ON SINGULAR DIRECTION OF MEROMORPHIC FUNCTION AND ITS DERIVATIVES

ZHAO-JUN WU

Abstract

In this paper, by using Ahlfors' theory of covering surface, we study singular direction of meromorphic functions and their derivatives, which is a continuous research of Yang Lo in J. London Math. Soc. 25 (1982) 2: 288–296.

1. Introduction and results

Let f(z) be a transcendental meromorphic function defined on the whole complex plane. In this paper, the standard notations of Nevanlinna are used. The singular direction for f is one of main objects studied in the theory of value distribution for meromorphic function. There is a brief history of this research in [4] and the details can be found in book [3] or [10]. Hayman inequality (see [5]) states that T(r, f) can be bounded by the counting functions of the zero points of f(z) and 1 point of $f^{(k)}$ for any positive integer k. Based the inequality, in 1982 Yang lo [9] proved the following results. Suppose that f(z) is a meromorphic function and satisfies the growth condition

(1)
$$\limsup_{r \to \infty} \frac{T(r, f)}{\log^3 r} = \infty,$$

then there exists a ray arg $z = \theta$ such that for any $\varepsilon > 0$ and positive integer k, and any finite complex number a, b ($b \neq 0$), we have

$$\lim_{r\to\infty} \{n(r,\theta_0,\varepsilon,f=a) + n(r,\theta_0,\varepsilon,f^{(k)}=b)\} = \infty.$$

where $n(r, \theta, \varepsilon, a)$ is the number of the solutions of f(z) = a in $\{z : \theta - \varepsilon < \text{arg } z < \theta + \varepsilon\} \cap \{|z| < r\}$, counting with multiplicities. After that, Chen Huaihui [1] prove a quantitative version of Yang Lo [9]. He proved that

²⁰⁰⁰ Mathematics Subject Classification: 30D35, 30D30.

Keywords: Hayman direction; covering surface; derivatives function.

Supported by NNSF of China (Grant No.: 10471048).

Received May 31, 2006.

THEOREM A (see [2]). Let f(z) be meromorphic in \mathbb{C} satisfies

(2)
$$\limsup_{r \to \infty} \frac{T(r, f)}{\log^{\lambda} r} = \infty, \quad (\lambda \ge 3)$$

then there exists a ray $\arg z = \theta$ such that for any $\varepsilon > 0$ and positive integer k, and any a, b $(b \neq 0)$, holds

(3)
$$\limsup_{r \to \infty} \frac{n(r, \theta_0, \varepsilon, f = a) + n(r, \theta_0, \varepsilon, f^{(k)} = b)}{\log^{\lambda - 1} r} = \infty.$$

There is a difficult question to be asked: "When $\lambda = 2$, does Theorem A hold?" The main purpose of this paper is to answer the question and prove the following theorems

Theorem 1. Suppose that f(z) is a meromorphic function defined on the whole complex plane, and satisfies the growth condition

(4)
$$\limsup_{r \to \infty} \frac{T(r, f)}{\log^{\lambda} r} = \infty, \quad \lambda \ge 2.$$

Then there exists a ray $\arg z = \theta$ such that for any $\varepsilon > 0$ and positive integer k, and any finite complex number a, b $(b \neq 0)$, we have

$$\limsup_{r\to\infty}\frac{n(r,\theta_0,\varepsilon,f=\infty)+n(r,\theta_0,\varepsilon,f=a)+n(r,\theta_0,\varepsilon,f^{(k)}=b)}{\log^{\lambda-1}r}=\infty.$$

From Theorem 1, we can derive the following theorem easily.

Theorem 2. Suppose that f(z) is an entire function, then Theorem A holds for $\lambda \geq 2$.

