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ON THE EULER CHARACTERISTICS OF REAL MILNOR FIBRES
OF PARTIALLY PARALLELIZABLE MAPS OF (R",0) TO (R 0)

Ni1coLAS DUTERTRE

Abstract

We consider a real analytic map-germ (f,g) : (R”,0) — (R?,0) such that the fibres
of f are simultaneously parallelizable. We call such a map a partially parallelizable
map. We establish degree formulas for the following quantities:

x{f =a}n{g=0}NB)),
1{f =N {g =} NB!) —x({f =a}N{g <} NB),

where (2,0) is a regular value of (f,g) and 0 < |(2,0)] <&« 1.

1. Introduction

Let f: (R",0) — (R,0) be an analytic function-germ with an isolated critical
point at 0. The real Milnor fibres of f are the sets f~!(5) N B", where B! is the
closed ball centered at the origin of radius ¢ and ¢ is a regular value of f such
that 0 < || « e« 1. We will denote these fibres by W7 ;. The Khimshiashvili
formula [Kh] states that:

x(Wi_;) =1 —sign(—0)" deg, Vf,
where Vf is the gradient of f and deg, Vf is the topological degree of the

mapping v/ B, — Sl'”l.

——: 0
IV/|

In [Fu], Fukui proved a relative version of this formula. He considered the
map-germ H : (R",0) — (R",0), x — (f(x), fu,(x),..., fx,(x)) and showed that,
if 0 is isolated in H~!(0), then:

x(Wi_s0{x1 = 0}) = x(Wy_s0{x1 < 0}) = —sign(—0)" deg, H,
. . H
where as above deg, H is the topological degree of the map m : 0B, — S{H.
Here (xi,...,x,) is a coordinate system of R” and f,, denotes the partial
derivative of f by x;, i=1,...,n.
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n [Dul], we also gave a relative version of Khimshiashvili’s formula. We
restricted ourselves to the cases n = 2,4 or 8 and we considered a function-germ
g: (R",0) — (R,0). Then we defined a mapping H : (R",0) — (R",0) in terms
of f and ¢ and proved that if 0 is isolated in H~'(0) then:

Wi ;N {g = a}) —x (Wi ;N {g < a}) = —degy H

where o is a regular value of g such that 0 < |o| « |§|. These results were
generalized by Fukui and Khovanskii [FK]. In that paper, the authors consider
an analytic function-germ ¢ : (R”,;0) — (R,0) that satisfies the following Condi-
tion (P): there exist C*-vector fields vy,...,v, which span the tangent space at
x to g~ '(g(x)), whenever x is a regular point of g, and Vg, v, ..., v, agree with
the orientation of R”. They define a mapping H : (R",0) — (R",0) by H =
(f,v2f,...,v.f) and they prove that if 0 is isolated in H~'(0), if the set of
critical points of g does not intersect W7 ; and if (9,0) is a regular value of (f,g)
then:

$(Wi5N{g = 0}) = 2(Wi_;N {g < 0}) = sign(—0)" deg H

In this paper, we continue this work of computing Euler-Poincaré character-
istics of real Milnor fibres. We are especially interested in partially paralleliz-
able mappings of (R”,0) to (R%,0). A partially parallelizable map is defined as
follows.

DEerFINITION 1.1. Let U be an open subset of R” and let F = (fi,..., fi):
U—RF 1<k<n beaC”map. We say that F is partially parallelizable in
U if there exist an integer / with 1 </ < k and / integers 7,...,5 in {1,... ,k}

with i; < --- < i; such that there are C*-vector fields V,l,.. V deﬁned in U
such that V,l( ), ..., Vi(x) span the tangent space at x to F~ (F (x)) where F is
the mapping defined in U by F(x) = (fi,(x),..., fi(x)) and x is a regular point
of F.

We remark that this notion depends on the choice of coordinates.

Before describing our results, we need a notation: if F:R” — RF is a
mapping then Wi denotes the set F~1(0) N B, where B! is the ball of radius ¢
centered at the origin and dW§ is F~1(0)NS"~!. In Section 2, we start our
study of Euler characteristics of Milnor fibres of partially parallelizable mappings
of (R",0) to (R?,0). More precisely, we consider an analytic function-germ
f:(R",0) — (R,0), with an isolated critical point at 0, that satisfies Condition
(P) described above. Let g:(R",0) — (R,0) be another function-germ. The
mapping (f,g) is clearly partially parallelizable in a neighborhood of the
origin. We define a mapping k(f,g): (R",0) — (R",0) in terms of f and ¢
and we assume that it has an isolated zero at the origin. We prove (Theorem
2.1) that:

if nis even: y(W(y ;) =1—degy Vf +sign(0) degy k(1. 9),
if nis odd: y(W(; ,_5) =1—degy k(f.9).
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We also show that if »n is even:

(Wi ,N{g =0}) — x(Wi,N{g <d}) = degy k(f,9);

where (o,0) is an appropriate regular value of (f,g). Then we assume that g has
an isolated critical point at the origin as well and we define another mapping
I(f,g). 1If it has an isolated zero at the origin, then we have (Theorem 2.9):

if nis even: y(W(,_; ,)=1-deg, Vg —sign(d) deg, /(f,9),
if nis odd: (W7 ;N{g=0}) —x(W/_ ;N{g <0})
= deg, Vg + sign(0) deg, /(/,9),

where 0 < 0] < e« 1.

In Section 3, we study partially parallelizable maps from (R",0) to (R?,0)
of the type (F,G,x;). More precisely, we work in R!*" equipped with the
coordinate system (xo,Xi,...,X,) and we consider a function-germ F : (R'*",0)
— (R, 0) with an isolated critical point at 0. We assume that F satisfies the
following Condition (P,,): there exist C*-vector fields V»,..., ¥, on R'*" such
that Va(p),..., Vu(p) span the tangent space at p to F~'(F(p))Nxy!(xo(p))
whenever p is a regular point of (F,xp) and such that (ep, VF(p), V2(p),. ..,
V,(p)) agrees with the orientation of R!*". Here ¢ is the vector (1,0,...,0).
Let G:(R'"™, 0) — (R,0) be another function-germ. The map (F,G,x,) is
partially parallelizable in a neighborhood of the origin. We define two mappings
H(F,G) and J(F,G): (R'*",0) — (R'™,0) in terms of F and G. We prove
that if 0 is isolated in H(F,G) '(0) and (0,4,0) is a regular value of (F,G,xo)
then (Theorem 3.1):

degy H(F,G) = sign(—&)"[z(W(}, G-o) {xo0 > 0}) — x( W(FF, G-o) {xo < 0})],

where 0 < || « &<« 1. We also prove that if 0 is isolated in J(F,G) '(0) and
(0,0,0) is a regular value of (F,G,xo) then (Theorem 3.8):

deg, J(F, G) = sign(=0)"[x(W(r 6_5) = x(W(5_5.x,)))-

In Section 4, we apply these formulas to the case where F and G are one-
parameter deformations of two function-germs f and g¢:(R",0) — (R,0).
Denoting by f; and g, the deformations given by f;(x) = F(¢,x) and g,(x) =
G(1,x), we prove degree formulas for y(W¢, ) and

x(Win{g, = 0}) — x(WiN{g, < 0}),

where 0 < |f| <&« 1 (Theorem 4.3). Then we finish our study of partially
parallelizable mappings of (R",0) to (R?/0). Namely, we consider a partially
parallelizable map (f,g) from (R",0) to (R?,0) as in Section 2 and we construct
the following deformations:

F(t,x) = f(x) = (1) and  G(1,x) = g(x) = (1),
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where 7 = (;,7,) : (R,0) — (R?,0) is an analytic arc such that y(¢) # 0 if # # 0,
y1(¢) #0 if ¢ # 0, and the image of y consists of regular values of (f,g) (except
the origin). Applying Theorem 4.3, we get formulas for ){(Wf/,_y1 (t)~a—%(t))) and

XWi_ 0 g = 7(0}) — x (Wi, () g < 7(0)}),

where 0 < |f] « ¢ < 1 (Theorem 4.3).
In Section 5, we present different cases where we can apply the results of the

. . 0
previous sections. There are two cases: when n =24 or 8 and when 6—f >0
OF . . , M

and F > 0. We end the paper with an example in Section 6.

