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COMPACTNESS CHARACTERIZATION OF COMMUTATORS
FOR LITTLEWOOD-PALEY OPERATORS*

YANPING CHEN AND YONG DING!

Abstract

In this paper, the authors prove that the commutator [b, L] is a compact operator in
L?(R") if and only if b€ VMO(R"), where L denotes the Littlewood-Paley operators,
such as the Littlewood-Paley g-function, Lusin area integral and Littlewood-Paley g;
function.

1. Introduction and main results

For g e #(R") with [¢(x) dx =0, then the following operators are well
defined:
(i) Littlewood-Paley g-function:

%Uxmz(fwﬁfwvﬂf7

t

(i) Lusin area integral:
1/2
dydt
anm-(ﬂHWmﬂmZL>,

(i) Littlewood-Paley g; function:

) 1/2
. . B t irn i 2dydt
g, f(x) = (JJRT‘ (m) o, f()] [n+l> )

where ¢, = r"p(x/f) and T'(x) = {(»,) eR"™ : |x - y| <t} and A > 1.

The operators g,, S and g; are called as Littlewood-Paley operators. It is
well known that the Littlewood-Paley operators are very important tools in the
singular integral operators theory, function spaces theory and PDE (see [28], [29],
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[31], [21], [6], [17], [22], for example). The L? boundedness and the weighted
L? boundedness of the Littlewood-Paley operators have been studied by many
authors (see [27], [3], [23], [19], [10], [11], [1], [35], for example).

On the other hand, the commutators of the Calderon-Zygmund singular
integral operator plays a very important role in characterizing function space ([5],
[20], [25]) and studying the regularity of the solution of the second order elliptic
equations ([8], [18]).

Let "' ={xeR":|x| =1} be the unit sphere in R” equipped with the
Lebesgue measure dg. For b e Lj,.(R"), the commutator [b, To| formed by b
and the singular integral operator Tq is defined by

[b, Tal £ (x) = p.v. J Qx - )

T
R X =yl

(b(x) = b(y)f(») dy,

where Q satisfies the following conditions:
(a) Q is homogeneous function of degree zero on R"\{0}, i.e.

(1.1) Q(Ax) = Q(x) for any A >0 and x € R"\{0}.

(b) Q has mean zero in S"7! ie.
(1.2) J Q(x') da(x’) = 0.
Sn-1
(c) Qe Lip(S™!), i.e. there exists constant M > 0 such that

1.3 Q(x)—Q(y)| < M|x' —y'| for any x',y e S" L.
( y y y x',y

Before showing the known results, let us recall the definitions of BMO(R") and
VMO(R"). Denote

M(b, Q) = —JQ 1b(x) — bo| dx,

1
where Q is a cube in R”, by = @jg b(x) dx. Then

BMO(R") = {b € LioeR") : |6l gpro = sup M (b, Q) < oo}.
QcR”

Moreover, denote by VMO(R") the BMO-closure of C¥(R"), the set of C*-
functions with compact support in R”.
In 1976, Coifman, Rochberg and Weiss [5] proved the following result:

THEOREM A ([5]). (i) Suppose that Q satisfies (1.1), (1.2) and (1.3). If
be BMO(R"), then [b,Tq] is bounded in LP(R") for 1 < p < 0.

(i) If [b,R;] (j=1,...,n) are bounded in L?(R") for some p, 1 < p < o0,
then b e BMO(R"), where R; is the j-th Reisz transform.
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Using this result, the authors in [5] gave a decomposition of Hardy space.

In 1978, Uchiyama [34] showed that the Riesz transforms R; in the conclusion
(i) of Theorem A can be replaced by the Calderon-Zygmund singular integral
operator Tg.

THEOREM B ([34]). Suppose that Q satisfies (1.1), (1.2) and (1.3). If [b, Tq)
is bounded in L?(R") for some p, 1 < p < co, then b e BMO(R").

Combining Theorem B with the conclusion (i) of Theorem A, Uchiyama gave
really a characterization of the L”-boundedness of the commutator [b, Tg].

In 1990, Torchinsky and Wang [33] extended the conclusion (i) in Theorem A
to the commutators [b, go] of the Littlewood-Paley g function gq, where gq = ¢,
for p(x) = Q(x)|x\7"+1)({‘x‘gl}(x) with Q e L'(S"!) satisfying the condition (1.1)
and (1.2). ggq is also called as Marcinkiewicz integral, which was first introduced
by Stein [27] in 1958.

For b e Lioc(R"), the commutator [b,go] formed by » and gq is defined by

, 2 1/2
b, gal £(x) = (jo ?) |

Torchinsky and Wang proved the following conclusion:
THEOREM C ([33]). Suppose that b € BMO(R") and Q satisfies (1.1), (1.2) and
(1.3).  Then [b,gq] is bounded in L?(R") for 1 < p < c0.

J Q(x—y)

n—1
—yl<t |x — Y|

(b(x) = b(y))f(y) dy

Theorem C was improved by Ding, Lu and Yabuta [14] in 2002.

TuEOREM D ([14]).  Suppose that Qe L4(S"') (g > 1) and Q satisfies (1.1)
and (1.2). If be BMO(R"), then [b,gq| is bounded in L?(R") for 1 < p < o0.

Recently, we considered the converse problem for the commutator [b, gq] in
[7]. That is, we showed that the conclusion of Theorem B is also true for the
commutator [b,gq].

THEOREM E ([7]). Suppose that Q satisfies (1.1), (1.2) and the following
condition:

Ci
2 b4
o8 [ 5]

If the commutator [b,gq] is bounded in LP(R") for some 1 < p < co, then
be BMOR").

(14) |QKx") —-Q(")| < Ci>0,9>1 and x',y' e S" L.



COMMUTATORS FOR LITTLEWOOD-PALEY OPERATORS 259

Remark 1.1. It is easy to see that the condition (1.4) is weaker than
Lip,(S"™!) for any 0 <a <1. Therefore Theorem E can be seen as an
improvement of Theorem B in some sense.

Now let us turn to the compactness problem about the commutators.
Uchiyama gave also a characterization of the commutator [b, To] which is
compact operator in L?(R") (1 < p < o0) in [34].

THEOREM F ([34]). Suppose that Q satisfies (1.1), (1.2) and (1.3).

(i) If be Ly R") and [b,Tq] is a compact operator in LP(R") for some
1 < p< oo, then be VMOR").

(i) If be VMO(R"), then [b,Tq] is a compact operator in LP(R") for
1 < p<oo.

In 1993, Beatrous and Li [2] discussed also the boundedness and compactness
for the commutators of mulitiplication operator related to Hankel type operator.

Therefore, an interesting question arises naturally. That is, is true the
conclusion in Theorem F if replacing the commutator [b, Tq] by [b,ga]?

The purpose of this paper is to give a positive answer to above question.
More precisely, under more weaker kernel conditions than one in Theorem F,
we give a characterization for the commutators [b,L] of the Littlewood-Paley
operators which is a compact operator in L”(R"), where L expresses not only the
Littlewood-Paley ¢ function gq, but also the Lusin area integral and Littlewood-
Paley g; function with homogenous kernels.

To show our results, let us give some notations and definitions.

DeriNiTION 1 ([4]). Let X and Y be Banach spaces and U be a subset of X.
Then operator 7 : U — Y is said to be a compact operator if 7" is continuous
and maps bounded subsets of U into strongly pre-compact subsets of Y.

DEFINITION 2. Suppose that Q(x’) € L4(S""") for ¢ > 1. Then the integral
modulus w,(0) of continuity of order q of Q is defined by

0,0) = ﬁ‘ﬂi’a(Lnl Q') - Q) da(x'>)'/q,

where 7 denotes the rotation on R” and ||z|| = sup, . g.1|7x" — x'|.  The function
Q is said to satisfy the L?-Dini condition, if

[
0

Now, we give our first result as follows.

do < 0.

THEOREM 1. Suppose that Q satisfies (1.1), (1.2) and (1.4). If be L,.(R")
and [b,ga] is a compact operator in LP(R") for some 1< p< oo, then
be VMO(R").
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However, the converse part of Theorem 1 holds also even under a condition
which is much weaker than (1.4).

THEOREM 2. Suppose that Qe L1(S""") (¢ > 1) satisfying (1.1), (1.2) and

1
0
(1.5) J “)‘3( ) (1 + llog 8]) do < oo
0
If be VMO(R"), then [b,gq] is a compact operator on LP(R") for 1 <p < co.

Remark 1.2. It is easy to see if Q satisfies (1.4) for some y > 1, then Q
satisfies also (1.5). In addition, it is also obvious to see that the condition (1.4)
or (1.5) is weaker than Lip,(S"!) (0 <o <1). Therefore, Theorems 1 and 2
may be seen as an improvement of Theorem F in this sense.

Now let us turn to the area integral and Littlewood-Paley g; function. Let
0 <p<n and denote ¢”(x) :Q(x)|x|7"+/')({‘x‘gl}(x) with Q satisfies the con-
ditions (1.1)—(1.3). Then the parameterized area integral and parameterized
Littlewood-Paley ¢g; function are defined respectively by

12
S@f@ﬁ(JJnﬂwf*jKyﬂziZ?>

n 12
*,p o t » 2 dydl
mﬂ@—OLTQ:Ef; o < FP 2

where T'(x) = {(y,/) eR""" 1 |x — y| < ¢} and 1> 1.

The parameterized Littlewood-Paley g-function first was discussed by
Hoérmander [23] in 1960. In 1990, Torchinsky and Wang [33] gave the weighted
L*(R") boundedness of S” and g;” for p=1 and Qe Lip,(S"") (0 <a<1).
For general p, in 1999, Sakamoto and Yabuta [26] gave the L? boundedness of
S” and g;”.

Now we give the definitions of the commutator [b,S?] and [b,g;”]. Let
beLi(R"),0<p<nand 2> 1. Then the commutator [b, S”] and [b,g; "] are
defined respectively by

wwvw=<”m)
and

[b.9;"1f(x)

S

and

A

2 1/2
dydt
i+l

l M —b(2))f(z) dz
v Jy:s;ly—z|”‘ﬂ (b(x) b( ))f( )d

1
v

) 12
<mm—MAV@dzﬁf).

J Q(y—z)
|

y—z|<t ‘y - Z|n_p
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In [15], Ding and Xue gave the L”-boundedness of the commutators [b, S”]
and [b,g;"].

TueoreM G ([15]).  Suppose that Q e L*(S"™") satisfying (1.1), (1.2) and the
following condition:

1
(1.6) J “’2(5(5) (1+|logd|)’ dd < o, &>2,
0

where w; denotes the integral modulus of continuity of order 2 of Q. If
n/2<p<n and be BMO(R"), then for 1< p< oo there exists a constant
C >0 such that for any f e LP(R")

(@) [I[6, SPY), < Clibllgasoll /11,5

(i) 16, g; "1, < Clbllgaoll AN, (2> 2).

Recently, we gave the converse of Theorem G in some sense in [7].

THeOREM H ([7]). Suppose that Q satisfies (1.1), (1.2) and (1.4). For
0<p<nand 2> 1, if [b,S?] or [b,g;"] is a bounded operator in L?(R") for
some 1 < p < oo, then b€ BMO(R").

Below we give the characterization of the compactness for the commu-
tators [b,S”] and [b,g;”] in L?(R"). In other words to say, we show that the
conclusions of Theorems 1 and 2 hold for the commutators [b, S”] and [b,g;”].

THEOREM 3. Suppose that Q satisfies (1.1), (1.2) and (1.4). If n/2 <p<n
and [b,S?] is a compact operator in LP(R") for some 1| <p< oo, then
be VMO(R").

THEOREM 4. Suppose that Qe L*(S"™') satisfying (1.1), (1.2) and (1.6). If
n/2 <p<nand be VMOR"), then [b,S?] is a compact operator in L?(R") for
1 <p<oo.

Similarly, for the commutator [b, ;"] of the parameterized Littlewood-Paley
g;” function, we have

THEOREM 5.  Suppose that Q satisfies (1.1), (1.2) and (1.4). Forn/2 <p <n
and 2> 2, if [b,g;"] is a compact operator in L?(R") for some 1 <p < co, then
be VMO(R").

THEOREM 6. Suppose that Q e L*(S"") satisfying (1.1), (1.2) and (1.6). If
n/2<p<n, A>2 and be VMOR"), then |b,g;"] is a compact operator in
LP(R") for 1 < p < o0.

To end this introduction, we give two remarks as follows.
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Remark 1.3. Do not like the singular integral, all Littlewood-Paley oper-
ators, such as go, S”, g;” considered in this paper, are sublinear operators. It is
well known that the compactness is very important property for many nonlinear
operators arising in mathematical physics and differential geometry, hence the
results presented in this paper have their important significance. Moreover, as
far as know, this is the first paper to discuss the compactness for the commutators
of the Littlewood-Paley operators. In this paper, we use some new idea to
overcome the nonlinearity of the Littlewood-Paley operators.

Remark 1.4. 1t is easy to check the following pointwise relationship

(1.7) [b,S"1f(x) < Clb,g; "1/ ()

holds for any fixed functions f and 4. However, (1.7) is unable to assure that
the compactness of [b,S”] in L? is implied by the compactness of [b,g;”] in
L?. Hence, Theorem 4 is not a consequence of Theorem 6, and similarly,
Theorem 5 is also not a consequence of Theorem 3. So, we need to prove these
theorems one by one.

