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L,>-PINCHING THEOREM FOR SUBMANIFOLDS IN A SPHERE
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Abstract

Let M" (n>2) be a n-dimensional oriented closed submanifolds with parallel
mean curvature in S"*7(1), denote by S, the norm square of the second fundamental
form of M. H is the constant mean curvature of M. We prove that if [, §? <
A(n), where A(n) is a positive universal constant, then M must be a totally umbilical
hypersurface in the sphere S"*!.

1. Introduction

Let M" (n > 2) be a n-dimensional oriented closed minimal submanifolds in
the unit sphere in S”™”(1). We denote the square of the length of the second

fundamental form by S. It is well known that if S < 2i—1 on M, then S=0

and hence M is isometric to the unit sphere S”(1). Further discussions in this
direction have been carried out by many other authors. It seems to be in-
teresting to study the L,-pinching condition for S. By using eigenvalue estimate,
shen [5] proved the following

THEOREM A. Let M" — S™(1) be an oriented closed embedded minimal
hypersurface with Ricy > 0. If [, S"* < C(n), where C(n) is a positive universal
constant, then M must be a totally geodesic hypersurface.

Recently, Cai [1] proved the following

THEOREM B. Let M" be a n-dimensional oriented closed submanifolds with
parallel mean curvature and positive Ricci curvature in S"(1), denote by (n — 1)k,
the lower bound of Ricci curvature of M. Then there is a constant C depending
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only on n, H, k such that if |,, S"? < C(n,H,k), then M is a umbilical hyper-
surface in the sphere S"!.

In this paper, we delete the condition of Ricci curvature. We obtain the
following

MaAIN THEOREM. Let M" (n>2) be a n-dimensional oriented closed sub-
manifolds with parallel mean curvature in S"*7(1). If [, S"? < A(n), where A(n)
is a positive universal constant, then M must be a totally umbilical hypersurface in
the sphere S"*+1.

2. Preliminaries

Let M" be a n-dimensional compact immersed in the n 4+ p-dimensional unit
sphere S"*7(1). We always take M to be oriented, and make use of the fol-
lowing convention on the range of indices:

1<A4,B,C,...<n+p 1 <ijk,...<nn+1<apfy...<n+p

We choose a local field of orthogonal frame ey, es, ..., e,:, in S"*7 such that
restricted to M, the vectors ej,es,...,e, are tangent to M. Let wy and w,p
be the field of dual frames and the connection 1-forms of S"*7(1) respectively.
Restricting these forms to M, we have

Wy = Zh;wj, i = h}
J
Ria = Oy = dade) + (i = hihy)

Ropra = Z(llﬁchg — hih})

1

h:Zh;wi®wj®ea7 f:%Zhgea

o, i, ]

where Ry, Ryp, h and ¢ are the curvature tensor, the normal curvature tensor,
the second fundamental form and the mean curvature vector of M respectively.

We define
S=n? H=|¢, H,=()

nxn

M is called a submanifold with parallel mean curvature if ¢ is parallel in the
normal bundle of M. In particular, M is called minimal submanifold if & = 0.

When & # 0, we choose e, :% such that # H,. 1 =nH and tr Hp =0,

n+2<f<n+p. The following lemmas and propositions will be used in the
proof of our theorems.
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Lemma 1 [3].  Assume Ai,...A, be symmetric matrix, then

ilr(AlAﬂ—AﬁA +ZtrAA,; < (sz)

o, =1

LEmMMA 2 [4]. Assume A, B be symmetric matrix. If tr A=1tr B=0 and
AB = BA, then
n—2

2 — Ir 2 r
|tr(A°B)| < o T) tr(A°)Vir B?