X1
We will use the following notations: if F = (F,...,F;):R" - R¥ 0 <k <
. . .. . . O(Fy,..., Fx) .

n, is a smooth mapping then DF is its Jacobian matrix and 2(17]‘) is the

determinant of the following k x k minor of DF: (i -+ 63)
leil e Fle,v/C
Fkx,-l to Fkx,-k

2. First results on partially parallelizable mappings from (R” 0) to
(R?,0)

Let (xy,...,x,) be a coordinate system in R” and let f : (R",0) — (R, 0) be
an analytic function-germ with an isolated critical point at the origin. We
assume that f satisfies Condition (P) introduced in [FK]: there exist C*-vector
fields vy,...,v, on R” such that vp(x),...,v,(x) span the tangent space at x to
f71(f(x)), whenever x is a regular point of f, and such that the orientation
of (Vf(x),va(x),...,v,(x)) agrees with the orientation of R". Let g: (R",0) —
(R,0) be another analytic function-germ.

2.1. Restriction of g to the regular levels of f
We define a mapping k(f,g) : (R",0) — (R",0) in the following way:

k(f,9) = (f,v29,-..,0n9).
We will prove the following theorem:

THEOREM 2.1. If 0 is an isolated critical point of f and is isolated in
k(f,9)"(0), then we have:

if nis even: y(W(p , 5)=1—degy Vf + sign(0) deg, k(f,9),
if nis odd: y(W(; , s5)=1—degyk(f,g),
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where 0 < |0| < &<« 1. Furthermore, if n is even, we also have:

2(Wi {9 20}) = x(Wi,N{g <0}) = degy k(/. 9),

where 0 < 0] « |a| < e < 1 and (0,0) is a regular value of (f,g).

To prove this theorem, we study the critical points of gws s where o is a
regular value of f such that 0 < |o| <& More precisely, aftet a small pertur-
bation of g, we can assume that they are all non-degenerate. To each of these
critical points, we assign a sign: +1 if its Morse index is even and —1 if it is
odd. Then we consider the algebraic sum of these points. This sum has two
interpretations. On the one hand, by Morse theory, it is possible to relate it to
Euler characteristics. On the other hand, since the critical points of 9wy, are
the points of f~!(«) where Vf and Vg are colinear, Condition (P) 1mphes that
these critical points are exactly the zeros of f — o, v2¢,...,v,9. This enables us
to prove that this sum is equal to deg, k(f,g).

From now on, we will assume that the hypothesis of Theorem 2.1 are

fullfilled. For all (i, /) € {1,...,n}?, we will set m; = j((xgi;))

LEmMA 2.2.  For 6 # 0 sufficiently small, (0,0) is a regular value of (f,g).

Proof. Since f has an isolated critical point, f~'(0)\{0} is smooth (or
empty). By the Curve Selection Lemma, the critical points of g| 1) oy lie in

g-(0).

LemmA 2.3. Let p be a regular point of f. The function g, (s has a
critical point at p if and only if vig(p) =0 for all ie{2,...,n}

Proof. 1If p is a regular point of f then v,(p),...,v,(p) span the tangent
space at f~!(f(p)). Therefore g ,-1(s(,) has a critical point at p if and only if
vi(p),Vg(p)> =0 for all ie{2,...,n}. O

LemMMA 2.4. The origin is an isolated singularity of f~'(0)Ng~'(0) if and
only if 0 is isolated in k(f,g)"" (0).

Proof. A point p, distinct from the origin, is in k(f, g)_l(O) if and only if
g|f171(0)\{0} has a critical point at p. But, as noticed above, such a point lies in

g (0). O

LemMa 2.5. Let a#0 be a regular value of f. Let p be a point in
f~Ya). The function gis-1(=) has a non-degenerate critical point at p if and only
if k(f,9)(p) = (2,0,...,0) and det Dk(f,g)(p) #0. Furthermore if A(p) is the
Morse index of gjp-1(,) at p then we have:

(—1)"”) = sign[det Dk(f,g)(p)].
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Proof. Since o is a regular value of f, there exists j such that f, (p) # 0.
Assume that j = 1. From [Sz, p349-350], p is a non-degenerate critical point of
gis1(» if and only if:

Vf(p) ]
det[vmli(p) 2<i<n #0
Furthermore, we have:
(1 = 1) sign(y () | 010 1.

Vf(p) } [ Vf(p) } .
We have to relate det to det| _- . For ie{2,...,n}, let u;
[me-(p) Vuig(p) t ! 7)

j (
be the vector (fy(p),0,...,0,—f (p),0,...,0), where —f;, (p) is the i-th coor-
dinate. Then (uz(p),...,u,(p)) is a basis of 7,/ !(x) and it is not difficult to
see that:

det(V/(p),1a(p), - - ua(p)) = (=1)" s (p) ”2<fo, >

Hence there exists an (n— 1) x (n — 1) matrix B(p) such that:

(atn )= o o) (o))

with sign[det B(p)| = (—1)”71 sign[fy, (p)"*]. Hence, for ie{2,...,n}:

ui(p) = > _ By(p)v(p)

=2

and:
mii(p) = wig(p) = Y _Bi(p)vg(p)
=2
Since vjg(p) =0, we have
Vmii(p) = > Biy(p)Vvig(p),
j=2

and:

(omin) = (o an) (o)

With this equality, it is easy to conclude. O
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To prove Theorem 2.1, we will use Morse theory for manifolds with
corners. The reader may refer to [Du3, Section 2] for a brief description of
this theory. The following lemma deals with the critical points of Gowy -

LEMMA 2.6. For all o and ¢ such that 0 < |o| < & < 1, we have:

* at all correct critical points of ow; with g >0, Vg, r-1(,) points outwards,

* at all correct critical points of wa; with g <0, VgU () points inwards,
« there are no correct critical points of Glows , in g~ 10).

Proof. The proof is the same as in [Dul], Lemma 4.1. O

LeEMMA 2.7. We can choose o small enough and we can perturb g into g in
such a way that Q\W; has only Morse critical points.

Proof. Let (x;t) = (x1,...,Xp;t1,...,1,) be a coordlnate system of R*" and
let g(x,¢) = g(x) + tix; + -~ tyx,. For (l 7y ed{l,...,n}?* we define mii(x,t) by
_ a(f.9) :

m;(x, 1) = ———"=(x,t). Notice that:
J( a(xi’xj) ( )

mij (%, 1) = myj(x, 1) + [ (X)1; = ifs; (X).
Let T" be defined by:

L = {(x, 1) e R” |im;(x, 1) = 0 for (i,/)e{l,...,n}*}.

At a point p, if f does not vanish then there exists i€ {1,...,n} such that
Sfu(p) #0. This implies that I'\{f =0} is a smooth manifold (or empty) of
dimension n+ 1. Actually if p belongs to T'\{f = 0}, then one can assume that
Sa(p) #0. In this case, around p, I is defined by the vanishing of s, ..., M,
and the gradient vector fields of these functions are linearly independent. Let n
be the following mapping:

n:l"\{f:O}—>R‘+”
(x,1) = (f(x),0).

By the Bertini-Sard theorem, we can choose (2,s) close to 0 in R'*" such that z
is regular at each point in 7~ !(,s) close to the origin. If we denote by § the
function defined by g(x) = g(x,s), this means that g, admits only Morse
critical points in a neighborhood of the origin. O

Proof of Theorem 2.1. Let w:R" — R be the distance function to the
origin Let ¢ > 0 be sufficiently small so that g| -1 (o} has no critical point in

H0)\{0} N{w < &}. Let & be such that 0 < || « e« 1. We want to express
){(W(Sf’ gf(;)) in terms of deg, k(f,g). Let o be a regular value of f such that
0 < |o| « |0|] and the following properties are satisfied:

(N Wi oo is diffeomorphic to Wi

g— () 4
(2) the critical points of )1 )nfw<e L€ 0 {|g] <6} N {a) < 2}
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Hence the critical points of gjew; , are correct. Furthermore by the previous
lemmas, we can assume that g|,1(, )Nfw<e) has only Morse critical points, that at
the correct critical points of gwe lying in {g > 0} (resp. {g < 0}), Vgiw points

outwards (resp. inwards) and that there are no correct critical points of 9wy in

-1
g~ (0).