This paper is organized as follows. In Section 2, we give some lemmas,
which will be applied in proving theorems. In Section 3, we give the proofs of
compactness characterization of the commutator [b,gq]. The compactness char-
acterization of [b, S”] is showed in Section 4 and the conclusion about [b,g;"] is
arranged in the final section. Throughout this paper the letter C will stand for a
positive constant which is independent of the essential variables and not nec-
essarily the same one in each occurrence. Moreover, |E| denotes the Lebesgue
measure of the measurable set £ in R". As usual, for p>1, p'=p/(p—1)
denotes the dual exponent of p.

2. Some lemmas
In this section, we list some known results, which will be employed in the
forthcoming considerations.

2
Lemma 2.1 ([28]). If |x| > 2|y|, then |(x —y) — x| < M, where x' = -

Jor x #0. x| &

Lemma 2.2 (see [9]). If Q satisfies conditions (1.1), (1.2) and (1.4). Let
p>0. Then for |x| > 2|y

Qx—y) QK
=" R

C

- o
|x|ﬂ(1og L]
|yl
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Lemma 2.3 ([32]). If f € BMOR") and 1 < p < o, then

1 — fol? d . C
<
<|Q| JQ I/ (¥) = fol )’> < C|fllgaro

for any cube Q.

Lemma 2.4 ([32]). If b(x)e BMOR"), C,>C;>2 and Q is a cube
centered at xo with diameter r, then exist positive constants Cs, Cy, Cs (depend
on Cy, Cy and b), such that

{Cir < |x — xo| < Car: |b(x) — bg| > v+ C3}| < C4|Qle ", (0 <v< ).

Lemma 2.5 ([30]). Suppose that f(x) is a measurable function, A(w)=
HxeR":|f(x)|>w>0} and E is a measurable set. Define f*(t)=inf{w:
Aw) <t}, t>0, then

|E|
[ s [Tirora, 1p<o.
E 0

LemMa 2.6 ([34]). For f e BMOR"), then f € VMO(R") if and only if f
satisfies the following three conditions:

(i) limg—g supjg—, M(f, Q) = 0.

(i) limg—oo supgi—, M(f, Q) = 0.

(i) limy_o M(f,Q+ x) =0, for each Q.

Lemma 2.7 (see [12]). Suppose that 0 < f < n, Q satisfies (1.1) and the L1-

Dini condition (1.5) for q > 1. If there exists a constant 0 < 0 < 1/2 such that
|x| < OR, then for any k eN
q 1/4
dy>

(L"R<y<2’f+1R

/24 R
sC@HWW<”m{”+J ‘%wﬂﬁ}

Qy—x) Q)
y=x|"" "

2kR |x‘/2k+1R 5

where the constant C > 0 is independent of R, k and x.

Lemma 2.8 ([17]). Suppose that Qe L'(S""') satisfying (1.1). Define the
rough maximal operator by

Maf(x)= sup ij = QW) dy.
xeQcR” Q| 0

Then for 1 < p < o0, there exists a constant C > 0 such that for any f e L?(R")

[Mofll, < ClI/1,
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3. The compactness of the commutator [b,gq]

3.1. The proof of Theorem 1: [b,go] is a compact operator in
L =be VMO

Since [b,gq] is a compact operator on L7(R"), then [b,gq] is bounded
in L?(R") by Definition 1. Hence applying Theorem H, we know that
be BMO(R"). Without loss of generality, we may assume ||bz,,0 =1. By
Lemma 2.6, to prove that b € VMO(R"), it suffices to show that b satisfies the
conditions (i), (if) and (iii) in Lemma 2.6.

First suppose that » does not satisfy (i) of Lemma 2.6. Then there exist
a {>0 and a sequence of cubes {Q;}~Z, with lim; ., r; =0, where r; is the
diameter of Q; := Q;(»;), such that and for every j

(1) M(b.0) =101 | ()~ body > ¢
Let J
(32) £i(2) = 10" {Isen(b(y) = b)) — co]xQ,(y)},
where ¢y = |0Q;|” fQ sgn(b(y) — bg,) dy. Since fQ —bg]dy=0, it is easy
to see that |¢o| < 1. Thus f; has the following propertles
supp f; = Oj;
(3-4) Ji)(b(y) = bg) > 0;
(35) | s ar=o
(3.6) S <200 for ye

Obviously, { I f,H }] , are bounded uniformly in j. Now we show that
{[b,g90](f))}/2, is not a strongly pre-compact subsets of L? with the above
choice of {f} o1

Below for i=1,...,13, B; denotes a positive constant depending only on Q,
7, Cand B (1<j< z) By (1.2), there exists 0 < B; < 1 such that

2
o XESn_] :Q(X/)Z % > 0.
log =
<Og Bl)
If denote
(3.7) A={xeS": Q@) > 2G
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then A is a closed set by (1.4). We now claim that
(3.8)

. o C
if x'eA and y' e S"! satisfying |x' — y'| < By, then Q(y') > 12 .
log =
(Og Bl)
. C C
In fact, since |Q(x")—Q(y)| < 1 5 < 12 - and Q(x') >
1
( *l /|> <°g Bl)

% by x’ € A, we hence get Q(y’') > YARANE
(23 (o7)
Now let B, = Bi+ 1. Then |x— yj| ~|x— y| for x e (B,0;)" and ye€ Q;.
1
Note that Qe L*(S""!), by (3.3), (3.6) and Lemma 2.3 we obtain
(3:9)  1gal(b = bg)£)(x)]

2 1/2
*® t
- {L o ﬁ}
Q6= )| a\"”?
sj () — b, | () 2= 2 j dy
|x — ¥

j IX—y\Sft_3
b —bo.||f:
cc| Lo -tollf,
o) |x — ¥l

1/p’ » 1/p
C q1/p! 1 b A _P’d |fj(y>| d
< Clo) <—|Qj|jgj| () ~ o y> (Jgj—|x_y|np y

1/p’ —n
< CO;I"7 |x — | .

2

Q(x - y)
x — y"!

J e PO = b))

Since |x — y;| > Ba|y — yj| for x e (B,Q;)°N{x: (x— y;)' € A} and y € ©Q;, hence
by Lemma 2.1
1y — il
(x= ) = (x— )| < 20— < By.
! ¥ =yl

o2\
1 ——
<Og Bl)

{x:(x—y))' eA} and ye Q;, by (3.3), (3.4) and Hélder’s inequality, we have

Applying (3.8), we get Q((x—y)') > Thus, when xe (B,Q;)N
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(3-10)  [ga((b = bg,)fj)(x)|

12
C « (b(y) bQ/)fj( )X{\x—)|<z} dt
i} (i 2)V{Jo (JQ PR d)ﬁ}
e g

2 0) = b srizn di (7 di)
<l a4,

=] e — " P N ©
1-n dt
= Cle=yl | lx=""00) = b)) |, o5 b
0 [x—y| <t

> Clx— y™ jQ (b(y) — bg)fi(3) dy

J

— Clx— yjl’"Ile’”"J (b(y) — bo)lsgn(b(y) — b)) — co] dy

)

= Clx- yjl’”Ile’””J b(y) — bg | dv

9
> Q' x — yi| "

On the other hand, for x e (B,Q;)‘, by (3.3), (3.5), (3.6) and |x — y;| ~ |x — y|
when y e Q;, we have

(B-11) [(b(x) = bo,)ga(f)(x)|

— Ib(x) — b (jw

Q(x — y)
____i;fﬁLTX{My;<z}>vﬁ(J0 dy

Ix — yj

< b(x) ~ b (f

S 20 b ay
lx — ¥

Q(x
J\x <t ( |n )l ( )

[x—y; \>t|

J Q&—wx
R" |x _ y|n71 {lx=yl<t}

5 N\ 12
dt
B

J Q(x—y)
izt \ o= T

[x—yj| <t

o0

+16x) ~ bo | |
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L}wm ) dy

|x y\<f| |

s N\ 172
dt
2

+1b00 b | |

Qx—y)  Qlx—y)

12
dt
_ _.wljmm6§ &y
J X =i -yt

2= ) — Ry
o by i)
»)

(9ol [
12
#100 po | 150y >(J| ‘f;) &

9 il” |t

<1609 ~bo | 14

_1
"

+ |b(x) —

. )
< el bl | () dy
rj

+Vj1/2J ()l d

2
0; |X - yj|n+l/

|b(x) — bo)|

|x_y]| (10g| yj)
A/

In the above estimate we have used Lemma 2.2. Before proceeding further, let
us point out the following inequality:

1/p
J b(x) — bo|”dx| < C2/rs|gy .
25rp<|x—p;| <25+ '

For v > B,, using (3.11) and the above inequality we obtain

< clo|'”

1/p
(3.12) <J| | (b(X)—bQ,)gQ(ﬁ)(X)”dX>
x—yj|>vr;
1/p

b(x) — bg,|”
p(x) ~bol”

P
[x—yj|>vr; |X _ yj‘np <10g |X - y]|)
y r;

< Clo)'" j
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00 p
1p' [b(x) — bo)|
<cel” > [ = 0\
s=[logy v] | J2 ri<lx—yl<2; lx — | (log J )
-

J

<C Z Sl—yz—sn-&-sn/p

s=llog
< C(log v)' 7y rtnir,

Then for # > v > B,, using (3.10) and (3.12) we get

l/p
a1y ] b, gal f()I” dx
{vrj<|x—y;|<nr;}

>

1/p
(j  lgal(b —bg) /I dx)
{ri<lx—y;l<nr}n{x:(x—y;) e A}

1/p
_<J| | I(b(X)—bQ,)gQﬁ(X)I”dX>
x—yj|>vr;

1 1/p
(o< b=yl <npn{xe-yy) e A} 1¥ = Vil

_ C(log v)lfyv—n-&-n/p
> Byl (v P — )P gy (log v) Tyl

From (3.9) and the proof of (3.12), we have

1/p
(3.14) (J | Hb’ gQ]ﬁ(X)‘p dx)
X—Yj|>nr;
I/p
) <J| 3> 190((b = bg) i) (X)I” dX>

1/p
+ (J [(b(x) = bo,)ga () (x)|” dX>
[x=y;|>nr;

< Bsy "7 4 Bg(log ,7)1—7,77%"/1{

dx

1/p

By (313) and (314), there exist B, k:k(Q,p,y,C,B3,B4,BS,B6) > 1 and By

satisfying B, < By,
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1/p
(3.15) (J b, gal fil” dy) > By
Birj<|x—yj|<kBzr;
and
1/p
(3.16) (J |16, gal fil” dy) < By/4.
|x—y;|>kB7r;

Denote By = kB;. Let E < {x: Byr; < |x— y;| < Bgr;} be an arbitrary measur-
able set. Then by (3.9), (3.11) and the Minkowski inequality, we have

(3.17) (JEHb,gQ]fj(x)p dx)l/p

1/p

< (] e —perpr @)+ ([ 16 poJansicor )

1/p’ —n tp
sC@,P(Lu—w|Pm)

1/p

[b(x) — bo,|”

E|X | (log yj|>yp
Ty
|E|1/17 < 1 J >1/P
<Co——+|—| |b(x) =bol|’ dx )
{Q/|1/p o) El (x) = bg|

Let h;(x) = b(x) — bg,. Denote

dx

+a@W”j

(@) = {B7r; < |x — yj| < Bgrj : [hi(X)] > w}], 0 << o0.

By Lemma 2.4 there exist constants Bjy, Bj; and Bj,, such that for 0 < w < o

/lh,,(a) + BlO) = |{B7rj < |x —yj| < Bgrj : V’IJ(X)| > w+ BIO}| < Bll‘Ql‘|e—Blzw.

That is, A (w) < Bu|Qjle #2780 Let h(r) = inf{w: 4y (w) <1} (1>0).
Then we get

1 11\Qj|

(3.18) B(1) < - lo

+ Bjo 0, (0<[<B11|Qj|).

Notice that E < {x: Byr; < |x — y;| < Bgr;}, applying Lemma 2.5 and (3.18),
when |E| < By1|Q;|, we get
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(3.19) %J b(x) — bg|” dx <

1
2]

! JE< L 1o "
< =5 - 0g ——— +Blo) t
10i] o B Bll|Qj|

|E|/(B111Qs]) 1 P
0 B

m< BM@UM“
<C 1+ log —=
0] IE]

o]l o a

Combing (3.17) and (3.19), there exists constant Bj3 < min{Blll/",Bg}, such that

(3.20) U;wm]<wwywsmm

for every measurable set E satisfying

E < {x: By <|x—y| < Bsr;} and |E|/[Q)] < BY;.
Now we choose a subsequence {Qjy)} with their diameters {r;;} to satisfy
(3.21) itk 1)/ Tjtk) < Bis/ Bs.

Then for m > 0, we have

1/p
16,90 ) — -9l fcoml, < 16,901, >wvaAW@)
1/
< b, gl fi (x)]” dx) !

1/p
(. Hb7gnlﬁw+mﬂXﬁV’dx>
2
where
G = {x: By < [x =y | < Bsrjuo }\{x 1% = Yjgrm)| < BsFigerm b
and
Gy = {X : |X - yj(k+m)| > BS}’j(ker)}“

Denote G = {x: Byrju) < |x — yjw)| < Bstj}, then Gy =G —(G5NG). Thus
by (3.15), (3.16) we get
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”[b gQ}f [b gQ]f k+m)||

1/p
> (j b gl v~ | b gal o (07 dx)
G GiNG

2

: (J G: |6, @] fiwerm (¥)I” dx>l/p

1/p
z(Bs—ijbggl <>|”d) -3

2

By (3.21), we have

G50 Gl _ BsTiwm) _ g (BEY" _ g
Oul = g < Blg) <
J(k J(k) 8

Thus by (3.20), we get

[ i O = (2)"

So we get
B\"\"" By _ B
622 lbaalfio - booaldenl, > (85 (7)) -5 = 5

(3.22) shows that {[b,gq]fjx) }r~; does not have any convergence subsequence
in L?(R"). Therefore, [b,gq] is not compact operator in L?(R"). This con-
tradiction shows that » must satisfy the condition (i) of Lemma 2.6. Quite
similarly, we can prove that if b does not satisfy the conditions (ii) or (iii) of
Lemma 2.6, then [b,gq] is not a compact operator in L?(R").