2. The proof of theorem

We shall prove the Theorem by using Ahlfors' theory of covering surface. First of all, we recall his definition as following (see [8]). Let f(z) be meromorphic in an angular domain $\Omega(\theta,\delta)=\{z:|\arg z-\theta|\leq\delta\}$, where $\theta\in[0,2\pi)$. Let $\Omega(r)$ be the part of $\Omega(\theta,\delta)$, which is contained in $|z|\leq r$ and put

$$S(r, \Omega, f) = \frac{A(r)}{\pi} = \frac{1}{\pi} \int \int_{\Omega(r)} \left(\frac{|f'(z)|}{(1 + |f(z)|^2)} \right)^2 r \, d\theta dr, \quad z = re^{i\theta}.$$

$$T(r, \Omega, f) = \int_0^r \frac{S(t, \Omega(\theta, \delta), f)}{t} \, dt.$$

Generally, suppose that E is a plane domain, put

$$S(E, f) = \frac{A(r)}{\pi} = \frac{1}{\pi} \int_{E} \left(\frac{|f'(z)|}{(1 + |f(z)|^{2})} \right)^{2} r \, d\theta dr, \quad z = re^{i\theta},$$

and n(E, a) is the number of the solution of f(z) = a in E, counting with multiplicities.

In order to prove the Theorem, we shall need several lemmas.

Lemma 1 (see [6]). Let f(z) be meromorphic in |z| < 1, for any $a,b \in C$ and $b \neq 0$, put $N = n(1,f = \infty) + n(1,f = a) + n(1,f^{(k)} = b) + 2$, $D = \frac{1}{2}|a,\infty|^2 \min\left\{|b|,\frac{1}{|b|}\right\}$. Then for 0 < r < 1, we have

$$S(r, f) < \frac{c}{(1-r)^2} \left\{ N \log \frac{80e}{1-r} + \log \frac{1}{|D|} \right\}.$$

where c is a constant which at mostly depends on the k.

Lemma 2. Let f(z) be meromorphic in $\Omega_0: \{z: |arg z - \theta| < \delta_0\}$, where $0 \le \theta < 2\pi$. For any $0 < \delta < \delta_0$, put $\Omega: \{z: |arg z - \theta| < \delta\}$ $(\Omega \subset \Omega_0)$. Then for any two finite complex number $a, b \ (b \ne 0), \ \sigma \ (\sigma > 1)$, positive integer m and sufficiently large r, we have

$$S(r,\Omega,f) \le A\{n(r\sigma^{2m},\theta,\delta_0,f=\infty) + n(r\sigma^{2m},\theta,\delta_0,f=a) + n(r\sigma^{2m},\theta,\delta_0,f^{(k)}=b)\} + B\log r,$$

where
$$A = \frac{m+1}{m} \frac{c}{\left(1-\kappa\right)^2} \log \frac{80e}{1-\kappa}$$
, $B = \left[2\frac{c}{\left(1-\kappa\right)^2} \log \frac{80e}{1-\kappa} + \log \frac{1}{|D|}\right]$

Proof. Put $r_i = \sigma^{mi}$, $i = 0, 1, 2, \ldots$, $r_{ij} = \sigma^{mi+j}$, $j = 0, 1, \ldots, m-1$. Then $r_{i0} = r_i$, $r_{im} = r_{i+1}$. Suppose that E is a plane domain, put $N(E) = n(E, f = \infty) + n(E, f = a) + n(E, f^{(k)} = b)$. For any $t, t \ge r_1$, there exists a positive integer l, such that $r_l \le t \le r_{l+1}$. It's easy to verify that there exists a positive integer j_0 , $0 \le j_0 \le m-1$, such that $\sum_{i=0}^{k+1} N(\{z: r_{i,j_0} < |z| < r_{i,j_0+1}\} \cap \Omega_0) \le \frac{1}{m} N(\{z: |z| < r_{k+2}\} \cap \Omega_0)$.

By using the same method of [7] or [11], let $\varsigma = \frac{z}{r_{i+1,j_0+1}}$ $(0 \le i \le k)$, then the domain becomes $\Omega_0 \cap \{z : r_{i,j_0} < |z| < r_{i+1,j_0+1}\}$ becomes the domain $\Omega_0 \cap \{\varsigma : \frac{1}{\sigma^{m+1}} < |\varsigma| < 1\}$ on the ς -plane and $\Omega \cap \{z : r_i' < |z| < r_{i+1}'\}$ becomes $\Omega \cap \{\varsigma : \frac{1}{\sigma^{m+1/2}} < |\varsigma| < \frac{1}{\sigma^{1/2}}\}$, and the point $\sqrt{r_{i,j_0}r_{i+1,j_0+1}}$ becomes $\sigma^{-(m+1)/2}$ at the same time, where

$$r'_i = \sqrt{r_{i,j_0}r_{i,j_0+1}}, \quad r'_{i+1} = \sqrt{r_{i+1,j_0}r_{i+1,j_0+1}}.$$