We assume that 6 >0 and we apply Morse theory for manifolds with
boundary to obtain:

(Wf yﬂ{g> 5} W/ :xq+b)) Z(il)i(pi)v

i
where {p;} is the set of critical points of g|/1(,)nfw<s, and:
x(Wi_,N{g < =0}, Wi, 4i5) = 0.

Summing these equalities and using the Mayer-Vietoris sequence, we obtain:

AW =Wy agia) = (=1,
By Lemma 2.5, ) ,(— 1)*P) s equal to deg, k(f,g). By Khimshiashvili’s
formula, y(W} ,) =1 —sign(—a)" deg, Vf. Now by Proposition 1.1 in [FK]
we know that’ deg(J Vf =0if nis odd. This gives the result for the fibre Wi,
with < 0. The formula for the fibre W( g—s with 6 > 0 is obtained replacmg g
with —g. It remains to prove the third formula. Let & be such that (o,0) is a
regular value of (f,g) and 0 < |d| « |¢| < &. Since n is even, we have:

X(Wfl';—a N {g = 5}) - X(W({}'—a,g]—é)) = Z (_1)2(171')’

ilg(pi)>0
AW NG <) =Wy y) = — 3 (=170,
ilg(pi)<o
Making the difference and using Lemma 2.5, we obtain the result. O

COROLLARY 2.8. If 0 is an isolated critical point of f and is isolated in
k(f,9)"'(0), then one has:

if nis odd: y(OW(; ) =2—2degyk(f,g),
if nis even: X(@W;ﬂ {g =0}) —X(ans N{g < 0}) =2 deg, k(f,9).

Proof. The first point is easy. For the second assertion, see [Dul],
Theorem 5.2. ]

2.2. Restriction of f to the regular levels of g
Now we suppose that g also has an isolated critical point at the origin and
we consider the mapping /(f,g) : (R”,0) — (R",0) defined by:
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1(f7g) = (g7 1)297 A '7Ung)'
In [FK], Theorem 4.1, Fukui and Khovanskii prove that if 0 is isolated in
I(f,9)"'(0) and if the set of critical points of f does not intersect W, ; then:

degy I(f,g) = —sign(=0)"{)(W,_sN{f = 0}) —x(W, sN{f <O0})}.

In our situation the second condltlon is fullfilled because f has an isolated critical
point. In the following theorem, we give another interpretation of this degree.

THEOREM 2.9. If f and g have an isolated critical point at the origin and 0 is
isolated in 1(f,g)""(0) then:

if nis even: y(W(;_s ) =1—deg, Vg —sign(d) deg, I(f,9),
if n is odd: 7(W},N{g > 0}) = £(W} ,N{g <0})

= deg) Vg + sign(9) deg, /(f9),
where 0 < || <&« 1.

As in the previous theorem, Theorem 2.9 is proved giving two different
interpretations of the algebraic sum of the critical points of a Morse perturbation
of fiw; , where 0 < | < & We need some lemmas.

LemmA 2.10.  For 6 # 0 sufficiently small, (0,0) is a regular value of (f,g).

Lemma 2.11. Let p be a regular point of g. The function fi 1)) has a
critical point at p if and only if vig(p) =0 for all ie{2,...,n}.

Proof.  The function fi 14, has a critical point at p if and only if
Vf(p) and Vg(p) are colinear. Since these two vectors are non zero, this is
equivalent to the fact that g1, has a critical point at p. It is enough to use
Lemma 2.3. O

LemMMa 2.12.  The origin lS an isolated singularity of f~1(0)Ng~'(0) if and
only if 0 is isolated in I(f,g)” o ).

Lemma 2.13. Let a#0 be a regular value of g. Let p be a point in
g (). The function Sig1(2) has a non-degenerate critical point at p if and only
if 1(f,9)(p)=(2,0,...,0) and det DI(f,g)(p) #0. Furthermore if A(p) is the
Morse index of fiy1,y at p and if p(p) is the real number such that Vf(p) =
u(p)Vg(p) then we have:

(=) = (=1)"" sign[u(p)" det DI(f,g)(p)].
Proof. Since o is a regular value of g, there exists j such that g, (p) # 0.

Assume that j = 1. From [Sz, p349-350], p is a non-degenerate critical point of
Sy if and only if:
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Va(p) ]
det[ # 0.
—Vmy(p) 2<i<n

Furthermore, we have:

(—)AP) = (—p)m! sign(gx] »" det[_gf;fgm})

Since gy, (p) #0, fx,(p) does not vanish for otherwise u(p) and Vf(p) would
vanish as well. Then the computations done in Lemma 2.5 show that:

sign (det [ _zii(;&) D = sign (f ()" det{_grg}ff()p) } )

and it is easy to finish the proof. Ol
The following lemma deals with the critical points of wa;,,-

LemMa 2.14.  For all o and ¢ such that 0 < |o| < & < 1, we have:

* at all correct critical points of f(‘JWr _with >0, Vfj, ) points outwards,

* at all correct critical points of f( oW, with [ <0, Vf( w) points inwards,
* there are no correct critical points of f‘ng in £~10 )

Similarly, we have:

Lemma 2.15. For ¢ sufficiently small, we have:

* at all correct critical points of fisi-+ with f >0, Vf points outwards,

* at all correct critical points of fsn v with <0, Vf points inwards,
« there are no correct critical points of Sismr in 10).

Lemma 2.16. We can choose o small enough and we can perturb ¢ into g in
such a way that f| we, has only Morse critical points.

Proof. With the method of Lemma 2.7, we can prove that there exists a
small perturbation g of g such that f we has only Morse critical points outside
{f =0}. But Lemma 2.2 states that (0 %) is a regular value of (f,§) for « small
enough. ]

Proof of Theorem 2.9. When n is even, the theorem is proved as in
Theorem 2.1. So let us assume that n is odd. Let w: R" — R be the distance
function to the origin. Let ¢ >0 be sufficiently small so that f,-1oy 0 has no
critical point in g~'(0)\{0} N{w < e}. Let (§,x) be a regular value of (f,g)
such that:

(1) 0 < |o| « 0| <&,

(2) the critical points of f,1(, lie in {|f] <d}N {a) < %},

(3) {970} N W} ; is diffeomorphic to {g?a} N W} 5, where ? e {<,=,>}.



334 NICOLAS DUTERTRE

Thanks to the three previous lemmas, we can assume as in Theorem 2.1 that we
are in a good situation to apply Morse theory for manifolds with corners. Let
us assume that 6 > 0. By Morse Theory, we obtain:

(1) r{g=o}N{f =0}NB) —x({g =} N W} 5) =0,
2 Mgz N{f<NB)—x({g=a} "W} ;) = Z

(3) x{g<afN{f =6}NB)) - x({g <a}n Wf;,s) =0,
4) x({g <o} N{f <o}NB) —x({g <o} N W/ )
=—deg Vf + > (-1)"".
il p)>0

In the equality (4), the terms —deg, V/* appears because we can perturb f in
such a way that its critical points lie in {|g| < «} N{|f| <J}. The combination
(1) 4+ (2) — (3) — (4) together with the Mayer-Vietoris sequence gives:

o= 2B~ 7{g <) B ~ 2{g = ) NWF )+ 2l{g <0} N7 ,)
= - _sign u(pr) (=) deg, V.

We have already seen that deg, V/ = 0. Moreover, by the remark after The-
orem 3.2 in [Du3], we have:

x({g = 2} NB) — x({g < 2} N BY) = deg, Vg.
Using Lemma 2.13, we find that:
x({g = 0N Wi ) —x({g <0}N W) ;) = deg, Vg + deg, I(f, 9).