In fact, if b does not satisfy (ii) of Lemma 2.6, then there exist a { >0
and a sequence of cubes {Q;}, with lim;_.,, r; = oo, where r; is the diameter of
Q; := Q;(y;), such that (3.1) holds. Thus, (3.15), (3.16) and (3.20) hold still for
the function sequence {f;} defined in (3.2). As done above, we may choose a
subsequence {Qj)} such that its diameter sequence {r;y)} satisfies (3.21). Then
for m > 0, we have

1/p
1,900 — b g0l s ||,,_(j b 96 f100 (5) — .9l fiom (x >|"dy)

G,

- <J 16, 90 fsm (N7 dx>l/p

- ([ msolioor dx)l/p
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where
G1 = {X: Birj(em) < X = Vjtherm)l < BsFjierm) Y\{X 1 X = Y| < Bsrjgn }»
and
Gy = {x:[x = yj| > Bsrj}-
Denote
G= {x : B7rj(k+m) < |X - yj(ker)l < BSrj(k+m)}7

then G; = G — (G5NG). Thus by (3.15) and (3.16), we get
(3.23)  |l[b, 9ol fix) — s 90l fierm |l

1/p
> (JG 116, 9ol fiem) (X) |7 dx — J 1B, gl fkm) (x)” dx)

GiNG

! (ch (6, 90l fiuo (x)1” dx)l/p

1/p
= (Bg - JG"HG |[b7 gQ]f_}(k+l71) (x)|p dx) - Z .

2

By (3.21), we have

G
= .n 8 n
Qjtkrm]| ™~ k) By

then by (3.20), we get

JG;HG 1B, 9@ fkmy (x) |7 dx < <T>p

So, by (3.23) we get

. o (B\\'" By B
(3.24)  |l[b,golfiw) — [b; 90) fikrmll, = (Bé - (f) ) —79 > 79

Thus {[b,ga]fix }i~, does not have any convergence subsequence in L”(R").

So, b should satisfy the condition (i) of Lemma 2.6.

Finally, if b does not satisfy the condition (iii) of Lemma 2.6, then there exist
a cube Q and a sequence {y;}, with lim;_,, y; = oo, such that (3.1) holds for
{Q0; =0+ y;}. Similarly, (3.15) and (3.16) hold for the function sequence {f;}
defined in (3.2). Denote E; = {x e R" : |[x — y;| < Bgr}, where r is the diameter

of O, and choose a subsequence {Ejy)} such that
EjgNEq =0, 1#k.

Then for m > 0, we have
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1/p
16961 fia0 — .90l fim , = (j b, g0l i () — [b, galfigeom (07 dy)

Gy

= ( |, 1esolscor dx)w

1/p
- (j b gl i sm ()1 dx)

where
G| = {X s Bir < |X - yj(k)| < Bgr}\{x : |x - yj(k+m)| < Bg}’},
and
Gy = {X: |X = Vjtkim)| > Bsr}.

If denote G = {x: Byr < |x — yju)| < Bgr}, then Gy = G. Thus by (3.15) and
(3.16) we get

(3.25) b, galfiw) — by 9ol fikrmll,

> (], 1e.sal s dx)l/p - (j (6.0l (91

1/p

By _ By
>By—— > —.
=74 T
Thus {[b,galfix }i-; does not have any convergence subsequence in L”(R")
by (3.25). So this contradiction show that b satisfies also the condition (iii) of
Lemma 2.6.

3.2. The proof of Theorem 2: b € VMO = [b,gq] is a compact operator
in L?

In the proof of this part, we need to use the following results.

THEOREM J (Frechet-Kolmogorov) ([36]). A subset G of LP(R") (1<
p < ), is strongly pre-compact if and only if G satisfies the conditions:

(3:26) sup 111, < o0
/eG
(3.27) ‘li‘mo 1£(¢+»)=fOIl, =0 uniformly in feG;
=

(3.28) /)!Ln;lo I/ xg,ll, =0, uniformly in f € G, where Eg={xeR":|x|> B}.

TueoreM K ([11]). If Qe HY(S"Y) satisfies (1.1) and (1.2), then pug is of
type (p,p) for 1 < p < oo, where H'(S""!) denotes the Hardy space on S"~!.
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Remark 3.1. We point out that on S”~!, for any ¢ > 1
LY(S" Y < Llog™ L(S"") < H'(S" 1),

and all inclusions are proper.

Let us return to the proof of Theorem 2. Suppose that b e VMO(R") <
BMO(R"), by Theorem D, the commutator [b,gg] is continuous in L?(R") for
1 < p < oo since (1.5) implies Q € L4(S"™"). Thus, it suffices to prove that for
any bounded set # in L”(R"), the set {[b,ga]f : f € F} is strongly pre-compact
in L?(R").

We first show that if the set {[b,ga|f : f € #} is strongly pre-compact in
L?(R") for be C*(R"), then the set {[b,galf : f€F} is also strongly pre-
compact in L?(R") for b € VMO(R"). In fact, suppose that b € VMO(R"), then
for any # > 0 there exists b7 € C°(R") such that ||b —b"||, <#. Since

b, galf (x) = b7, gal £ (x)]

2{s

Then by Theorem D,

(3.29) 11b; o] = 6" golll o o < M6 = 5" tta]ll . 10 < Cr.

Since F is a bounded set in L”(R"), there exists a constant D >0 such that
|/, < D for every f € #. If denote 4 = {[b",go]/ : /€ 7}, then (3.26)(3.28)
hold for % by our assumption and Theorem J. We need to show that (3.26)—
(3.28) hold also for the set ¥ = {[b,gq|f : f € #}. Forany f € #, by (3.26) and
(3.29) we get

J Qx—y) [(b—b")(x) = (b—b")Y(»)]f(») dy

eyl =t [x =y

sup [|[b,galf1l, < sup [|[6", ga] /1], + CnD < .
feF feF

On the other hand,

Jim) 116, 9l /(- + ) = 1b,90] F (), < Jim) 167, gal /(- + y) = ", 92l S (),

+2[[b = 5", 90l /1,
<2CnD —0 (n—0).

It is obvious to see that the limit above holds uniformly for 4. Similarly, we
have

Jim (|6, golfxgll, < Jim [[1B%, 90l 2, ll, + 16 = b7, 9l 11),

<CypD -0 (5—0).
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Once again, the limit above is uniformly for 4. Therefore, by Theorem J we
know @ is a strongly pre-compact set in L?(R").

Thus, to prove Theorem 2 it suffices to prove that ¥ = {[b,ga|f : f € F}
is strongly pre-compact in L”(R") for b e C*(R") and the bounded set # in
L?(R"). By Theorem J, we need only to verify (3.26)—(3.28) hold uniformly in
9.

|, <D. Notice that be C*(R") and applying
Theorem D, we have

(3.30) sup 16, 9al F1l, < C||b\|*f5_up I/, < C'D < 0.
fe7 feF

On the other hand, for any ¢ > 0 and ¢ > 1, there is an 4 > 0 such that

© g\

It is easy to see that (3.28) holds uniformly in ¢ if we can show that for
Qe LIS

1/p
(3.32) (Jl » 116, gal £ (x)|? dx) < CDe.

Now we verify (3.32) to divide two cases.
The case for 1 <q < p. Assume supp(h) = {y:|y| <t} for some 7 > 0.
Thus, for any x satisfying |x| > max{24,4r} and every f e %, we have

o0

=1 (b(x) = b(»))f () dy

n—1
—yl<e|x =y

J Q(x—y)

|[b; ol f (X)] = {

1/2
. WWUW){JHK,?} @

ly<t  |x

_of ety
|yl<z |x—y|

= 15 ay

1/q
1Q(x — y)| )
SC<J}|<r Ix— y|™ Lf ()] dy)
1/q
Q)|
SC(JM*M e Ve )lqdy> .

Applying the Minkowski inequality and (3.31), we get
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1/p 1/q
» 1Q(x)|
(Lbﬁwnyuncu> s(ﬂﬂ@@?xmm o dﬁ

0 dr 1/q
< C“f”p (L3/2)A an—l |Q(x’)|q dO’(x’)W dr)

< CDHQ”LL/(SrH)S < CDe.

The case for q> p. Taking 1<qy<p<gq, then Qe L®(S"") with
1€ Loo (sn-1) < Cl|Q Lg(sn-1)- By the conclusion of the above case, we can get

1/p
qu@mWw>swmmmwﬂmmmw&a»
X|[>

Finally, to finish the proof of Theorem 2, it remains to show (3.27) holds
uniformly in 4. We need to prove that for any ¢ > 0, if |z| is sufficiently small,
then for every f e Z,

(3.33) 116, 10l £ () = [by 1l (- + 2)l, < Ce.

To do this, we write

(3:34)  [[b,90]f (x) = [b; galf(x + 2)|
” Qx—)
= {JO Jx—y|<l|)€—yn1
3 J Qx+z—y)
\

xX+z—y|<t |X +z— y‘n71

= {J: [I(x, 1) 2%}1/2.

We take ¢ such that 0 <& <3%. Then for zeR”", decompose I(x,1) as

(b(x) = b(»))f () dy

(b(x+2) =b(y¥)f(y)dy

035 100 = e O (b2~ (S dy
[x—=y|<t, |x+z—p| =1 |X - y|
R ﬁf;:}wa>bu+nvuww

[x—y| >t |x4z—y| <t

[x—y[>e"/e 2],
x—y| <t |x+z—y| <t

<9u—y> Qw+z—w>

=y x etz
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X (b(x+z) —b(y))f(y) dy

Bl [T Q=) ny_)l (b(x) = b(x +2))f(») dy
e X7 Yl
N QL_ny_)l (b(x) = b(»))f(») dy
Jrese =yl
[x—y|<t
Q _
e 2 0) < b ) 1)
S |xtz—y| <t |x +z— y|

=J1(x, ) + Ja(x, 1) + J3(x, 1) + Ja(x, ) + Is(x, t) + Je(x, 1).

Note |b(x+z) —b(y)| < C and apply the Minkowski inequality, we have

330 {[ e ord)”

<C

2 1/2
*© Q(x — dt
e BT oy b)) dy] &
0 [x—y|>e/7|z, |x — y| t
Px—y| <t [x+z—y| 21
1/2
— — dt
—c Ib(x + 2) b(y)llfn(i)llﬁ(x »)| Jm« al\ -,
|x—y|>e /o] |x — M
1z|'?1Q(x — )]
EL PR 2 f ()] dy
\x—y\>el/€\z\ |x_y|l1+1/2 | ( )|

Then by the Minkowski inequality and Qe L!'(S""!), we get

(3.37) H{Jmul(x,z)ﬁ%}l/z

0

172 V4 1/p
z Q y
- C{JR" <J|y>e1/ezl|||y|"%sz)|f(x =)l dy) dx}

2121
<al,|  EoE
)4 \y\>el/”\z| |y|n+1/2
« dr
1/2 ’ /
<CUILHE", ), 0000

< CDe.
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Similar to the estimate of Ji(x, ), we can get

w 12 1210 B
39 {] o} <c| O ) ap,
0 t [x—y|>ele)zl x4z — y

Then by the Minkowski inequality and Q e L'(S""!), we get

(3.39) H{J: T2 (x, 1) 273[}1/2

1/2 P 1/p
z| 7 1Q(y
= C{JRn <J|}’>(e'/el)7 | ||y|r|1+152)| |f(x +z - y)| dy) dx}

1Q(y)]
s (eVe-nel ||

savmmmj

< CDe.

About J3. By the Minkowski inequality and |b(x +z) —b(y)| < C, we get

(3.40) {f s, z)|2%}1/2

{1l

x (b(x+z) = b(y))f(y) dy

(Q@—y) Qu+z—w>

=y fx etz -y

fx=yle !,
[x—y| <1, |x+z—p| <t

1/2
Qx—y) Qx+z—y) dt
< CJ . —1 n—1 |f(y)| J‘X*HSI‘ Z_3 dy
pr—yl>el/efz|| X = | [x+z -yl bzl <1
<CJ Qx—y)  Qx+z—y) | /W
R e B R PR e | E

Then by the Minkowski inequality and Lemma 2.7, we get

o0 dt 1/2
2
‘{Jo 3%.1) fs}
P
(L
R” \ J|x—y|>el/?|z]

(3.41)

Qx-y) Qx+z-y)
n—1 n—1
lx — |x 42z -y

0L Y )
[x = |




COMMUTATORS FOR LITTLEWOOD-PALEY OPERATORS 279

Q) Qy+2)|1
< i, | B
el 2" |1
o Q(y Qy+2z)| 1
< C||f||pZJ, 1 T 51
=5 Jarerrs<pyi<annierz || y| R
© |z| | 2R L ()
<C 5 P
||f||p ;{lel/eﬂ |z|/2K+1e1/e]z| 0
. 1 l2l/2Re Pz ()
<l f] J 5 (gl &
b; zkel/s L+k+1/e ) peey 0 |
Cle e +e)fll,
< CDe.

