ma < k+ma=mp—+n=m(p+1).

Therefore
a>p+1.

On the other hand, it is easy to see that
auox{™ + onnglyo = JoX0,
ong = ioy_()
These constraints, together with the assumption wuox{ + voxf yo = 0, imply that
2
_ Ixoll

- 2
[ yoll

which is impossible.

CasE 3.2: upx{ + vox)yo #0. We have
K+ma=mp+n=0,
Kk+m(a—1)<d+m,
mp =0+ n.
Hence 6 = —2n > —2m. 1t follows that n <m < 0, which is in contradiction
with mp +n=0.

Having exhausted all cases, we have completed the proof of Lemma 3.6.

O

Proof of Corollary 1.5. By Theorem 1.2, there exist r > 1 and homeo-
morphisms @ and W such that the following diagram commutes:
sh L. g

TS
[
fiish = s/
Fix ceS!. Foreach t€[0,1], let &, : f;'(c) — f; '(ce*™™) be a homeomorphism
induced by the fibration fj : fO*I(Srl) — Srl. Then the map h; gives rise to the
global monodromy operators my(fy) and m;(fo) of f;. Moreover, we have a

commutative diagram:

fo—l(c) L) fo—l(cezmt)
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where @, is the restriction of ® on the fiber f;!(ce’™), and thus a homeo-
morphism

ST (R(0) = 71 (®(e), 2z @roho®g!(2).

By definition, this map gives rise to the global monodromy operators m(f;) and
mi(fi1) of fi. Therefore the following diagram commutes (¢ =0,1):

H(fi0,2) 22 1y (f7 (), 2)

o

Hy(f7'(¥(0), Z) —— Hy(f{'(¥(c)), Z).
Since @) = @, this gives us what we want. O

Proof of Corollary 1.6. The proof follows from Lemma 2.6 by using the
same argument in [4, Theorem 3]. We will leave to the reader to verify these
facts. U
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