ProposITION 1. Let M" be a submamfold with parallel mean curvature in
S™P(1). Denote Zl,j(h;+l) and Y, ; [)’;&n+l(hlj) by o and B respectively. Then

—Aa > Z hl’j’;l (6 —nH?)
i,j,k

) nin—2)H
n+2nH"— S — \/71)\/ nHzl

1 n-— -2 3
e 3 o2 s (220
2 i.,j,k,[fz;énﬂ( l]k) il ) 2vVn — 2\/n 1 2

Proof. By direct computation, we obtain

1 n
540 = D Y o — o — 0’ H? + nH tr(Hy)’ = > [tr(Hyey Hp))

ij,k p#n+1
-2)H
ZZ(hl';kH) + (o0 —nH?) n+2nH2—S—u S —nH?

ik n(n—1)
1
5AB= SNo W) +nH > rlHe (Hp) = > [tr(Ha Hy))® +nB

i,j,k,p#n+1 B#n+1 B#n+1

— > tr(H,Hp— HpH,)* — Y [0r(H,Hy))

o, f#n+1 o, f#n+1

A= H,.1 — HI, where I is the identity matrix, then tr 4 =0, AH, = H,A.

Because 7 A% = tr(HfH) —nH?, so using Lemma 1 and Lemma 2, we have

! 2
EABZ Z (hfk) +nH? Z lr(Hﬂz)— Z tr( Hﬁ ) tr(HY,))
i,j,k,p#n+1 B#n+1 [)’;én+1

_ Z IV(H;?H) tr(Hﬂz)Jran% Z tr(Hﬁ)z

p#n+1 p#n+l1
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= (hﬁk)2+[n(1+H2)—< n_2 +1>S
v 2vn —1

i,j k,f#n+1
+ <H+ 1 —3>B]B
2vn—1 2

PROPOSITION 2 [6]. Let M" be a closed submanifold in S"™7(1).  Then for all
teR" and feC' (M), f=0, [ satisfies

12 (n—2)2 1 1y _ 2 1\, 2
19715 2 5 [ sy = 1 ) (145 ) 171

where C(n) =2"(1+n)" V"(n = 1)7'6,"" and o, = volume of the unit ball in
R".

3. Proof the Main Theorem

MAIN THEOREM. let M" be a n-dimensional oriented closed submaniflods with
parallel mean curvature vector in S"™P(1). If [, S"? < A(n), where A(n) is a
positive universal constant, then M must be a totally umbilical hypersurface in
S™1(1).  Where

2nv/n—1(n+2)(n—2)*
C2(n)[(n—2) +2vn—1][(n+2)(n — 2)> + 4n>(n — 1)
2n(n+2)(n—2)*
3C2(n)[(n+2)(n —2)* + 4n2(n — 1)

A(n) =

-2 3
Proof. When n >4, n—+1 >§, S0

2vn—1

e 5wt s )

i,j,k,p#n+1
> n+2|V\/§|2+{n(l+H2) ( n_2 +1)S]B
-on 2vn—1

_ (n+2)(m=2)7 [ 1 ) - 1 ,

o (o
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(11—1—2)(11—2)2 1 o 1
= dn(n— 1)2(1 +1) |:C2(n) ||B||n/(n72) (H” + 1)(1 + t> ||B|1:|

n—2
s+ B = (524 1) 1Bl 250

D21 1 [ ne2
4n(n—1)*(1 4 1) C*(n) B (2\/ﬁt~1+ 1) 151,172

2y n+2)(n-27> 1
nl+ A7) 4n(n—1)2(1+t)(H H)(Ht)

1Bl -2

+ 1Bl

(n+2)(n—2)>

Let = 5, using condition |[|S||,, < A(n), we have B=0.
4n(n — 1)
—2 3
When n < 3, n7+1 <=, SO
nin—1) 2

1 3
7AB> > (hgk)2+{n(l+H2)—§S}B
i,j k,B#n+1

using the same method, we also have B =0.
Then we consider

éAa > > (hi)? + (o — nH?)

n+2nH2—S—M\/S—nH2‘|

ik nn—1)
> n:2|V\/a—nH2|2+ (6 —nH?)|n+ 2nH? Sz(n(_z)l)S]
n_

discussing as the above, we have ¢ = nG>. Because B=0 and ¢ =nH?, we
know M must be a totally umbilical hypersurface in S"+!(1).
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