Before estimating Jy, let us recall the properties of the Hardy-Littlewood
maximal operator M, of order ¢ (1 <¢ < o). Suppose that f € Lio(R").
The maximal operator M, is defined by

M, f(x) = sup(Q|J e >|f'dy)l/q,

O>sx

where Q is a cube on R". Then the maximal operator M, is of type (p, p) for
1 < g < p(see[28]). We denote simply by M the maximal operator M; of order
1, the classical Hardy-Littlewood maximal operator M.

Let us return to the estimate of Js. Since b € C;°, we have |b(x) — b(x + z)|
< Clz|, then

(3.42) <r J4(x,z)|2‘g>l/2gC|z| r J‘X MWHQ( R )1 () dy [

0 0 < |x I3

1/2

= C|Z|ﬂ§27e‘/"\z|f(x)'
Let 5 = e'/*|z|, we claim that

(3.43) g, f1l, < Cllfl,  1<p <o,

where C is independent of # and f. In fact, denote by Q the cube center
at xeR" and diameter »/2. Moreover, set fi(y)=f,,(») and fo(y) =
f(y) = fi(y). Then
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X 1 X
oy () = @JQ ey f ()] dy

1
< —

0
| QJ l90>(3) — tig, ()] dy

< M(gaf)(x) +1(f)(x) + I(f)(x).

Since Q satisfies (1.5), by Remark 3.1 and applying Theorem K and the L”
boundedness of the Hardy-Littlewood maximal operator M, we get

1M (ga /), < CIA,-
By Theorem K again, we know for any 1 < g < oo,

j lgaf (7 >|dy+|Q|j g0 fi ()] dy

. . .
I(f)(x) < |Q|1/quQf1|| |Q‘1/q||j1||q_ CM(|f]9)(x) 1.
Taking 1 <g¢<p, we get [[I(f)], <Cl|fll,- Regarding II(f)(x). By the
Minkowski inequality, we have
1
101, 9920~ a1 0 a2
2 1/2
! ” Q(x—y) dr
10| - d
=] |JQ{L Lflx}’f;tu G ST A) dy z} ¢
2 1/2
! ” (é y) dt
10| - d
2 1/2
! “ Ql-y) Qkx-vy) dt
2 B AEA
+| |JQ{L nf;yl}Tiz<|f—J/|nl |x—y|"1>f2(y) Y t3} <

= H, (X) + Hz(x) + H3(.X).

Note that |£— y| ~

1

loJeo

4

Hi(x) < A

<

Nx — y)|

lx—y

|n71

{

n'2|f ()] 19(x

x—y| by &xeQ and ye (20), we get

p 12
! } dyde

3
J lx—y|<t<|é-—y T

0
Xl

< CMQf(x)

|x —

y|n+1/2
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Similarly, we have

12
1 L/ (D)~ y)] dt
Hy(x) < — e = dvd
2(%) 0| JQJ(ZQ)‘ & — y"! {L—y|<z<|x—y ’3} v

1 Pl )RE - »)|

= |Q| JQJ |£7y|n+1/2 dydé

= CLJ Mo f(&) dé < CM(Mqf)(x).
1010

By Lemma 2.8 and the L” boundedbess of the Hardy-Littlewood maximal
operator, we get

IH SN, < ClAN,  H2f, < CIA,-
Now we discuss Hi;. Denote B(y) = {x:|x| <#}, then we get

crlag-n a6y Ho)
H“)<|QJJ
e

|x—y|"71 |x — ¥l
)
| 1B(n)] y—xl>q|lx — &=y ! |x—y|"71 |x — |

Qx—¢—-y) Qx-y)
_ C Q-4 Q) |l/(x—y)
~ |B(n)| JBw) Jy|>n ly=&™ " et dyde

Then by the Minkowski inequality and Lemma 2.7, we get

1 Qy-9 Q|1
H||, <C - I
5, < nﬂuw() I8 O s e I

Q-9 Q)
ly=¢mt !

ek
( < +r ”@d5> dé
7 ej2ky O

261y
1

1+J @aﬁ) dé
0 O

dyd¢

dyd¢

1
|yl

= C||f1], ydé&

\B( Ry 1J2"‘;7<y|<2k17

1
71B(n)| |

0 Mg TMS

=Cl71,
)

=~

<7l

n
)

N

B
”IB( ) B
< CIIf1l,-

Thus, (3.43) follows from the above estimates. Then by (3.42) and (3.43), we
have

(3.44) H {J: Ja(x, 0)|? %}1/2

(n

< Clz||lf]l, = CDlz|.




282 YANPING CHEN AND YONG DING

About Js, since |b(x) — b(y)| < C|x — y|, by the Minkowski inequality, we get

1/2
<c| Mwu)—bmuﬂw{j "”} dy

3
le—y|<elelz] [x — Y| x—yl<t !

< CJ Lf(»)] |Q(:jl )l dy
—yl<eszl  |x =y

< Ce'?|z|Mqo f(x).
Then by Lemma 2.8, we get

o dn'?
Js(x, 0)|* =
{]; wsteop )
4

Similarly, using the estimate |b(x+z) —b(y)| < C|x+z— y|, we have
” dn'? Q -
0 4 yl<elzl X+ z— Y

Q _
<c| )R+,
|x4z—y| <e(/dll 4|z |X +z— y|

< Cle"?|z| + |z]) Mo f (x),

(3.45) < CDe'/?|z|.

and then we get
< CD(e'#|z| + |z]).

(3.40 H{r oo

From (3.34), (3.35), (3.37), (3.39), (3.41), (3.44), (3.45) and (3.46) then by taking
|z| sufficiently small depending on ¢, we can get

tim 6,90/ (x) = [b.gal/ (x+ ), =0 uniformly in f & 7.

Thus we complete the proof of Theorem 2.

4. The compactness of the commutator [b,S”]

4.1. The proof of Theorem 3: [h,S”] is a compact operator in
L? = be VMO
The idea of proving Theorem 3 is similar to proving Theorem 1, but it will
be more complex than done in §3.1. Since [b,S”] is a compact operator in
L?(R"), so [b,S”] is also bounded in L”(R"). By Theorem H, b € BMO and we
may assume ||b|/z,,0 = 1. By Lemma 2.6, to prove that b € VMO, it suffices to
show that b satisfies the conditions (i), (i) and (iii) in Lemma 2.6.
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If b does not satisfy (i) of Lemma 2.6. Then there exist a { >0 and a
sequence of cubes {Q;}”~; with lim; . r; =0, where ; is the diameter of Q; :=
0;(z;), such that (3.1) holds for every j. Now we state that {[b S?)fi}Z, is not a
strongly pre-compact set in L? for the function sequence { f; } deﬁned in (3.2).

In the proof below, the constants B; (1 < j<13) are same constants
appearing in the proof of Theorem 1. Moreover, for i=14,...,20, B; is a
positive constant depending only on Q, n, {, », p and By (1 <k <i).

For x e (B,Q;), we have
(4.1)  [[b,S"]fj(x)
5 1/2
dydt
tn+1+2p

(...
(]

2lx—zj|<|y—zj|<3|x—z]
5 1/2
dydt
(n+1+2p

(Lx J Px—yl<t, (y=2) €A

2z |<|y—51<3x—3]

> 1/2
dydt
tn+1+2p

IM@bm(L;J -

2|x—z|<| y—z|<3|x—z]

12
Q(y—2) dydt
X J T _\n—p ( ) m)

|y—z|<t |y — 2|
= Jl _J27

where A is defined by (3.7). For Ji, noting that if |z — z;| <7, then |x —z;| >

Bz —zj| and |y —z;| > 2Bs|z — zj|, by Lemma 2.1, we get

| BB 60 - e
|y—z|<t ly —z]

Y

J Q(y—z)

|y—z|<t |y - Z|n_p

X (b(x) = b(2)) fj(2) dz

\%

J Q(y —z)

|y—z|<t |y - Z|n7p

x (b(z) — b)) fi(2) d=

zZ — Z;
Ky—ﬂ“%y—aﬂs2+—4lst
]

C .
Then by (3.8) we get Q((y—z)') > ——— . Since

lo i;
gBl
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dx—z| >y —zl+lz—zl=ly—zl=|y—z| -]z -z

3|X—Zj|
2

>2x—zi|—|x—z]/2=

and

dx —zi| > |x—y[ = |y -zl = |x =z > |x -z,

by (3.3), (3.4), (3.6), and Holder’s inequality, we get

G

(42) JIZW fj e leren (jg(b@—bgﬂ

IOg Bil 2|x—zj|<| y—z|<3|x—z]
> |

. _ ydt
X i@y = 2" g y—z<n dZ) prasEs

Y

CJOO J v=yl<t, (y-3) €A J (b(z2) = bg,) fi(2)

4|x—z| 2|x—z|<| y—z|<3|x—z] 9
dydt
p—n
<y =2 < E iy
~1/2
” dydt
x 4x—z)| Ix—yl|<t,(y—z) €A gn+1+2p
|x—2z; 2lx—zj|<|y—z|<3|x—z]
2p—n
> Cle= 57" | () - bo)f(2)
9
dt
X (y—;j)'eA 4|X—Zj\<t, ‘X—y|<ltn+T2p dde

2|x—zj|<|y=z|<3lx—z] [y—zl<t

> Cle— 57" | 66) - bo)f(2)
dt

(y—z)' eA J4|Y—"<[ h+1+2p dde
2fx—zj|<|y—z|<Blx—z = 7

> Clx —z|™" JQ (b(z) = bg,) fi(z) dz

J

X

= Clx— z_;|*"|Q_/|*‘/f’j 1b(2) — bo,| d=

J

> ClO| M x — 27"
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By (3.3) and (3.5), we have

Q(y —2)
N\ o Kiy—l<n
R

.]2 = ‘b(x) - bQ/' J J [x—y|<t |y — Z|

=zl ez <l y-zl <35

2 1/2
Q(y—z) dydt
B I AR ren
o0
Qy —
SW@—%iJ J J,_( w}z
4)x—z| ) [x—y|<t i |y—z|<t |y*Z|
02—z <[ y=z|<3|x—z| | " [y—zl<t
2 1/2
Q(y —z) dydt
Tlyog e IO E

He—pol [ [

=3l alxg< y=z| <3~

5 12
Qy—2z2) . dydt
x J\y—z\<t ‘y — Z|"*/’ f/(z) dz 142
|y—zj|>1

SCER] o N -

=31l alx—g< =zl <3~

) 1/2

Q(y—z) dydt
X J|y—z\2t |y _ Zj|"*/7 -/(Z) dz H1+2p
[y—z|<t

=J I+

Actually, J? = J; =0 because < |y — z;| < 3|x — z;| and ¢ > 4|x — z;| in J, and
t<|y—z|<4|x—z| and t > 4|x — z;| in J;. So, we need only to estimate J,.
By the Minkowski inequality, Lemma 2.2 for |y — z;| > 2|z — z;|, (3.3) and (3.6)
we get
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@3) = clbtx) -l | 15| | [P
"o 2|x—z|<|y—z|<3|x—z]| Tl}x—z;j”jtt[l{yﬂ;;
12
1 1 dtdy
X 2n—p) 2 iii2p
1y =zl (log ly— Z_/I) !

Ty
1/p' —n |X - Z/l -
< CIQ;| "7 |b(x) — bg,| |x — z;| " log ~

J
By (4.1)-(4.3), we get

(/P 0 1/p’ b(x) — by,

@ay (sl o2 o 1T Zhel

|x — ] | _n( |XZ./|>

x—z]|"| log ———
Tj

On the other hand. Since 2¢>|y—z|+|x—y|=|x—z|, so t>1/2]x—z|
and |x—z| >2z—z], we get |x—z|>|x—z|—|z—z|>1/2]x—z]|, then
t>|x—z]/4. Note that n —p <n/2, then by the Minkowski inequality and
Qe L7(S" 1), we get

(4.5)  [S”((b = bg) fi)(x)|

1/2
@ 1 dydt
SCJ b(z) —bo | |fi(z JJ dz
1) = bal L )(0 e F

J

1/2
*© 1 dydt
<] 1) ~pall5G) (j | — t) d:

2
) gl dly—z< |y — 2%

< Cl=5" [ 1be) - bo (o) d:

j

1 1/p' 1/p
< Cl—3"IQ)|"” (@JQ/ ) o dz) (jQ el dz>

< Clof 7w — 5™,
Similar to the estimate of (4.5), we get

(4.6) |(b(x) = bg)S"(f))(x)| < Clx = 2| " |b(x) = bg)| JQ £i(2)] dz

J

< Clx — | "b(x) — bo,| |0} 7"
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From (4.5) and (4.6), we get
47) b, S /()] < LI |x — 27" + Clx =z "[b(x) — bg,| |0/]".

Then for # > v > B,, using (4.10) and (3.12), we get

1/p
(48) j b, S”1f ()| dx
{vri<|x—z;|<nr;}

1 1/p
{vrj<|x—z|<yr;} |x Z]|

1/p

[b(x) — bo,|”

[x—zj|>vr; |X _ Zj|np <10g |X - Zj|>
r

J

> 314C(V_np+” _ n—np+n>1/17 — Bys(log v)lf}'v—n—kn/p.