The proof for J negative is obtained replacing f with —f. O

3. On partially parallelizable maps of (R""!') to (R, 0) of the type
(F7 Ga XO)

Let (xo,X1,...,X,) be a coordinate system in R'™ and F : (R'*",0) — (R,0)
be an analytic function-germ with an isolated critical point at the origin. We
assume that F satisfies the following Condition (Py,): there exist C*-vector fields
Va,...,V, on R such that V5(p),..., V,(p) span the tangent space at p to
F~Y(F(p))Nxy'(xo(p)) whenever p is a regular point of (F,xq) and such that
(eo, VE(p), Va(p), ..., Vu(p)) agrees with the orientation of R'™". Here e is
the vector (1,0,...,0). Let G: (R 0) — (R,0) be another analytic function-
germ. In our study, we will investigate the critical points of the restriction of xq
to regular levels of (F, G) and the critical points of the restriction of F to regular
levels of (G,xq). These critical points are the points where VF, VG and ¢, are
linearly dependent. This last condition is realized when the vectors (Fy,,..., Fy,)



EULER CHARACTERISTICS OF REAL MILNOR FIBRES 335

and (Gy,,...,Gy,) are colinear. Since F satisfies Condition (Py,), its restriction
to the levels of xj satisfies Condition (P), with the vectors V5,...,V,. Hence the
critical points that we will study will be points where 1,G, ..., V,G vanish.

3.1. Restriction of x; to the levels of (F,G)
We define a mapping H(F,G) : (R'™,0) — (R'"™,0) by: H(F,G) = (F,G,
,G,...,V,G). Our aim is to prove the following theorem:

THEOREM 3.1. If F has an isolated critical point at the origin, 0 is isolated in
H(F,G)"'(0) and (0,5,0) is a regular value of (F,G,xy), then we have:

degy H(F,G) = sign(—0)"[x(W(, g_s N{x0 = 0}) — x(W(g 6_s N {x0 < O})],

where 0 < || <&« 1.

To establish this theorem, we use the same strategy as in Theorem 2.1 and
2.9: we count in two different ways the critical points of a perturbation of
Xopws, o - Note that thanks to Condition (Py,) these critical points are exactly
the roots of F,G — ¢, »G,...,V,G.

From now on, we will assume that the three assumptions of Theorem 3.1 are

.. 2 . _0(F,G)
fullfilled. For all (i,/) e{l,...,n}", we will set M; = )

LemMA 3.2, For 0 # 0 sufficiently small, (0,0) is a regular value of (F,G).
LemMA 3.3.  The origin is an isolated singularity of F~'(0)N G~'(0).

LemmA 3.4. Let § #0 be sufficiently small so that F-1(0)NG~1(0) is a
smooth submanifold (or empty) of codimension 2 near the origin. Let p be a point
in F1(0)NG™(6).  The function xop-1(0)ng-1(s) has a critical point at p if and
only if H(F,G)(p) = (0,6,0,...,0).

Proof.  The function xoz-1(0)ng-1(s) has a critical point at p if and only if
F(p)=0, G(p) =0 and

1 0o - 0
rank | Fy,(p) Fx(p) - Fy(p) | <3
Gy(p) Gy(p) -+ Gy(p)

First let us suppose that p is a critical point of Xo|r-1(0)ng-1(;) and remark that
necessarly xo(p) # 0 because (0,0,0) is a regular value of (F,G,xp). This im-
plies that p is a regular point of (F,xo) for the critical points of Xoz1(g) oy li€
in {xo = 0} by the Curve Selection Lemma and, so, (V2(p),..., Vu(p)) is a basis
of T,[F~'(0)Nxy'(xo(p))]. Since VG(p) belongs to the normal space at p to
F~1(0)Nxyt(x0(p)), we find that for each ie {2,...,n}, {Vi(p),VG(p)y =0.
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Let us show the inverse implication. Let p be such that H(F,G)(p) =
(0,0,0,...,0). If (F,xo) is not regular at p then x¢(p) =0 and (0,6,0) is not a
regular value of (F,G,xp), which is impossible. Hence (Va2(p),...,Vu(p)) is a
basis of 7,[F~1(0)Nxy'(xo(p))] and VG(p) is normal to this last tangent space.

O

LeMMA 3.5.  Under the assumptions of Lemma 3.4, Xo|p-1(0)nG-1(s) has a non-
degenerate critical point at p if and only if H(F,G)(p)=(0,0,0,...,0) and
det DH(F, G)(p) #0. Furthermore if A(p) is the Morse index of this function at
p then:

(D)7 = (-1)" signKxGO((Z ))) det DH(F,G)(p)|.

Proof. First observe that, since (0,0) is a regular value of (F,G) and
the My’s, i,je{l,...,n}, vanish at p, there exists ke {l,...,n} such that
o(F,G o
6((x ’x)) (p) #0. Assume that k =1. This implies that F (p) # 0 for other-

0, Xk
wise Gy, (p) #0 and F,(p) =0 for je{2,...,n}, which means that p is not a
regular point of (F,x() and xo(p) = 0.

From [Sz, p349-350], p is a Morse critical point of xo|z-1(g)ng-1(s) if and only

if
VF(p)
det| VG(p) #0,
VNi(p) 2<i<n
where N; = M: M;i;. Moreover, we have:
0(x0, X1, X;)
VF(p)
(—l)i(w =sign| det| VG(p) 0(9((:75))( )"
VMui(p) 0, X1

Let us relate det(VF(p),VG(p),VMy;(p)) to det(VF(p),VG(p),VV:G(p)). For
ie{2,...,n}, let Ui(p) be the vector:

(O F‘Cx( ) "707_Fx1(p)707"'70)7
where —F, (p ) is the (i + 1)-th coordinate. Then (U(p),...,U,(p)) is a basis
T,[F~1(0) Nxg' (xo(p))] and

det(eq, VF(p), Us(p), ..., Un(p)) = (=1)"""Fy (p)" > - (Z FX,-(p)2>-
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Hence there exists an (n — 1) x (n — 1)-matrix B(p) such that:

) 1 0 0 €q
(VF(p)) =[({0 1 o0 (VF(p)>7
Ui(p) 0 0 B(p) Vi(p)

with sign[det B(p)] = (—=1)""" sign[F,,(p)"*]. As we proceeded in Lemma 2.5,
we have:

sign[det(eo, VF(p), VUG(p))] = (~1)""" sign[Fy, (p)" det(eo, VF (p), VViG(p))].
Since ¢; is a linear combination of VF(p) and VG(p), it is easy to see that:
sign[det(VF(p), VG(p), VU;G(p))]
— (=)™ sign[F,, (p)"* det(VE(p), VG(p), VViG(p))]
Using the fact that U;G(p) = —M;(p), we find that:
VE(p)

()P = sign | det| vG(p) | 2L (pyg, (py
vic(p) | (0
a(F,G)

It remains to study the sign of

(p). By the Curve Selection Lemma, we
d(x0,x1)
can assume that p is on the image of an analytic arc y : ]0,v[ — F~'(0) such that
M;(y(1)) =0 for r€]0,v[ and (i,j)e{l,...,n}>. We have S Fu()yl=0
since Foy=0 and (Goy)' =", Gy(y)y;. Multiplying the first equality by
G,,, the second by F,, and making the difference, we obtain:
/
o
Fxo le - Gonxl = - (G y) Fxl-

Yo

. . . oF,G)" 2) . (G)
Hence if 6 # 0 is small enough, si n( F!™* | =—sign| —) at p. O
£ S8 d(xp,x1) ™ £ %o P

The following lemma deals with the critical points of Xojew, ;-
LemmA 3.6.  Assume that (0,0,0) is a regular value of (F,G,xy) for o
sufficiently small. Then, for & and 6 such that 0 < 0| « ¢ < 1:

* the vector VX p-1ong-1(s) points outwards at all correct critical points of
Xo‘gW(»:F‘G%) with xo > 0,

* the vector VXoip-1o)ng-1(s) points inwards at all correct critical points of
Xojowe,  with xo <0,

- there aré no correct critical points of X0jow, o in {xo=0}.