- Clol"” J _ dx

By (4.7), we have

1/p
@9 (j T dx>

1/p
< Clo'” <J x — 2™ dX>
|x—z;| =nr;

1/p
+ o' <J ‘ |x — ;| (b(x) — bg,) dx>
X—zj| =2 nr;
< Bl677_n+”/p-

By (4.8) and (4.9), there exist Bj7, Big and Bjg satisfying B, < Bj7 < Bjg and

1/p
(4.10) (j b, 57151 dy) > By
Bi71i<|x—yj|<Bisr;
and
1/p
(4.11) (j b, 57)£1" dy) < Bio/4.
|x—y;|>Busr;

Let E < {x: By7r; < |x — ;| < Bigr;} be an arbitrary measurable set. Then by
(4.7) and the Minkowski inequality
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1/p

@i ([ 1m0 i)

/ g\ [ b —bg "\
< Clg"” (LIx— il dx) +Clo)|'” (L|7Q/ dx)

x—yl"
|E|1/” (1 J )1/1'
<C +(—| |6(x)—=bo|? dx )
{|Qj|1/” o], Pel

Apply the same method estimating (3.20), we may get

(| .m0 @) " < 3osa

for every measurable set E satisfying
Ec{x:Biyrj <|x—y| <Bugr;} and [E[/|Qj < By.

By the above estimate and using same idea in the proof of Theorem 1, we may
show [b, S”] is not a compact operator in L?(R"). This contradiction shows that
b satisfies the condition (i) of Lemma 2.6. Similar proof states also b should
satisfy the conditions (ii) and (iii) in Lemma 2.6. Thus, b€ VMO(R"). Here
we omit the details of the last part proof.

4.2. The proof of Theorem 4: b€ VMO = [b,S”] is a compact operator
in L?
We first recall the L?(R") (1 < p < o0) boundedness of S” and g;”, which
will be used in the proofs of Theorem 4 and 6.

Tueorem L ([16)). Suppose that Qe L*(S"') satisfying (1.1), (1.2) and
(1.6). Then foe p >n/2 and 7.>2, S? and g, are both bounded in L?(R") for
1 <p< oo

Let us now return to the proof of Theorem 4. Suppose that b€ VMO(R").
Then by Theorem G, it suffices to prove that for any bounded set # in L?(R"),
4G ={[b,S”)f: feF} is strongly pre-compact in L?(R"). As done in proving
Theorem 2, it is reduced to to verify (3.26)—(3.28) hold uniformly in ¢ for
be Cyf(R").

Denote D = sup,. #|f]|,, then Theorem G tells us that (3.26) holds for 4.
We first discuss (3.28). Assume supp(bh) = {z:|z| < r} for some r > 0. Thus,
for any x satisfying |x| > max{24,4r}, where the constant 4 is fixed in (3.31),

and every f € F,
(4.13) [[b,S”]f(x)]
) 1/2
dydt
tn+1+2p

-([1...

(b(x) = b(2))f(2) dz

J Q(y—2)
|

y—z|<t |y - Z|n—p
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JOC
0 ny|<t

= U.

) 1/2
dydt
l"+] +2p

Q(y —z)
<ty — 2"

>b(2)f(z) dz

For U, since 2(n —p) <mand 1/2|x| < |x] — |z| < |[x —z| < |[x = y| + |y — 2| < 2¢.
By the Minkowski inequality and Q e L>(S""!), we have

12
2
— z)\ dydt
U < CJZ|<) | ‘f (J J} 7|<t | n /7) [”+1+2/’ dZ

[x }\<t
12
cof wava([[ [ o2t sa)”,
= f<r N h\<t|y—Z| (n—p) tn+1+2p
SCM"JIMMU&N&
z|<r
1/p'
SCM"O'|mmP@> 111,
z|<r
< CDI|x|™"

Applying (3.31), we have

1/p /p
(4.14) (J |[b, SP1f (x)]? dx) <CD (J x|~ dx> < CDe.
|x|>24 |x|>24

(4.14) shows that (3.28) holds uniformly in 4. Finally, to finish the proof of
Theorem 4, it remains to show (3.27) holds uniformly in 4. We need to prove
that for any ¢ > 0, if |z| is sufficiently small, then for every f e

(4.15) 116, SP17 () = 16, S”1f (- + 2), < Ce.

To do this, for any v e R", by the Minkowski’s inequality, we have

(416) |[b, 571/ (x) = [b,S")f (x +v)
2 1/2
~([ QU=2) o | e
- (JO JX}’|<I Jyz|<ty2|np (b(x) b( ))f( )d tn+2/}+l)

0
JO Jx+v—y|<t

X (b(x +v) = b(2))f(2) dz

J Q(y —z)

|y—z|<t |y - Z|n7p

2 1/2
dydt
(nt2p+1
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: Q=2 o s e
) (JO JY—Y|<I JI} 4\<t|y_z| (b( ) = bE)f(z) d
2
(y+v—2) dyd
JijLUth y+v |n P (b(X+U) —b(Z))f(Z) dz m

/2
© dydt
- 2_4yar
= (L nyq [1(x,0, ,1)| t"+2/’+1>

For any 0 <¢ <1 and veR", write I(x,v,y,1) as
(4.17)  I(x,v,p,1)

i (b 0) = NS b

|y—z|<t, | y+v—z| =1t
Qy+v—12)
lx—z>2'%p] |y 4 — |77

“y—z|= 1| y+v—z|<t
N Qy—z) Q+v—2
[x—z|>21/2 ], |y_Z|n7p |y—|—U—Z|n7p

|y—z|<t, | y+v—z|<t

x (b(x+v) —b(2))f(z) dz

+ (b(2) = b(x +v))f(2) dz

[ T (b0 — x4 0) ()
g
[z Do ()~ B 2)
| y—z|<t
+ [x—z| <212y, %(b(z) —b(x+0))f(z) dz

| y+o—z|<t

6
= ZJ[(X,U, Vs l)
i=1

First, we give the estimate for J;. By |b(x +v) — b(z)| < C and the Minkowski

inequality, we have

’ e "
) dy
{JO ny|<l|J1(x’U’y’ t)| l”+2p+1}

12
- Q0 = 2)I* _dydr
= ijz>21/cv {JO J [x—yl<t |y — z|2”_2p 2o+l /(z)] dz

[y=z|<t,|y+v—z| =1
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1/2

2
< [ Q-2 da |
- ) z z 2n—2, n
s o Dz s e

1/2

o0 2

© |Q(y —2)|” dydt

+ CJ J J |f(2)| dz

2>(1/3)] 202 2+
e—zf>20efef | Jo S IJ;‘<£\‘<}r \yli( /v\>i Uy =z e

=J! +J}.
For J|. Since |y —z| < 1|x—z| and

2
=zl =lyto—z=1>x =yl =|x—z| =y -z = F|x ],

so |v| = |x—z|/3. However, |x—z|>2"¢v| >8Jv|]. Hence J! =0. For J7.
Since

1 1/e
=2 > 3l =zl > ol > 2,
then by Qe L?(S"!), we get
i J IQ(J’—Z)|2J “ 1/2|f(z)dz
1= T 2 | lvesler. T2pinil
peeef>2fel | Jly—zi>3)at [y — 2|72 ) LAse e
|v|1/2
< CJ ————|f(2)| d=.
‘V*"‘>21/5‘v‘ |X7Z|n+l/2| ( )|
Using the Minkowski inequality again, we get
< dyd "
2 ay
(418) {JO Jlxy<[ |J1(X,U»y,l)‘ l"+2p+1}
)4
| |1/2 r 1/p
SC{Jn(hvﬂslﬂ”“ﬂf( )“@>lh}
|v|l/2
S
|| ||17 |y|>21/“‘b‘||y|n+1/2
—1/e
< 271,
< CDe.

Similarly, we can get
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dvd 1/2
. 2 dyat
(419) {JO nyl<t ‘Jz(x, v, ), l)| m} < CDe.

P
Now let us consider J;. By the Minkowski inequality and |b(x + v) — b(z)| < C,

we have
« dtd 1z
'y
J3 X,0, ), t 2 T
{JO ny|<t ‘ ( )l 2ot

[o¢]
lx—z[>2[o| | Jo eyl<t

|y—z|<t, | y+v—z|<t

Q(y —2)
|y — 2"

1/2
Q(y+v—2z)|* didy
- ly+0v— Z|H—P (r2p+1 |/ (2)] dz
e - Q(y - 2)
=)o o Jicsiyasn [Ty =2

|y—z|<t, | y+v—z|<t

1/2
Q(y+v—1z) 2 dtdy
- ly+v— z|"*p n2p+1 |f(2)] dz
+C ‘” Qy—2)
[x—z|>2V¢|v| 0 [x—y|<t,|y—z|>8|v| |y _ Z‘n—p

|y—z|<t, | y+v—z|<t

1/2
Q(y+v—2z) |* didy
- |y +v— Z|”—P tnt+2p+1 |f(Z)| dz
= J31 + J32.

For Ji, since 2n—2p<n, 2t>|x—y|+|y—z|>|x—z|, and |y+v—1z| <
|y —z|+v <9v]. Thus by Qe L*(S"!), we get

o0
I < CJ J J\ /<8
lx—z|>2Vels | J1/2x—z J IPTES O

| y+v—z|<9|v]
5 ) 1/2
|y _ Z|2n—2p |y +p— Z|2n—2p tn+2/7+l
S C|U|/)7n/2J |f(Z) |2 dZ
Je—z[>21/e]e] [X — z|"/ P
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Let us turn to J7. Note that > |z — x|/2. Since |y —z| > 8v| and 2p — n > 0,
by Lemma 2.2 in [13] we get

4420 B 4420
R )
(4.20) J c dt < C Z f
|

12p—n+1 - |y _ Z|2p7n or

0 < min{l, (2 —2)n,2p —n,0 — 2}.

y—z|

By (4.20) and using Lemma 2.7, we have
1/ (2)]

421) Ji<C
@20 p—2l>21/e w100 12— ¥
|z — x|"( log

|v]
y J Qy-z Qu+y-2)|
—zpsspl 1y =27 oy =27

12

¢ 4420
o (log > dt
AN C VA dy | dz

|y—z|<t 12p—n+1

2 <lo g2 o
|v]

Iy — 2| 4420 1/2
log —
Qy-z) Qu+y-2) ( o )
x n—p n—=p 2p—n y dz
ly—z>8lel 1|V — 2 lv+y—z| |y —z|
|/ (2)l
<C 2+0
Jx—z[>21/¢[o] . <log |z — XI)
||
" wJ Q(y—z)_Q(v+y—z)2
3 20| < |y—z|<2it || ly—=z2"" Jo+y—z"7

J

1/2

2p—n y
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2+0
log 2]
|/ (2)] . 0]
< CJ 2 Z
. . +0 i —n/2
|x—z|>21/¢v| |Z _ x|n <10g |Z X|) j=3 (2J‘U|)p '
1/2
Q(y— 9 —2)
(v Z) 0ty ,i)p dy dz
zf| I<ly—ai<zmpllly =217 o+ y —1]

CJ |f Z 2+H ]‘U|)n/27(n7p)
2 IZ—XI 0 2’I | )"~ 7
—x|"| log —— m

jol/27}o
x |L|+J @00) 45\ 4.
j|v| [v] /271 o] 0

Combining with the estimates of J) and J7, and note that p —n/2 < 0, apply the
Minkowski inequality we get

1/
© dtd
(4.22) [
0 Jx—yl<t t
P
P 1/p
|f(x— )
<C dx
J“ J|y>zl/ﬂ| ( )2“’ »
Iv\

J f(x =)

n/24p y
is2vepel |y

+ Clo|~? J
R)’l

1

<Cllf1, J —
/e|p
|y>2! Nt <10g |y||>

dy

1
+ |v ”7”/2J ——dy
| | ‘y|>2]/”‘vl |y|}’l/2+p
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S
<C J b o
||f||,,< 210 r(log )0
< CDe.

Now we give the estimate of Jj.

1/2
” dydt
2 ay
(JO J|Xy<t |J4(X7 v, yvl)| tn+2/}+1>
< |b(x) = b(x + >{j J
0 Jlx—yl|<t

= [b(x) — b+ 0)[ Sy S ().
We claim that

12

2
dydt
ht2p+l1

Q(y—2)
J\x 4|>21/f o], |y |” p ( )

—z|<t

(423) S0, /() < MGG () + (M1 + M), 1<q< o,

where C is independent of v and e. In fact, let Q denote the cube center at x
and diameter r = 21/%v|/8. Moreover, fi(x) = Jro(x) and fo(x) = f(x) = fi(x).
Then

S§1/5|u\f( ) |Q|J | e U‘f(x)| dé
1 -
\QIJ IS°2(6) = Sgl/e\v|f(x)| de

M(SPf)(x) + 1(f)(x) + I(f) ().

By Theorem L, we know

1(f)(x) < 1S°Ailly < 1fill, < (1) () 1.

IQ\”" |Q|”"

Finally, let us give the estimate of II. Let & e Q, by the Minkowski inequality,
we have

(424)  [S(E) — S0y ()

AL

J Qé-x+y-12)

12
dydt
- L
|E—x+y—z|<t |é X+y— Z|n pfz( ) n2p+1 }
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1/2
” Q(y —z2) dydt
- T )2 —
{J le —yl<t J|y h\<,|y*Z| ’ ( ) 1 H2p+1
2 1/2
’ Q dydt
U Sl e e )
0 Jx—yl<t |§V*X+yfz\'>z y—
2
0
Qé—x+y—12) dydt
* {J() Jlxy<t J‘f |Y+J77“‘<t |f - xX+y— |" pf2< ) (H2p+l
y

o0 0
b k]
0 0 Jjx—yl<t E=x4y—

2 1/2
dydt
X ﬁ(Z) dz m }

=G+ Gy + Gs.

1/2

J\%Q (Q@z) Q@x+yw)

ly—z"" |E—x+y—z""

Similar to the proof of J! and J?, we get

},1/2 0
ng(z) dZ < Crl/2

J WOl 4y < eny ().
3 J2kr10\2kQ ‘x —z

G < CJ |n+1/2

R" |x — Z|
Similarly, G» < CMf(x). For G; we have

»(z z
G3 < Cr/]*i’l/zJ ) |f2(n)/‘2+/) dz + CJ ) |.f2( >| o dz
R x— 7] AR
& r

e,

|n/2+/7

o0
< Crr 2 J
=3 2k+IQ\2kQ |x —Z

< |/ ()]
| o s
k+1 k —
k=3 J2K10\2 Q|X—Z|n( ‘Z X|)
r

< CMf(x) + kaj |/ (z)ln &

2k+1Q\2kQ |X — Z|
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By the the estimates of Gj, G, and Gj above, we get [T < CMf(x). Summing
up I, II, we get (4.23). Now we may give the estimate of J;. Since b e Cf°, we
have |b(x) — b(x+v)| < Clv|. Then apply (4.23) for 1 < ¢ < p, Theorem L and
the L? (p > 1) boundedness of M and M,, we get

@ avdr \'"”
) 2 Ay -
(4.2 (L J. e ol [—1> < Clol 1], < €Dl
P
About Js, since |b(x) —b(z)| < Clx—z|, > = Z', 2n—2p<n and Qe

L?(S"™ 1), by the Minkowski inequality, we get

1/2
. dydt
2 a4y
(L J|xy<t [5(x, 0, , 1) m)

1/2
. Q(y —2)° dydt .
CJ J J 2n—2p tn+2p+1 ‘X - Z| |f(Z)| dz
|x—z| <2Vejy| 0 Jx—yl<t,|y—z|<t |y — Z| t

IA

1/2
0 Q(y—2)* dydt
< [0 ] Bl kdlre)l e
ezl <2l | St /2=y dyziar [y — 2|2 20020t
1/2
*® dt
< - x—z||f(2)| dz
HQIM{J(UW,M} =2/
3 761
l—z| <21e[o] |x — z|"
Then we get
- dydr \"?
(4.26) J J s(x, v,y 1) 20 < D27y,
0 Jjx—yl<t mrep

P

Similar to the estimate of Js, using the estimate |b(x +v) — b(z)| < Clx+v — 2],
and 2t > [x — y|+ |y +0v—z| > |x+v—z| we have

12
. dydt
[ wtnnp &) cef VO,
0 <t o e—z| <2Vl | X + 0 — 2|

Then we get

1/2
. dydt

2 4y 1/
(427) (JO J\Ixy<l |J6()C7 v, ), t)| m) < CD(2 6|l)| + |l7|)

p
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In (4.16)—(4.19), (4.22), (4.25)—(4.27), taking |v| sufficiently small depending on &,
we can get

‘I}mo 1, S”1f(x) — [b,S”1f(x+v)||,=0 uniformly in feZ.

Thus we complete the proof of Theorem 4.

5. The compactness of commutator [b,g;"]

5.1. The proof of Theorem 5: [b,g;”] is a compact operator in
L? = be VMO

By Theorem H, [b,g;"] is a compact operator implies » € BMO(R"). We
need to verify b to satisfy the conditions (i), (ii) and (iii) in Lemma 2.6. Suppose
that ||b||zy0 =1 and b does not satisty (i) of Lemma 2.6. Then there exist a
{ >0 and a sequence of cubes {Q;}",, where Q; = Q;(z;,1;), such that lim; . ;
=0 and (3.1) holds for every j. As done above, we will show {[b,g;”]f;}"; is
not a compact set in L”(R") with the sequence {f;} }11 defined in (3.2). With
some estimates given above, we give the main idea of the proof here.

Note that [b, S”]f;(x) < 2*[b,g;”]f;(x), hence for x e (B,Q;)¢ where B, =
3By +1, by (4.4), we get

o 1 1017 [b(x) = bg|
51 bl el el e 19 ol .
|x =z n |x — zj]
|x — z;|" | log ——=
r-
J
On the other hand, for x € (B,Q;)¢, we have
(5.2) g;"((b—bg) fi)(x)
(N =
a 0 Jjx—y|<t t+|x -yl 1 |y—z\gt|y_zlnip
) 12
dydt
x (b(z) — bg,) fj(z) dz pres )
0 n
[ e B O =
t ) | (P
0 Jx—y|=¢ t+|x—yl 12 \yfz\§t|y_z‘

x (b(z) - bg))fi(2) d=

2 1/2
dydt
tn+1

= K; + K>.
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An
Since (ﬁ) <1, then K; < S8”((b—bg,)f;)(x), and by (4.5), we get

(5.3) K, < ClQ)|"7 |x — 2™

Since Q e L*(S"!), the Minkowsky inequality yields

so = ([ (i)

2 1/2
dydt
tn+1

IJ Q(y —2)

g |y—z|<t |y - Z|n—p

x (b(z) = bg,) fi(z) dz

= bg|1£(2)]

1/2
oo ( t )An 1 dydt / .
Z
0 Jjy—z|<t,|x—y|>1 t+|x—y\ |y—Z| (n—p) tn+1+2/}

scl, b
(
[ ~ bl (3]
(

1/2
f’J ( t )) 1 dydt .
[y=z<t,|x—y|=t \ t + |x — _ |2(n=p) gn+1+2p

DS\ =y = P?

[b(2) = bo,| | i(2)]

J

1/2
. t S | dydt
x ly—=z<t, |x—yl =1 2(n—p) pn+1+2 dz
o JpEsnle=iNe + |x — y|) |y — 2P0 1 ’

ly=21<(1/2)]x—=]

=K, + K3

For K. Since |x —z;| > 2z —z|, we get [x—z| > [x — z| — |z — z;| > }[x — 7).
Thus

1 1
l>|y—Z|>§|X—Z‘>Z‘X—Z]‘|.

n
t
Note that | ——— ) < 1, we get
1+ [x—yl



300 YANPING CHEN AND YONG DING

(5:5) K< | 166)-bol 5

J

1/2
e 1 d
X J J yldt2 dz
(gl J  melst |y g 20 gt

[y=21=(1/4)|]x=z]

1/2
B © dt
< Clx - z| +ﬂJQ |b(z)—ij||ﬁ(Z)|<J ‘ tmp) dz

) (1/4)x—z

1 / 1/p’ 1/p
< Clx—z|” |Q/|l/p <|Q/|J |b(z) — ij|p dZ) (JQ, |fi(2)|” dz)

< ClOj|"P x — 2|

Let us turn to Kj. Since |y —z| <3|z —x|, we get

1
=yl ==zl = ly—z >~z and

3
t<lx =yl <lx—zl+]y -z <zlx -z
But !|x —z| < |x—z| < 3|x — z|, then
9 1 3
<zl =zl ly=yl=glx—zl and [y-zf<glx—z]

Then we get

, O/4)x—3] 0
56 K= | b -ballfON [ |y

) byl = (1/4)]x-2| Yl

1/2
1 dydt

|y _ Z‘ (n—p) nt1+2p

< Clx— z,-r"*f’/zj 1b(z) — b | L5(2)]

J

J<9/4>xz,-| J | davdr " )
X yA
0 |y—zl<( =z |y — 2|02 102

1 / 1/p’ 1/p
< Clx -z """ (IQ,IJ 1b(2) — b, |? dz) (jgmwpdz)

1/p’ -
< ClO|I"" |x — z| ™,

dz
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where 6 is defined in (4.20). By (5.3), (5.4), (5.5) and (5.6), we get

(5.7) 1957 (b = bo) ) ()| < CIQ}| "' |x — 2| "
Since
(5.8) |b(x) = bo/lg; " (fj)(x)
0 t n
= |b(X) - bQ[l (JO ny|<t([+ |X - y|)
1/2
1 Qy—2) dydt
L R o] 24)

+16(x) b (J@ [ )

1/2
dydt
ln+l

IJ Q(y—z)

= Ji(2) dz
|y— z|<t|y |p

=F + F.
¢ n
Since (m> <1, then Fy < |b(x) —bg|S”(f;)(x), and by (4.6), we get
(59) Fi < 1" b(x) = bg | Ix =z
Similar to the estimate of K>,
(5.10)  F> < Clx — z|"[b(x) — bg)| JQ 1£i(2)] dz < Clx — 2] ™"|b(x) — bg | |07

By (5.8), (5.9) and (5.10), we have

(5.11) |(b(x) = bo)g;"fi(x)| < Clx = 2 "|b(x) — bg | |},
By (5.7) and (5.11), we get

(5.12) |1, g3 1(x)] < ClQj "7 |x — 2| ™" + Clx — 2| "|b(x) — bg | 10)] 7"
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Thus, by the estimates of (5.1) and (5.12) and using the method of proving
Theorem 4, we can show {[b,g;”]f;};Z, is not a compact set in L”(R") with
{ ﬁ};’il chosen in (3.2). So, b must satisfy Lemma 2.6 (i). Similarly, we can
state that b satisfies also (ii) and (iii) of Lemma 2.6. Hence b € VMO(R").

5.2. The proof of Theorem 6: b € VMO = [b,g;"] is a compact operator
in L?
Suppose that b € VMO(R"), then by Theorem G, the commutator [b, g;”] is
bounded on L”(R"). We need to prove that for any bounded set # in L?(R"),
G ={[b,g;"|f : f€F} is strongly pre-compact in L”(R"). Notice that

(5:13)  [1b,g3"1f (x) = 6", 371/ ()
(G

x [(b(x) = b°(x)) = (b(2) = b*(2))].f (2) dz

J Q(y —z)

|y—z|<t |y - Z‘n7/}

2 1/2
dydt
(nt+1+2p :
Thus, if b*e C;° such that ||b —b?||, <e, then

(5.14) 1169571 = 16%.9; " Wer oo < b= b, ;"]

oy < Cé

by Theorem G. Hence, to prove Theorem 6 it suffices to state that ¥ is strongly
pre-compact in L?(R") for b e C;°. By Theorem I in §3.2, we need only to verify
(3.26)—(3.28) hold uniformly in G.

Denote sup; #||f]l, = D, then (3.26) can be obtained from Theorem G.
We now discuss (3.28).  Assume supp(b) = {z : |z| < r} for some r > 0, for any x
satisfying |x| > max{24,4r} and every f € %, where the constant A4 is fixed by
(3.31), we have

=it Ty =27

wavon =[], (=)

0 ¢ An
B JO Jx—y|<t (t + |x - y|)

" J Q(y —2)

st Ty — 277
}\:\;l‘ |y Z|

) 1/2

dydt

et bas () |

5 1/2
dydt
b/ (C) dz| - +y1+2p
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0 ¢ n
AL )
0 Jjx—y|>t t+|x—y|

XJ Q(y —z)

|y—z|<t _ S|P
Loy =<l

2 1/2
dydt
b(Z)f(Z) dZ m

=P+ P>

: t O\ : :
Since (——— | <1, then P, < U, where U is defined in (4.13). We
14 |x =yl

therefore get
(5.15) Py < CIx|™"||f1l, < CDIx|™".

On the other hand, then by the Minkowski inequality, we get

(5.16) mscj BE) /()

|z|<r

. n 2 1/2
" J J ( t ) |Q(y —2)|” dydt g
0 J|y—z|<t, |x—y| >t I+ |X— yl |y72‘2<n7p) nl+2p

scj b)) 1/ ()
|z|<r

, , 1/2
t ) |Q(y —2)|” dydt i

[y—z|<t,|x—y| >t <z—|— X — _ | 2n=p) pnt142p
0 |y—z|=(1/2)|x—z] ‘ y| |y Z|

o0

+C| OIS G)

|z|<r
X ) 1/2
r B AN
Jo [y=z|<t|x=y|=t \ f + |X — y| |y _ Z|2(n7/)) t1+2p
[y=zI<(1/2)]x—2|
=Py +P;

For P}. Since |x| > 2|z|, we get |x —z| > |x| — |z] > 1/2]x]. Thus ¢ > |y —z| >
irn

Ix—z| >1]x]. Note that ( <1, and Qe L?>(S""), we have

=
1+ |x =yl
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1/2
~ Q(y—2)° dvd
(5.17) P;gj |b(z)||f(z)|<J J o Q0 |2<n)|,,> tnﬁfm) dz

|z|<r (1/4)|x| ly—z|= (1/4)]x] ly -z

o0

1/2
dt
SCx‘”'*‘pJ b(z z J J Qy—z2dy— pa
R e >|< I L

12
. dt
ng7"+/'J. b(z z J — dz
BN eI >|< o ,)

1/p’
sC|x|"<j b dz) 171,
zi<r

< CD|x|™.

Let us turn to P3. Since |y —z| <1|z — x|, we get
\x—y|2|x—z|—|y—z\>%\x—z| and
t§|x—y|slx—z|+|y—z|<§|x—z\.

By 1lx| < |x—z| < 3|x|, then

t<ﬂ|x|, |x—y|21|x| and |y—z\<§|x\.
9 4 4
Then by Qe L?(S" 1), we get

(5.18) Pr< | @IS

|z|<r

12
) J<9/4>x J P Q=) dvd |
0 |y7:|L<,(;‘/§><‘?/‘J)J‘};‘Z‘<[ |X _ y|2n+(9 |y . Z‘Z(nf/)) frH142p

< qxr"*wj 1b()] 1£(2)]

|z|<r

1/2
/4 o0 -2 dar\”
X (n—0/2) [1-02 z
0 ly—z<G/4)x |y — 2|

< CDI|x|™".

where 6 is defined in (4.20). From (5.15)—(5.18) and applying (3.31), we obtain
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1/p
(5.19) (J . \[b,g}i"*’]f(xﬂ” dx) < CDs.