Proof. The proof is the same as in [Dul], Lemma 4.1. O
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LemMa 3.7. If for 0 small enough, (0,0,0) is a regular value of (F,G,xy),
then we can perturb G into G in such a way that Xojwe, has only Morse critical
points in W(FG ())\{xg 0}. e

Proof. The proof is similar to the proofs of Lemma 2.7 and Lemma 4.2 in
[Dul]. Let us describe it briefly. Let (xo,...,Xu;t,...,%) = (x;f) be a coor-
dinate system of R**! and let

G(x,t) = G(x) + t1x] + - + tyXp.

o(F,G)

. Note that
a(x,»,xj) ote 4

For (i,j)e{l,...,n}?, we define Mj(x,t) by My(x,t) =
M(x,1) = My ( )+F tj— Fyt;. Let I' be defined by:

= {(x,7) eR¥"|F(x) =0 and My(x,1)=0 for (i,j)e{l,...,n}*}.

In the same way as in Lemma 2.7 and Lemma 4.2, we can prove that I'\{x, = 0}
is a smooth manifold (or empty) of dimension n+ 1. Then we conclude with the
following mapping:

n:T\{xo =0} - R""
(x, 1) = (G(x,1),1). O

Proof of Theorem 3.1. Let w:R'*" —>R be the distance function to
the origin. Because 0 is isolated in H(F,G)~ (0), Xo|r-1(0)nG-1(0)\{0} has no
critical point and then, choosing J sufficiently small, we can assume that
X0|F-1(0)NG-1(9)N{w<ey admits its critical points in W(if‘Gié). Thus the critical
points of Xojow, , , are correct. By Lemmas 3.6 and 3.7, we can suppose
that X0\We, o is"a Correct Morse function, that its critical points lie in B,),, that
at the correct critical points of Xopwg, o lying in {xo > 0} (resp. in {xo < 0}),
Vxoir-1(0)nG-1(s) points outwards (resp 1nwards) and that there are no correct
cr1tlca1 pomts of xo|f, in {xo =0}. Applying Morse Theory for manifolds with
boundary, we find:

& & /1 i
X(W(F,Gﬂs) N{xo >0}, W(F,Gfé,xo)) = Z (=1) (p)7
ilxo(pi)>0

where {p;} is the set of Morse critical points of Xo[ws, o - Similarly, we have:

AW -0y X0 < O} Wr ggip) = (=11 D0 (=17
ilxo(pi)<0

By Lemma 3.4, p is a critical point of Xo|we, o if and only if
H(F,G)(p) =(0,6,0,...,0).

Hence H(F,G)™'(0,6,0,...,0) is the set of critical points of X0[We, oy Since
Xo|we is a Morse function, det DH(F,G)(p)#0 for each p in

(F,G-9)
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H71(0,6,0,...,0) by Lemma 3.5. Hence (0,6,0,...,0) is a regular value of
H(F,G) and

deg, H = > sign[det DH(F, G)(p)].
peH1(0,6,0,...,0)

Combining this with the above equalities and Lemma 3.5, we obtain the required
equality. (|

3.2. Restriction of F to the levels of (G, xo)

We define two maps I(F,G) and J(F,G) : (R, 0) — (R'*",0) by: I(F,G)
= (x0, G, V2@, ..., V,G) and J(F,G) = (xoF, G, V»G,...,V,G). Our aim is to
prove the following theorem:

THEOREM 3.8. If F has an isolated critical point at the origin, 0 is isolated in
J(F,G)™'(0) and (0,6,0) is a regular value then we have:

degy J(F, G) = sign(=0)" - [x(W(r,6-5)) = x(W(5_5x,))):

where 0 < || <&« 1.

From now on, we will assume that the three assumptions of Theorem 3.8 are
. . . o(F,G
fullfilled. We keep the notations of the previous subsection: M; = 6((x’x))
iy

Lemma 3.9.  The function G,y has an isolated critical point at the origin.

Proof. Since J(F,G) has an isolated zero at 0, the point (0,0,0) is isolated
in I(F,G)"'(0). This would not be the case if 0 in R” was not an isolated
critical point of Gj(y,—o)- O

LemMMA 3.10. Let 6 # 0 be sufficiently small so that {xo =0} NG~ (d) is a
smooth submanifold of codimension 2 (or empty) near the origin. Let s be a point
in {xo =0}NG~1(5). The function Fiix—oynG-1(s) has a critical point at s if and
only if I(F,G)(s) =(0,0,0,...,0).

Proof. Since (0,0,0) is a regular value of (F, G,xy), we can apply the proof
of Lemma 2.11. O

Lemma 3.11. Under the assumptions of Lemma 3.10, EG—I<5)mxal<0) has a
non-degenerate critical point at s if and only if I1(F,G)(s) = (0,0,0,...,0) and
det DI(F, G)(s) # 0. Furthermore if u(s) is the Morse index of this function at s
then:

G(s)

(=) = (=1)"" sign KF@)) det DI(F,G)(s)|.
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Proof. The proof is the same as in Lemmas 2.5, 2.13 and 3.5. We leave it
to the reader. ]

The following lemma deals with the critical points of F|pw' .
—0, %0
LemmA 3.12. Assume that (0,0,0) is a regular value of (F,G,xq) for &
suﬁ?czently small.  Then, for ¢ such that 0 < || < e« 1:
* the vector VE10)nG-1(6) points outwards at all correct critical points of

F]Wr o with F> 0,

* the ‘vector VE 1 0nG-1(6) points inwards at all correct critical points of
|Ws ’ with F <0,
« there are no correct critical points of F‘Wa | in F~1(0).
X0
LEMMA 3.13.  We can perturb G into G in such a way that F‘Wf ; has only

Morse critical point. )

Proof. The same method as in Lemma 2.16 can be applied, because we
have assumed that (0,0,0) is a regular value of (F,G,Xxo). O

Proof of Theorem 3.8. It is easy to see that 0 is isolated in I(F,G) ' (0).

Let us study the critical points of F\W(b . Thanks to Lemmas 3.12 and 3.13,
—0d,x()

we can assume that we are in a good situation to apply Morse theory. We have:

HW G—sx0) WF 2 0}) = 2x(Wip 65 x) = Z (—1)H),
JIF(s5)>0

where {s;} is the set of Morse critical points of F Wy Similarly, we have:
- o3

XKW (6_5.x) WE <0}) = x(Wip 6-5.x) = -t Z (—1)*).
JIF()>0

Hence, we get:

AW o) = X Wirs) = O (D 4 (=1)"" 3~ (—1)*0).
JIF(s))>0 JIF(s1)<0

An application of Lemma 3.11 gives:
AW (Gs.x) = A (W(p 65.x,)) = —sign(— Z sign[F (s;) det DI(F, G)(s;)].
Similarly, we have:

XW(r. G-5)) = X(Wip 6_5.x,)) = sign(— Z sign[xo(p;) det DH(F, G)(p:)]-
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But the sets {p;} and {s;} are exactly the preimages of (0,0,0,...,0) by J(F,G).
Furthermore, each p; is a regular point of J(F,G) and:

sign[det DJ(F, G)(p;)] = sign[xo(p;) det DH(F, G)(p;)].
Each s; is a regular value of J(F,G) as well and:
sign[det DJ(F, G)(s;)| = sign[F(s;) det DI(F, G)(s;)].
With all these informations, it is easy to finish the proof. O

4. Application to 1-parameter families and to partially parallelizable
mappings of (R",0) to (R?0)

In this section, we apply the formulas of Section 3 when F and G are one-
parameter deformations of two germs f and g. We use the same strategy as
Fukui does in [Fu].

We consider two function-germs F,G : (R'*" 0) — (R,0) such that F sat-
isfies Condition (Py,). We also assume that the conditions of Theorem 3.8 are
satisfied. Note that the fact that J(F,G) has an isolated zero at the origin
implies that H(F, G) has an isolated zero at the origin as well. Let us define the
function-germ Fp : (R",0) — (R,0) by Fo(x1,...,x,) = F(0,x1,...,X,).

LEmMMA 4.1.  Assume that the function-germ Fy has an isolated critical point at
the origin.  Then for 0 sufficiently small, (0,0,0) is a regular of (F,G,xy). Let us
suppose that 0 > 0, then for 0 < < ¢« 1, we have:

Wi 5N {x0 = 0} = WEN{G = 0} N {xo = 0} =~ W, 5 N{G =0},
Wip, o) M{xo <0} = 0WiN{G >0} N{xg <O} >~ Wi 15 N{G = 0},
Wir o) N {xo 2 0} 2 oW N{G <0} N{xo = 0} = W 5 N{G <0},
Wir o) M {xo <0} 2 oW N{G <0} N{xo <0} = W 15 N{G <0},

where ~ means diffeomorphic to.

Proof. Let us prove the first line. It is an adaptation to our case of the
deformation argument given by Milnor [Mi, Lemma 11.3]. We can construct a
vector field v; on WE\{G = 0} such that {v;(x), VG(x)) and {vi(x),x) are both
positive. Similarly there exists a vector field v; on W§  \{G =0} such that
{v2(x), VG(x)» and <vy(x),x) are both positive. Using a collar, we can extend
vy to a vector field ¢, defined in a neighborhood of W(}JM\{G =0} in WEN
{xo = 0}\{G = 0} such that <#(x),VG(x)> and {(B2(x),x) are positive. Gluing
v; and 7, we construct a new vector field w on WEiN{xy > 0}\{G =0}. The
diffeomorphism between W ;5 N{xo >0} and dW;N{G >0} N{xo >0} is
obtained integrating the trajectories of w. Similarly W(SF‘X(]? 5) N{G >0} is
diffeomorphic to dWEN{G >0}N{xy) > 0} because, by Lemma 3.3, F~1(0)N
G~'(0) is smooth outside the origin. O
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We want to compute ){(W(gF G‘x(h(;)). By the Mayer-Vietoris sequence, we
know that: '

XKW xo—0)) = XW(p x5y NG = 0}) + 2 (W 5 NG <0}) = x(Wr. 6.50—0))-
Hence, by Lemma 4.1, we find that if 6 > 0, then:

XV 6. xo—8) = XW(r 65 VX0 = 0}) + 2(W(r 1) N {x0 = 0}) — (Wi 1))
AW G xor0) = X W 65 N{xo < OF) + x(W(r i) VM {Xo < OF) = (W yy00))-

The Euler-Poincaré characteristic of W(}_’xO +) can be computed thanks to
formulas established in [Fu], as explained in [Du2, Theorem 3.2]. More pre-
cisely, let L(F):(R'*,0) — (R'"",0) be the mapping defined by L(F)=
(F,Fy,,...,Fy,). If L(F) and VF, have an isolated zero at the origin, then
VF has an isolated zero at the origin and the following theorem explains how to

compute y( W(SF, x049) ).

THEOREM 4.2. Let 6 and ¢ be such that 0 < |0| < e < 1. If n is even then:

1AW _s) =1 —degy VF.
If n is odd then: ( S 5>) 0

)((W(‘SF"XO_(,»)) =1 —deg, VF — sign(d) deg, L(F).

Proof. See [Fu] and [Du2]. ]

At this point, we have assumed that:
(1) F has an isolated critical point at the origin,
(2) J(F,G) has an isolated zero at the origin,
(3) (0,0,0) is a regular value of (F,G,xy),
(4) Fy has an isolated critical point at the origin.
By the Curve Selection Lemma, Assumption (4) implies Assumption (3). More-
over, it means that O is isolated in {F =F,, =---=F,, =xo =0}. Since this
last set is equal to {F = Fy, = --- = F,, = 0} near the origin thanks to the Curve
Selection Lemma and the fact that £~'(0) has an isolated singularity, we have
that (4) implies that 0 is isolated in L(F) '(0). So, under Assumption (4), we
can apply the above theorem.

It remains to compute (W .5 N{x0?0}), ?€{<,>}. By the Mayer-
Vietoris sequence, we have:

X 6-5)) = XW(r G-y N {x0 = 0}) + 2 (Wip sy N {x0 < 0}) — x (W 6-5,x,))-

But Theolrem 2.1 enables us to compute y(Wi ¢_s5) and x(Wi 65 ). Let
Go : (R")0) — (R,0) be defined by Gy(xi,...,x,) = G(0,xy,...,x,) and let us
assume that it has an isolated critical point at the origin. Then using Theorem
3.8 and Khimshiashvili’s formula, we find that:

AW (e G-s) = 1 +sign(—0)"[degy J(F, G) — deg, VGy).
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Now observe that, since F satisfies Condition (Py,), Fy satisfies Condition (P) of
Section 2 with the vector fields V3,..., V0 given by:

Vio(xl,...,x,,) =TVi(0,x1,...,X,).
Let k(Fy, Gy) : (R",0) — (R",0) be defined by:
k(FO? GO) = (F()a V20G07 ey I/’?G())
By Theorem 2.1, we have:
if nis even: y(Wip g_s ) =1 — degy VF + sign(d) degy k(Fo, Go),
if nis odd: )((W(SF’G%,XO)) =1 — deg, k(Fo, Gy).
Let us focus first on the case n even. By Theorem 3.1, we have:
AW G5 N {x0 = 0}) = x(Wip 65 N {x0 < 0}) = degy H(F, G).
As explained above, we also have:
X(Wip,6-5)N{x0 2 0}) + 2 (W -5y N {x0 < 0})
=2+ deg, J(F, G) — deg, VGy — deg, VF, + sign(0) deg, k(Fo, G).
This gives:

1
X(Wip 65N {xo 2 0}) =1 +3 [deg, J(F, G) — deg, VG, — deg, VF)
+ sign(d) deg, k(Fy, Go) + degy H(F, G)],
1
)((W(ER G-0)N {xo<0}) =1+ 3 [degy J(F,G) — deg, VGy — deg, VFy

+ sign(0) deg, k(Fo, Gy) — degy, H(F, G)].
Collecting all these informations, we obtain:
HW i G xo—s) = 1 +degy J(F, G) — degy VG + sign(0) degy H(F, G),

KW 0 MG 2 0}) = 2 (W 5 N{G < 0}) = degy k(Fo, Go)-

If n is odd, we have:
HW(r, G-y N {x0 = 0}) = x(W(r g_s) N {x0 < 0}) = —sign(6) deg, H(F, G),
KW 65 M {xo = 0}) + x(W(r g_5) N {x0 < 0})
= 2 — sign(d)[deg, J(F, G) — deg, VG| — deg, k(Fy, Go).

This gives:

IWir G-y N {x0 =2 0}) =1 —%[sign(&)(dego J(F,G) — deg, VG

+ degy H(F, G)) + deg, k(Fy, Gy)],
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1. .
X(Wip 65N {x0 <0}) =1— 3 [sign(d)(deg, J(F, G) — deg, VG
- degO H(F7 G)) + degO k(F07 GO)]
Finally we find:

KW G xo—s)) = 1 — degy k(Fo, Go) — deg, VF — sign(d) deg, L(F),
X o5y NG = 0}) = (Wi 5y N{G < 0})
= —deg, J(F, G) + deg, VGy — sign(d) deg, H(F, G).

Here, we have to remark that:

& 1 & 1 &
X(W(F,, G.xof(i)) = 5%(5 W(F, G,xra)) = EX(a W(F7 G.xo)) =1 — deg, k(Fo, Go),

by Corollary 2.8. Hence, we get that deg, VF = deg, L(F) = 0.

Let us reformulate these results in terms of one-parameter deformations of
function-germs. Let (xi,...,x,) be a coordinate system of R". Let f : (R",0)
— (R,0) be a function-germ with an isolated critical point at the origin. Let
g:(R",0) — (R,0) be a function-germ with an isolated critical point at the origin
such that the mapping k(f,g): (R",0) — (R",0) has an isolated zero where
k(f,g) is defined as in Section 2. Let (4,x1,...,x,) be a coordinate system
in R"™ and let F: (R 0) — (R,0) (resp. G: (R, 0) — (R,0)) be a one-
parameter deformation of f (resp g), i.e. F(0,x) = f(x) (resp. G(0,x) = g(x)).
We will use the notations f;(x) = F(z,x) and g,(x) = G(¢t,x). We assume that:

(1) F has an isolated critical point at the origin,

(2) the mapping J(F,G) has an isolated zero at the origin,

(3) F satisfies Condition (P;) (which implies that f satisfies Condition (P)).
We note that Fy and G; have an isolated critical point because Fy = f and
Gy =g¢g. So we are in situation to apply the above process.