(5.19) shows that (3.28) holds uniformly in 4. Finally, let us to show (3.27)
holds uniformly in 4. We need to prove that for any ¢ > 0, if |z| is sufficiently
small, then for every f e %,

11,9371/ () = b, g3 "1/ (- + 2)]l,, < Ce.
To do this, for any v € R”, by the Minkowski’s inequality, we have

(5.20) [[b,g;"1f(x) = [b,g;"1f (x +v)]

o Jre\r+[|x =y
) 1/2
dydt
tn+2/)+1
_ J“ J <;) J Q(y - )
o Jre\t+|x+v—y|

.. _[n—p
|y—z|<t ‘y - Z| g
) 1/2
dydt
th+2p+1

| ST e - b6

n=p
|y—zl<t |y —z|
2 1/2
dydt
(n+2p+1

J Q(y —z)

|y—z|<t |y - Z|n7/)

x (b(x) = b(2))f () dz

X (b(x+v) —b(2))f(z) dz

([ =

B J | QU H0=2) (x4 0) = b)) f() d-

YHv—z|<t ly+o—z2""

\ 12
0 1 n 5 dydt
= _ 1 N ————
(Jo JR” <’+ |x — J’|> x5, 0) gt
12
"”‘ t n dydt
< J J (7) [1(x, 0, y, z)|2%
0 Jlx—yl<t I+ |X - y| ey

) t in , dydt 1/2
+ P I x7 U7 7l
JO J|x—y>t <[ + |X - y|> | ( Y )| th+2p+1

=114+ T5.
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where I(x,v,y,t) is defined in (4.16). Since (;> <1, then
1+ |x =yl

1/2
© dydt
2 Ay
Ty < (J J [(x,v, ,1)| m) :
0 Jix—yl<t

From (4.17) to (4.26), we know that

12
* dydt
2y Amly= (| ] et ) | < cos
0 Jix—yl<t rer

p

Now we estimate 7>. Decompose I(x,v, y,t) as I(x,v, y,t) := Zle Ji(x,v, p,1),
where J;, i=1,...,6 is defined in (4.17). Thus

6 o in 1/2
t 5 dydt
5.22 1>, < E | |J; N ——
( ) || 2”]7 - {J nyZI(Z‘F |X—y|> ‘ ](X7U7 V, >| ln+2/,+1

j=1 0
P

6 .
=>_ 171,
=1

Below we give the estimates of 7§ for 1 <j<6. Since |b(x+v)—b(z)] < C
and the Minkowski inequality, we have

o0 t n
(5.23) ﬁscj JJ <>
lx—z>21)0] | Jo =1 1+ [x =y

|y—z|<t,|y+v—z| >t

1/2

Q(y —2)|* dydt
X ly — Z|2"*2/) f+2p+1 |/ (2)| dz

o0 ¢ n
<C - -
p—zfs21efel | Jo JETHIEE RS2 4 |x — |

|y—z|<t, | y+v—z| =1t

12
[y —2)” _dydt
x |y _ Z|2n—2/) (t2p+1 ‘f(2)| dz
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0 f n
+C _—
Jlx—z|>21/"v| Jo J'X‘J"zfv'y‘z‘”‘”' (l + |x = yl)

|y—z|<t,| y+v—z|>1

12
Q(y —2)|” _dydr
x |y N Z|2;172/) (n+2p+1 |f(2)| dz
= 01 + O,.

For O;. Since |y —z|] < 2Jv|, then
t<|y—z+v<|y—z|+o) <3- 27V x — 2| < |x — 2],

\x—z|’ then by Qe L*(S"!), we get

and [x—y|>|x—z|—|y—z| >

(524) O < j £(2)

[x—z|>21/z 0|
12

[ o Q-2 dydr |
0 |y—z|<2|v|,| y—z|<t 2n+0 |y N Z‘Z(nf/)) tl+2p

eyl = (1 )re] X V]

< cj x— 22 £(2)|
|x—z|>21/u|

- P 1/2
. @y —2)|” dydr
X wop) Tiop | 92
0 |y—z]<2|v| |y — Z‘ t

|U|t9/4
<c| ),

Jx—z[>21/[o] |X — Z]|

where 0 is defined in (4.20). On the other hand, if denote

1
Bi={yeR": vyl 2 aly =2l 2l Iy -2l < glr =l ly-al <

|y+v—z|2t}
and

1
Br={ye R om0y =l > 2bl Iy =2l > b —ahly —2l <

y+v—42t}
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then

" foVIQy - )P dvde |
< d
0, < J|x—z>21/€v|{J0 JEI <l + |x — y|> |y B Z|2anp tn+2p+1} ‘f(Z)‘ z

o foVIRGy =) v |
+ Jlx—z>21/’3vl{J0 JEZ ([ ¥ |x — y|> |y . Z|2n—2p tn+2/)+1} |f (Z)l dz

=021+ 015.

For 0. Since |y —z|>2fv| and |y —z| < 1|x —z|, then
3ly—z
t<|y—z+v|§\y—z|+|v\£¥ and

1
o=l > =2l = Iy = 2| > 5 e =l

Then by Qe L?(S""!) and the choice of @ in (4.20), we get

lZn-&-H

(525) 021 < J 1/ (2)] “,< T i
) i z+ z|<t, | y—z|>2|v|, t <3| y—z|/2 2n+0
br=zl>2'/l ‘\}x }Ii(‘yﬁ)l‘v—"ll}ly I’\<‘(‘1/2)|x‘} =y

1/2
Q(y —2)1* _dydt
x |y _ Z|2(n7p) h+1+2p dz
2
<cC x — 202 £(2)] 10y -2)I"
N J|x~\>2l/a\v| 2el<ly— e (Co2p)
A y=2<(1/2)lx—z| |y — 2|
1/2
dt
x 1>|y—z| n+l+2p dy dz
t<|y—z+v|
<C x — 2[R f (=)
[x—z|>2V/e o]

QG -2, \"
. ( J 1920 = P1 dy> -
2ll<|y—z|<(1/2)]x—z| |y — Z|

j I — 202 £ ()] [o]
[x—z|>21/¢| v|

1/2
Q(y—2)?
( ek -2 (}H)}lz) dy> dz
ly—zl<(1/2)|x—z| |y — Z|

|U|0/4
CJI)» Z|>21/%0| \x |n+9/4 |f( )| dz.
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t
t+|x -y

Q(y—2)
2n-2p

An
For 0,,. Since |y —z| >1|x—z| and ( ) <1, we have

(526) Os< J J
|x—z|>21/u| |y—z|>(1/2)|x—z]| |y — z‘
1/2
dt
. J ly—z[>2l],  gnt2p+1 dy o |f(2)]dz

|y—zl<t, | y+v—z| =1

oy -2 "

y —Z

< J M{J —3,,+1dy} |f(2)] dz
=zl >21/¢]o ly—=l>(1/2)x—z| |y — Z|

|l)|1/2

|x—z|>21/2u| |.X — Z|

From the estimates of O;, O, and O,,, we obtain

|U|1/2 p 1/p
(527 ||T;||psc{j (j I s If(x—y)ldy> dx}
R" |y‘>2]/"‘1}| ‘y|

( o) "
+ j j = )l dy ) dx
R \J 20 )"0

|U|l/2 |D|(9/4
sar(] o Lmer] P
P\ |y 121 ]

< CDe.
Regarding T5. Since |b(x + v) — b(z)| < C and by the Minkowski inequality, we

ha\/e
X—z JOC J < )
| |>21/s‘vl 0 ‘ Y‘>— { + ‘X V|

T} < CJ
|y—z| =1, | y+v—z|<t
1/2
Q(y+v—2)|* dydr
X |2n72p {nt2p+1 |f(Z)| dz

ly+v—=z

o0 f n
<C -
p—zf2tefel | Jo SRS 7 4 | —

|y—z|>1t, | y+v—z|<t
, 1/2
|Qy+v—2)|" dydt :
X 2n=2p n+2p+1 |f(Z)| dz

ly+v—z|
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0 P n
+C L
Jx—:>21/ev Jo J‘x‘”z”‘y*'ﬁ'”‘ (f + [x - y|)

|y—z| =1, | y+v—z|<t

1/2
Q(y+0v—2)]> dydt
" |y +v -z o |/ (2)] dz
=Ry + Ry.

For R;. Since |y —z| <2|v|, then

t<|y—z| <227V x—z|<|x—z| and |x—y|>|x—z|—|y—¢| >¥
By Qe L*(S"!), we get
(5.28) Ri< | 1)
[x—z|>21/2[v]
1/2

y Jlx:lj 240 Q(y+v—12)| dydt p
zZ
|y—z|<2l], | y+v—z|<t |1 _ ,|20+0 _2(n=p) gnt142p
Uy e N

< cj x— 2 £ )
|x—z|>21/¢ 0|

. > 1/2
=z Q(y+v—2z)|" dydt
X o Tion | 9
0 | y+o—z|<3|v| |y +v— Zl t

0/4
_c J o
B [N T ST

— (@) dz.
On the other hand for R,, denote

X —z|

1
Fi={yeRm vl 2 aly =2l > 2plly 4ozl < glx -2y -2l > 1

|y+v—z|<t}
and
n 1
Fr={yeR v =y =]y —2 > Bol, [y +v -2 >5lv =2, [y -2 =,

ly+v—z| <t}
Then
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0 n 2 172
R, < J J J ( t ) |Q(y+v—2)|" dydt (2] dz
T ez Lo SR\t X =yl y 40— 2P

n 1/2
+J rj 1 Q(y+v—2)* dydt ()] do
wezs2tey] | Jo SR \E+IXx=2l) |y 40—z et

=Ry 1+ Ry

For Ry, Since |y —z| > 2Jv| and |y+v—z| < §|x —z|, then
3 1
ozl <lytv—zltll <jle—z| and fx— )| > =z~ [y—z|> gzl

By Qe L?(S"!), we get

(5:29) Ror<| /)
|x—z|>21/u|
t2n+0
% J |y—z+ol<t,| y—z| =1, | y—z|>2]o] Ix — y|2"+0
=y (1/4)]x—z, [ y+v—2<(1/2)}x—2], 1<(3/2) | y—=-+1]
12
|Q(y +ov—2z)| dydt
|y+v—z| (n=p) gn+1+2p
sc| ey
[x—z|>21/| U\
, 12
—0— — n+1+2p
|u\<|y+u AA<(1/2l—= |y + v — 2 O] L e

cj fx =2 "1 (2)
[x— 7\>2‘/’\v\

QG +o—2)0
J y “_(fﬂff’j) dy> dz
lol<|y+o—z|<(1/2)lx—z| |y 4+ v — Z]

—n—0 0
cj R ()] o)
[x— 4>21/”\L

12
0 2
X J —| +v i)?,lz) dy dz
[y+o—zl<(1/2)]x—2| |y + v — \("

|(9/4
CJX 2|>21e]0] |x — |n+6)/4 |f(2)] dz.




312 YANPING CHEN AND YONG DING

n

. t
For Ry,. Since |[y+v—z|>1|x—z], and ([——— ] <1, we get
' 1+ |x—yl
Q0 +o- =)
Pe—zf>2Vele] | Jyto—zl>1/2))x—z2| |y + v — 2]
1/2
dt
X ly—z|>2el,  grezptl dy o |f(2)] dz

|y—z|=t, | y+o—z|<t

eu+e-oP "
y+uv—z

ol | B2 I8 b 1r)) ¢
|z >21/5]o] |y+o—z>(1/Dlx—2 |y + v — 2]

|U|1/2 '
< —— @) dz

Je—z|>214)0] |x — z]

IA

Similar to (5.30), we get from the estimates of R;, R»; and R,

: 1/2

* t “ , dydt

531) ||TH], = —) |/ N —5— < CDe.