THEOREM 4.3. For t and & with 0 < |t| <« e < 1, we have:
— if n is odd:

X(W(p/,g,)) =1- degO k(fag)a
x(Wi0{g, = 0}) — 3 (W N {g, < 0})
= —deg, J(F, G) + deg, Vg — sign(¢) deg, H(F, G),
— if n is even:
AW ) =1+ degy J(F, G) — deg, Vg + sign(t) deg, H(F, G),
x(WiN{ge = 0}) = x (Wi N{g, < 0}) = deg, k(f,9)-
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Let us apply Theorem 4.3 when (f,g) is a partially parallelizable map.
More precisely, let us assume that f satisfies Condition (P) and let us consider
the following deformations of f and g:

F(4,x) = f(x) =7 (4) and  G(4,x) = g(x) = 72(4),

where y = (y1,7,) : (R,0) — (R?,0) is an analytic arc such that p(f) # 0 if 7 # 0
and p{(r) #0 if r# 0. With this last condition, the function F has an iso-
lated critical point at the origin. Furthermore F satisfies Condition (P;) with
Vi(A,x) = vi(x) for i =2,...,n. Let us denote by Disc(f,g) the discriminant of
the mapping (f,g). The following lemma tells us when the points in the image
of y are regular value of (f,g) near the origin.

LEMMA 4.4. The origin (0,0) is isolated in H(F,G)™"(0) if and only if 0 is
isolated in Disc(f,g)Ny(I), where I is a small open interval in R containing 0.

Proof. The point (0,0) is isolated in H(F,G) '(0) if and only if for all
(t,x) # (0,0) such that F(¢,x) = G(t,x) =0, there exists i € {2,...,n} such that
v;G(t,x) #0. Let us remark that if x # 0 is such that F(0,x) = G(0,x) = 0 then
1:G(0,x) # 0 for some i in {2,...,n} because f~'(0)Ng~'(0) has an isolated
singularity. Therefore the point (0,0) is isolated in H(F,G) ' (0) if and only if
for all (¢,x) with ¢ # 0 such that F(f,x) = G(¢,x) = 0 there exists i € {2,...,n}
such that v;G(¢,x) # 0. This is equivalent to the fact that for all 7 # 0 and for
all x such that f(x) =y,(z) and g(x) = p,(¢), Vf(x) and Vg(x) are not colinear.

(]

Theorem 4.3 can be restated in this situation.

THEOREM 4.5. Assume that f and g have an isolated singularity and that
y1(2) #0 if t #0. Assume that J(F,G) and k(f,g) have an isolated zero at the
origin then for t and ¢ with 0 < |t| < ¢ < 1, we have:

— if n is odd:

AW 0.9-m0)) = 1 = dego k(. 9),
X Wi, Mg = n(0}) —x(Wi_, N {g < (0)})
= —deg, J(F, G) + deg, Vg — sign(¢) deg, H(F, G),
— if n is even:
Xy (0.9-n)) = 1 +degy J(F, G) — deg, Vg + sign(1) degy H(F, G),
I 0N g =70} = x (Wi, () N {g < 72(0)}) = degg k(1 9)-
Let us examine the situation when A;(¢z) = ¢ and A,(r) = 0. In this case, we

can check that deg, J(F, G) = 0 and that deg, H = —deg, /(f,g), where I(f,g) is
defined in Section 2. Hence, we recover the results of Theorem 2.9.
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5. Explicit formulas

In this section, we present some situations where Conditions (P) and (Py,)
are satisfied.

5.1. Case n=2, 4 or 8§
As explained in [FK], when n =2, 4 or 8, Condition (P) is satisfied for
any function-germ f : (R”,0) — (R,0). If d,, denotes the vector ¢; = (0,...,0,1,

0...,0) where 1 is the i-th coordinate, then the vectors vy, ...,v, are given by, if
n=2:
v = —f,0x + S 0x,,

if n=4:

02 = —f1,0n + f10x = fr,Ox + frsOxy

U3 = —fxy0x; + fxyOxs + 1 Oxy — fr2 0y

V4 = —frOx; — fx30x, + f,0xy + fx, 0
if n=28:

V2 = —fu,0x + S 0x, — friOxy + SrsOxy = frgOxs + SrsOxg + frgOxy — Sry O
U3 = —fx.0x + fo0x, + fo,0x — fr.0xg — S 0x — frOxg + f350x; + froOxs,
U4 = —f2,0x; = frs0x, + fiaOxy + S, O0xy = SrOxs + fr70xg — SrOxy — SrsOxg
Us = —fxsOx, + fxeOxs + fxr0xy + frsOxy & fr1Oxs = fr20x = Sy Oxy — fryOxgs
V6 = —fxiOx; — frsOx, + fxyOxy = fr,0xy + frsOxs + [y Oxg + fryOxy — fri O,
U7 = —f2;0x — SrxgOxy = JasOxy + SrgOxy + fa30xs — FryOxg + S, 0xy + fry Oy
v8 = ~fxOx; T fr;0x, = fxgOxs = S5 Oxy F frOxs + fiaOxg — S0y + S O
Condition (Py,) is also fullfilled, the vectors V; being given by, if n =2:
Vo = —F\,0x + Fy,0x,,

if n=4:
V) = —F,0y + Fy,0x, — Fx,0x, + Fx,0y,,
V3 = —Fy,0x, + Fx,0x, + Fx,0x; — F, 0y,
Vo = —Fy0x, — Fx;0x, + F,0x, + Fy, 0x,,
if n=28:

Va = —Fys + Fu, 0, — Fuy0x, + Fiydsy, — FroOss + FuyOx, + Fyy 0y, — Frydg
Vs = —Fudx, + Fu 0y, + Fo, 0 — FiyOy — Fu0xg — Fuydvg + Figdy + Fu0s,,
Vi =—F\,0x, — Fy;0x, + Fy,0x; + FyOx, — Fy,Ox; + Fx;0x, — Fx Ox; — Fy Oy,
Vs = —Foydu, + Fegdy + Fu0x, + Fuyds, + Fuy 0 — Fiydsg — Fu0xy — Fu 0,
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V6 = _E\'(,axl - FX5 axz + EY36X3 - FX7 a,m + sz aX5 + Fx1 ax(, + E¥46X7 - Ev;ax37
V7 = _FX7 a)q - EYg axz - EX‘5 aX3 + Fx6 6)64 + E‘C3 63(5 - EM axﬁ + E‘Cl a)ﬁ + E‘Q an7
V8 = _E‘Cg axl + E"ﬁ axz - FX(, ax_; - E‘Cj aX4 + EY4 8){5 + FX3 aX(, - E‘Cz a)ﬁ + E’C] 63(8 .

So all the results of Section 2, Section 3 and Section 4 can be applied. Note also
that the vector fields v; and V; are analytic.

5.2. Case f,, >0 and F,, >0
Condition (P) is satisfied for a function-germ f : (R”,0) — (R,0) such that
S =0 (see [FK, pl51]). The vectors vy,...,v, are defined by:

n

v = _f:’CiaXl - Z(f’ﬁ.fx; - 5i,jT)ax,'7

J=2

where T = f, +3°7, f,cz/ and J; ; is the Kronecker symbol. Here we notice that
there is a mistake in the computation of the determinant of the matrix M defined
p. 151 in [FK]. This determinant is (—1)"7"'>>" g2. That is why our ;s
are the opposite of the v;’s defined by Fukui and Khovanskii.

If F,, =0, Condition (P,,) is satisfied with the vectors ¥;’s defined by:

n
I/i = _EYl axl - Z(E‘C,-EYJ- - (5[,va/)an7
=2
where T’ = Fy, + 31, FYZ/ Let us remark that in this situation the computation
of X(W(f}?' G 5)) can be simplified thanks to Theorem 2.1. Actually, the function
F satisfies Condition (P) with the following vectors:

Zy = Fxoaxl + Z (inEj _5i,jS)ax/a
J=0lj#1

Z; = _Eviaxl - Z (F‘x,vaj - 51‘,]‘S)axj; i=2,...,n,
J=01j#1

where S =Fy +F. +>,F.. Let K(F,G): (R"1.0) — (R""!,0) be defined
by:
K(F,G) = (F, ZG, Z>G, ..., ZnG).

Since F~'(0)NG~'(0) has an isolated singularity at the origin (Lemma 3.3) then
K(F,G) has an isolated zero at the origin (Lemma 2.4). Hence, by Theorem 2.1
and since deg, VF =0 for Fy, >0, we have:

if nis odd: (W g_s) =1+ sign(d) degy K(F, G),
if nis even: y(W( g_5) =1 —degy K(F, G).
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So Theorem 4.3 can be rewritten without the assumption that g has an
isolated critical point at the origin. Namely, with the obvious assumptions, we

obtain:
THEOREM 5.1. For t and ¢ with 0 < |tf| < ¢ < 1, we have:
— if n is odd:
X(W(%f;,g,)) =1—deg) k(f,9),
x(Win{g, = 0}) = x(WiN{g, < 0}) = +deg, K(F, G) — sign(r) degy H(F,G),
— if n is even:
AW g9) = 1 = degy K(F, G) +sign(1) degy H(F, G),
x(WiN{ge = 0}) — x(W7N{g: <0}) = degy k(f,9).

If the deformation (F,G) of (f,g) is of the form F(A,x) = f(x)—y,(4),
G(4,x) = f(x) — y,(4), then we just need to suppose that f,, > 0. Therefore

Theorem 4.5 becomes:

THEOREM 5.2.  Assume that f has an isolated singularity and that y{(t) # 0 if
t #0. Assume that J(F,G) and k(f,g) have an isolated zero at the origin then
SJor t and ¢ with 0 < |t] < ¢ < 1, we have:

— if n is odd:

AW ry0.g-r) = 1 = dego k(S 9),
AWE, g =00} —x(Wi, N {g < n(0)})
= +deg, K(F, G) —sign(¢) deg, H(F,G),
— if n is even:
AW 0.9-m) = 1 — dego K(F, G) +sign(1) degy H(F, G),
XWi_ g = 7(0}) — x (Wi, () g < 7a(0)}) = degy k(1 9).

6. An example

Let f(x1,x2,x3,X4) = x% + x% + x% - xf and g(x1,x2,X3,X4) = X1X2 + X3X4.
These functions have an isolated critical point at the origin and deg, Vf = —1
and deg, Vg = 1. The mappings k(f,g) and /(f,g) of Section 2 are:

k(f,9)(x) = (xl2 + x% + x% — xi, 2x12 — 2x§ + 2x§ + 2xﬁ7 —4xyx3,4x2X4),
I(f,9)(x) = (x1x2 + X3X4, 2x12 — 2x§ + 2x§ + 2xf, —4x,x3,4X2X4).

It is not difficult to see that 0 is an isolated root of k(f,¢) and /(f,g). Fur-
thermore, degy k(f,g) =0 because k(f,g) '(0,,0,0)=0 if f<0. If f<0
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then l(f,g)fl(O,ﬂ,0,0) consists of the points p; = 0,\/—9070 and p, =
(0,—\/—/;,0,0). Since det[DI(f,g)(pi)] >0, deg, /(f,g) is equal to 2. By

Theorem 2.1 and Theorem 2.9, we get that y(W¢, _5) =2, x(Wf,_s ) = =2 if
0>0 and (Wi, ;) =2if  <0. By Theorem 4.5, we have:
Wi, g 2 7 (0}) —x(Wi, iy NH{g < 0(0)}) =0,

for an appropriate analytic arc (y,7,).
Let us compute )((W(gfft gir)) using Theorem 4.5. The mappings H and J
of Section 3 are given by:
H(t,x) = (X} + X3 + X — X} — 1,X1X2 + X3X4 — 1,
2x12 - 2x§ + 2x§ + 2xf, —4xyx3,4x2X4),
J(t,x) = (t- (X7 + x5 +x3 — x5 — 1), x1X2 + X3X4 — ¢,
2xl2 - 2x§ + 2x§ + 2)@%7 —4xyx3,4x2X4).
Let us search the points (z,x) such that H(z,x) =0. If x, =0 then clearly
Xx1=x3=x4=1t=0. If x, #0 then x3 = x4 =0 and:
X +x3—t=0
Xixp—t=0
2)612 — 2x§ =0

This implies that 7> = 4x3 = x3, which is a contradiction. Hence H admits an
isolated zero at the origin. Furthermore deg, H =0. To see this, let (¢,x) be
such that H(z,x) = (0,0,4,0,0) where f < 0. Necessarly x; #0 and x3 = x4
=0. Hence xj, x, and ¢ satisfy the system:

xf+x3—1=0
xX1xp —t=0

2x7 —2x3 =4
: t t— =2 .
Putting y :g, we find that x? = —12—)/’ x? = 3 " and 2 = . This last
equality is equivalent to 3¢> = —y2, which is impossible.

Let us search the points (z,x) such that J(¢,x) =0. As above, if x, =0
then xy =x3=x4=t=0. If x, #0 then x3 =x4 =0 and
t(x}+x3-1)=0
XX —t=0
2xl2 - 2x§ =0
If =0 then x; = x, = 0, which is a contradiction. The case x +x3 — =0 is
also impossible as we have already explained. Hence J admits an isolated zero
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at the origin, Let f <0 and let us search the points (¢, x) such that J(¢,x) =
ﬂZ

8 )
the system:

0,5,0,0]. Necessarly x, #0 and x3 = x4 = 0. Hence x;, x and ¢ satisfy

2
1(x}+x3 —1) :%
Xix —t=0
2x12 — 2x§ =4
ﬂ2
Furthermore, ¢ > 0 because #(x] + x3) = 1> +7 and x; and x; have the same

p K Aty Ao

sign. Putting r=3 and 1= t+§, we find that x12 =5 > = and
/12 _ yZ ﬁ4 ﬂz
2= T Hence, we get that 3t4:a. Thus §,0,ﬂ7070 has two

preimages ¢ = (fo,a1,b1,0,0) and g2 = (%, a2,b2,0,0), where #) >0, aj,b; >0
and ay,by < 0. An easy computation shows that DJ(g;) = —128b,-2[0(ai—b,-)2.

Finally we find that deg, J = —2. Theorem 4.5 gives that X(Wfff,_ LH)) =-2.

Let us now compute x(W¢,_, -1 /4):))- The mappings H and J are:

1
H(t,x) = (xlz—i-x%—f—x% —xi — 1, X1X2 + X3X4 —Zt,

2x12 - 2x§ + 2x§ + 2x§, —4x,x3, 4xzx4>,
2 2 2 2 1
J(t,x) =1 (x7 + x5 +X5 — x5 — 1), X1X2 + X3X4 _Zt’

2x12 — 2x§ + 2x32 + fo, —4x,Xx3, 4X2)C4).

We use the same technics as in the previous example. We find that H and J
have an isolated root at the origin. If f < 0 then (0,0,4,0,0) has two preimages
by H: p1 = (to,a1,01,0,0) and p, = (t,a2,b2,0,0) where #, > 0, a;,b; > 0 and
ay,by < 0. A computation gives that DH(p;) :2—4817,-210, which implies that

degy, H = —2. Let us search the preimages of %,O,ﬂ,0,0 , p<0, by J. If

(t,x) is such a preimage then necessarly x; # 0, x3 =x4 =0 and > 0. More-
over xj, x; and ¢ satisfy the system:

ﬂZ
B

t(x}+x3—1)=

XIXZ_Zt:O

2x2 = 2x3=p
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. 3 ! -
This gives that —th = %, a contradiction. We have proved that deg, J = 0.
Applying Theorem 4.5, we obtain that y( W(afff,g—(l/4)t)) =-2 if +>0 and

X(W(l}'—t,g—(lm)t)) =2 if t<O.
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