(531) 1731, {L | ) ool 2y | s con
P

About T3, by the Minkowski inequality and |b(x + v) — b(z)| < C, we have

0 ¢ n
RSN [
Jpe—zps21e | Jo b=yl 2 1+ |x =yl

[y—z|<t,| y+v—z|<t
1/2

2 didy

Qy—z Q —z
(y ) (y +v ) tn+2p+1 |f(Z)| dz

=z y+o—z["7

o0 t An
J|x—z|>21/20] o Jh=nl=A <8l 7 + [x — y|

|y—z|<t,| y+v—z|<t

1/2
2 didy

Qly—z Q -z
CEECCETESTo 7 P

>< —
ly=z2"" |y+v—z""

0 f n
+C S —
Jx:>21/£v JO J|x7y\2t,|}’fz|>8\v\ <t + |X - y|>

|y—z|<t, | y+o—z|<t

, 1/2
dtdy
ht2p+1 |f(Z) | dz

IQ(y—Z) Q(y+v-—z)
X n—p n—
ly—=z2"" |y+o—z"7

= W + Ws.
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For W, since |y — z| < 8|v|, then

t<|x—y|[<|x—z]+|y—z| <2|lx—z] and

[x — 2|

=l > =2l =y =2 > P

By Qe L*(S"!), we get

t2n+0

32 <
(532 M= C g Y s e a<op i
: eyl esl/2, e A<

|y +v— |2" 2p tn+2/)+l |f(Z)| dZ

CJ o
ozl 210] v|
2 2
1Q(y — 2)| n 1Q(y +v—2)]
\y A<8lol, [y+o—zl <ol \ |y — 2|77 |y +o -z

i 1/2
2pnt1=0 dy} |f(z)| dz

1Q(y \Q(y+v—z)|2 dtdy
y 2n 2/)

>< J
|y—z|<t, | y+v—z|<t

CJ X — | o
|x— 7\>21/‘\L|

1/2
Qy-2)* 1Q —2)?
o -2P, pre=ar o
| y—z|<8|v], | ‘n 0 | +U_Z|n70
| y4+v—z|<9|v] Y- y
0/2 1/ (2)]
lx—z[>21/%2[o] |X — 2]

On the other hand, for W, we get

© t An
W, < CJ J J . <7>
Izl >21/5] b=yl =1, Ly—2|>8Jo] t+|x— ]

|y—zl>x—21/2, [y—zl<t, | y+o—z|<t
12

2 dtdy

(n+2p+1

D) Qytu-2)
n—p |y+v_z|n7p

[/ (2)] dz

‘y—ZI
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0 ¢ n
C -
- Jx—z>21/s|u J J eyl =8| y—z|>8l (H‘ |x — y|>

ly=21<|x=z/2, | y—z]<t, | y+o—z|<t

1)2
Z) Qy+v—2)|* didy
'W—ﬂ"”_w+u—d””zwwﬂ |£(=)] d=
= Wi+ W

. t irn
Now for W» 1. Since |y —z| > 1|x — z|, then t > }|x — z| and (—) <1
Thus ' 1+ |x—yl

Wi < CJ J
pe—zi>215fe] | Jy-=1>8po

J 1/2

t

o = dy|f(z)| dz
Jl/zxz<r,y2|<f 2] } e

/()]
= sz|>2‘/€v | —X|

| |n (1 z >2+(9
z—x|"( log
0]

Qy-z QUu+v-2|
ly =27 |y4+o—z"7

4420 1/2
lo dt
X J Qy—z) Qy+v-2) ZJ % dydz.
| y—z|>8]v| ly—=z"7 |y+ov—2z"" ly—z|<t 2p—n+l
Then by the process of estimating J7 in (4.21), we get
(5.33) Wy < J /() d=.
x—z[>21/¢o]

el |Z o )Cl 240
|z —x|" <log >
0]
As for W, ,, we have

0 ¢ n
Wy, < C S EEr—
’ |x—z|>21/2 0] =yl 1ol > y—z| >8Jo] 1+ |x =yl

|y—z| <|x—z|/2,| y—z|<t,| y+o—z|<t
, 12
L) R Vi) ()] d=

o=

dtdy
ln+2p+l

A=
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o0 t n
+C —
|x—z|>21/2[o| 0 oyl 2t y—z >yl 1+ |x - y|

|yl < fx—21/2, [y—zl<t, | y+v—zl <t
1/2

2
dtd, :
tn+2p)jrl |f (Z) | dz

y ’Q(y—Z) Q(y+v-12)
ly—

Z|n7/) - |y+ . Z|n7/)

1 2
=Wy, + W5,

where y = ¢l(4+20)/(n=2n)]

. For W},, since |y —z| < |x —z|/2, then
ly—z4v| <|y—z|+|v]| <3|x—2z|/4 and
=3l > =zl — [y =2 > =22
Thus, we get

o0 t2n+(7‘

1
W,,<C -
22 z=2tepe] | Jo bealZ tplel> |28l 20
o | y—z| <|x—z]/2,| y—z|<t, | y+v—z|<t

1/2

Q(y—2)) | [Q+v—2)7\ drdy
% <|y _ Z|2<nfp) Iy +v— Z|2(n7p) 2o+l |f(z)| dz

2
et Q0 -2
= CJ g ¥ J Plel>]y—2l>8lo ly — 227
sz |yl <lxoz) /2, | y—mo] <3fx—z| /4 1Y
) 1/2
1Q(y +v—12)| dt
L) S @ ()] dz
|,V +v— Z| |y—z|<t, | y+v—z|<t
<C n0/2(, 1\ 0/4 Q(y —2)?
B ==l (leD) |y—z| < |x—z|/2, =02
[x—z[>21/%]o| |yzto] < 3lx—z| /4 |y —z|
5 1/2
Qy+v—z
T % dy o |f(2)]dz
ly+0v—7z|
= C‘”'MJ e — 2" (2)] d=.
|x—z[>21/2[y|

Other the other hand, for W3 ,, since £ > [y — z| > yv| and |y — z| < |x — 2[/2, we
get

=yl > =z = [y —z| > [x = 2[/2.
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Hence

0 t An
Wi, <C LA
»2 |x—z|>2V/¢y| J J Xyl 2t |y >l <t + |x — y)

ly—zl<|x—z2]/2,| y—z|<t,| y+v—z|<t
1/2

2 didy

tht+2p+1

Qy—z) Q+v—2
|y_Z|I1—p |y+U—Z|I‘l—p

[/ (2)] dz

|2l lx=21/2, y=zl<t | yro-zl<t | _ 5

lo |y — x| +1¢ 2 1/2
°8 0] z) Q(y+v—2)|* didy
1/ (=)l

= |/ (2)| d=
(t+|x y|)m —n |y_Z| |y+u—z|” , th+2p+1
o0
|n <1 |z - X|)2+(9 Jo J Ix=y= 1| y—z[>7]v]
z og

< cj
x—z|>21¢p
o2 B |yl <lr—21/2, [ y—zl<t, | y+o—z|<t
U

0
log ——— |y_x|+t " 2 12
in 0] Z) Q(y+v—z)|" didy

(1-+ b= )" e kg

o0 t/Ln
<C J J
< >t s 4520
Jpx—zpm21ep0) | Jo 28| y—z>7l o Iz — x\**
|™{ log

X

dz.

Xt

(log S) 4420
= gAn=2n

where 0 is defined in (4.20). Then

4420 4420
— x|+t t
(“’g 5 |v| ) <l°g| |>
(5.34) <

(l—|— |x_y|)/ln—2n - tAn—=2n ’
So by (5.34), we have

Note that the function N(s) [(4+20)/ (3n—2m))

is decreasing when s > e

for ¢ > yv|.

1/ (2)]
sz,z = J 2+0
Jx—z|>21/%)0| " |z — x| |y=z>7l0]
|z — x|"( log

0]

Qy-z QUu+v—2)
ly—z2"" |y+v—2z"7"

1/2

4420
G
X J N | VA dyd:z.
[y—z|<t

12p—n+1
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Then by the estimate of (4.21), we get

(5.35) w3, < J @l g
’ e—z[>21/2] n |z — x|
|z — x|"( log

Combining the estimates of W, W, W,, and W3, we get

)4 1/p
flx—y
(5.36) 1751, < C J J H—)'Mdy dx
R y>2p g ||
|y]"{ log =
|o|
. P 1/p
+ C‘U|0/2 J J |f(x _0.);)| dy dx
2l "
P 1/p
+C‘U|€/4 J J |f(x:HJ;)|dy dx
|yt |y
< clifl, | | S —
- r 1e|y 2+0
|y1>2 v|y|n<logM)
|l
+|v|9/2J #dy+|v|9/4j #dy
yl>21ep] | ] "0 Iy>20efo] | |0/

< C(81+H +2—(7/4s +2_€/28)Hf||p < CDe.

Now we give the estimate of T;.

] 1/2
: c Y ) dydr
Ty = — | |/ ]F —
2 <J0 J|x}72t<t+ |X— y|> | 4(X, v, y, )| tn+2p+1>

< [b(x) = bx +v)

0 ¢ n
A =)
0 Jre\t+|x -y

= [b(x) — B(x + D) 11 S (-

) 1/2
dydt
er—z/H-l

| Q02 i) e
[x—z|>21/¢]

v|,|y72\<t|y_z|
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We claim the following fact:

(5:37) 4/ (%) < C(M(g; ") (%) + (M(1f]) () + Mf (), 1<g< 0,
where C is independent of v, ¢. In fact, let Q denote the cube center at x and
of diameter r = 2'/%|v|/8. Moreover, f;(x) = fro(¥) and fo(x) = f(x) = fi(x).
Then

W () < |Q|j 163" <>|dé+|Q|j 637 (E)] dé

*,p */) .
|Q|j G2 (E) — 18 F ()] de

< M(g;"f)(x)+1+11.

By Theorem L in §4.2, we know

< ol Al < Al < COMUA1 ()"

Let £ € Q, by the Minkowski inequality, we have

19;7/2(8) — 155,/ (

0 n
<
Jo R” t+|xy|>
2 12
dydt
0 ¢ n Q(é—x—ky—z) .
J J (f — ) JV é 4oy n—p fZ(Z) dz
0 Jppce \EF I =W vz [€ = x 4y = 2]
2 12
dydt
J| 7\<t|y—2|n ﬂfz( ?) dz gnt2p+l }

f )ln
\)» y| >t t+‘x_y|

s 12
Q dyd
—J b n)pfz() MKTL}

|y— 7\<t|y72|

QEl—x+y—12)
Jg Xy— 7\<t|f x+ty—z" =5 12(2) dz

<

/—/H

Qé—-—x+y—2)
J|f—x+y—z<z|f xX+y—- |" /’fz( ) z

= U + Us.
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t n
Since (——— | <1, we know
1+ |x—yl

U < G+ G + Gy < Mf(x).
where G;, i =1,2,3 are defined in (4.24). As for U,, we have

2 1/2
" Qy —z) dydt
U< J J J —z 7Hf2(2)d2—1
e =
2 1/2
- Q¢ —x+y—2) dydt
+ J J J . =5 fa(2) dz| —=—
0 Jjx—yl=t ‘g_‘)y“f}:’;f’v |E—x+y—z|"" 2]
o] 0
LR A
o o Tz [ BT
2 1/2

Qé—x+y—z) Qly—=2) dydt
(|f —x+y—2"" Jy—z"" 2 dz {2+l

=Us1 + Uz + Uss.

Similar to the estimates of O; and O, in (5.24)—(5.26), we get

172 F0/4
Uy < CJR"|xz|"“/2|f2(Z)| dz + JR"|)CZ|"+0/4|f2<Z)| dz
0/4
SCrl/zj &dZ+J rifz dz
80)° |x — z|"+1/2 80)° |x — z|"+9/4| )]
< CMf(x).

Using the same way of estimating R; and R, in (5.28)—(5.30), we can get
Uz,» < CMf (x).
Finally, similar to the estimates of W), and W, in (5.32)—(5.35), we have

0/2 12(2)] 1A(2)]
U2,3SC”n+/J"de+C . | ~ | 270
R" |x — Z| == x" (log zZ—X
r
n+0/4 |2(2)]
+ C}’ JR" ‘X . Z|n+(9/4

< CMf(x).
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Thus I < CMf(x) and (5.37) follows. Since b e C;°, we have |b(x) — b(x + v)|
< C|v|. Using (5.37) for 1 < g < p, Theorem L and the L” (p > 1) boundedness
of M, we get

© ! n dydt 2
s39) 1zl,= (] | C_____> Ja(x, vy, 0 -2
( ) H 2 ||p ( I [N f+ |X* y| | 4(X v,y )| (n+20+1
P

< Cl|1£1], < CDIal.
About T3, since |b(x) — b(z)| < C|x —z|, by the Minkowski inequality

e t /n dydl 2
T25 = J J <7> |J5(xavayvt)|2m
0 Jjx—y|>t t+|x_y| e

sj x— 2|1/l
[x—z| <2V/%]0|

1/2
An 2
" * t "1Q(y —2)|° dydt i
o Jly=E<tlx=yi=i\ 4 |x — | ly — Z|2("—/’> n+1+2p

|y >[x—Z1/2

+j x— 2] 1f ()]
|x—z| <21/¢|v|

; ) 1/2

) in

) L \Iew-oF wa |
0 [y=z|<t,|x=y|=t\ t 4 |x — y‘ |y _ Z|2(n7p) 1+2p

[y—z|<|x—z]/2
= Y] + Yz.
. l in
For Y;. Since > |y —z| > 1/2]x —z| and (m) <1, we get
CEU Y =21 1£(2)
|x—z| <21/]o|
1/2
’ 1y —2)| _dydt
8 <J|Y7I/2J ly—z|<t |y_z|2(n—ﬁ) 142 dz
o |y—z|=|x—z]/2

IA

12
« dt
CJ x— |V f(z J —_— dz
|x72\s2]/5|v\| | @)l |2 112

CJ I — 2" f ()] .
[x—z| <21/ u]

IA

Let us turn to Y. Since |y —z| < 1/2]|z — x|, then
[x—y|=|x—z|—|y—z|>|x—z|/2 and
t<|x—y < |x—z|+|y—z] <3]x —z|/2.



COMMUTATORS FOR LITTLEWOOD-PALEY OPERATORS 321

Hence
(5.40) ngj |x —z]|f(2)]
2] <2Ve]o|
1/2
y J3/ZX_ZJ t2n+€ |Q(y _ Z)|2 dydt J
z
—z|<|x—z|/2,|y—z n+0 n—p 142,
0 ’ \@ylz‘l«/vzfl—l}/z e i
[x— 4\<21/‘|L
1/2
[ (- 2) dydr>/ .
‘y <oty |y — 2|0 117072
CJ L CIE
Then we get
n 1/2
« t dydt
5.41 3| = J J () Js(x, 0, y, )|
(s41) |75, ( i) st 0l
P
< CD2'?|y|.
Notice that |b(x +v) —b(z)| < C|x + v —z|, similar to the estimate of T3, we
may get
: 1/2
* t “ dydt
TS = J J <—) Jo(x, 0, y, 0~
: ( ) et P
< el
T <2 x40 — 2"
Then we get
1/2
© t n dydt
5.42 TS| = J J (7) Jo(x, 0, p, 1)) =220
(542) 78I, (0 ) et P

4
< CDQ2V#|o| + |v]).

From (5.20), (5.21) and the estimates of T3, we get

‘I}mo 16,9771/ (x) = [b,g;"1f (x +v)||, =0 uniformly in fe7.

Thus we show that (3.28) holds and complete the proof of Theorem 6.
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