Note that the image domain is independent of i. If we map $\Omega_0 \cap \left\{ \varsigma : \frac{1}{\sigma^{m+1}} < |\varsigma| < 1 \right\}$ conformally on $|\xi| < 1$, such that $\sigma^{-(m+1)/2}$ becomes $\xi = 0$,

then the image of $\Omega \cap \left\{ \varsigma : \frac{1}{\sigma^{m+1/2}} < |\varsigma| < \frac{1}{\sigma^{1/2}} \right\}$ is contained in $|\xi| < \kappa < 1$, where κ is a constant, which is only dependent of m, σ , δ , δ_0 and independent of t. By the Lemma 1, the following inequality

$$S(\Omega \cap \{z : r'_i < |z| < r'_{i+1}\}, f)$$

$$\leq \frac{c}{(1-\kappa)^2} \left\{ [N(\Omega_0 \cap \{z : r_{i,j_0} < |z| < r_{i+1,j_0+1}\} + 2] \log \frac{80e}{1-\kappa} + \log \frac{1}{|D|} \right\},$$

holds for $i = 0, 1, \dots, k$, then

$$\begin{split} & \sum_{i=0}^k S(\Omega \cap \{z: r_i' < |z| < r_{i+1}'\}, f) \\ & \leq \sum_{i=0}^k \left\{ \frac{c}{(1-\kappa)^2} \left[\left(N(\Omega_0 \cap \{z: r_{i,j_0} < |z| < r_{i+1,j_0+1}\} \right) + 2 \right) \log \frac{80e}{1-\kappa} + \log \frac{1}{|D|} \right] \right\} \end{split}$$

Since
$$r_k \le r \le r_{k+1}$$
 and $r_{k+2} \le r\sigma^{2m}$,

$$S(r, \Omega, f) \le \frac{m+1}{m} A_1 N(\{z : |z| < r\sigma^{2m}\} \cap \Omega_0) + B_1 \log r + S(\sigma^{2m}, \Omega, f)$$

where
$$A_1 = \frac{c}{(1-\kappa)^2} \log \frac{80e}{1-\kappa}$$
, $B_1 = \left[2 \frac{c}{(1-\kappa)^2} \log \frac{80e}{1-\kappa} + \log \frac{1}{|D|} \right] / m \log \sigma$.

Therefore when r is large enough, we have

$$S(r, \Omega, f) \le A\{n(r\sigma^{2m}, \theta, \delta_0, f = \infty) + n(r\sigma^{2m}, \theta, \delta_0, f = a) + n(r\sigma^{2m}, \theta, \delta_0, f^{(k)} = b)\} + B \log r,$$

where
$$A = \frac{m+1}{m} \frac{c}{\left(1-\kappa\right)^2} \log \frac{80e}{1-\kappa}$$
, $B = \left[2\frac{c}{\left(1-\kappa\right)^2} \log \frac{80e}{1-\kappa} + \log \frac{1}{|D|}\right]$

Now, we are in the position to prove the Theorem 1.

Proof of Theorem 1. Suppose that the Theorem 1 does not hold. Then for any $\theta \in [0,2\pi)$, we have a $0 < \beta_\theta < \pi/2$ and two finite complex number a_θ , b_θ $(b_\theta \neq 0)$ such that

(5)
$$\limsup_{r \to \infty} \frac{n(r, \theta, \beta_{\theta}, f = \infty) + n(r, \theta, \beta_{\theta}, f = a_{\theta}) + n(r, \theta, \beta_{\theta}, f^{(k)} = b_{\theta})}{\log^{\lambda - 1} r}$$
$$\leq K_{\theta} < \infty.$$

Because
$$[0,2\pi]$$
 is compact and $[0,2\pi] \subset \bigcup \left\{ \left(\theta - \frac{\beta_{\theta}}{2}, \theta - \frac{\beta_{\theta}}{2}\right), \theta \in [0,2\pi) \right\}$,

then we can choose finitely many $\left(\theta_i-\frac{\beta_{\theta_i}}{2},\theta_i-\frac{\beta_{\theta_i}}{2}\right)$ $(i=1,2,\ldots,T)$, such that $[0,2\pi]\subset\bigcup\left\{\left(\theta-\frac{\beta_{\theta}}{2},\theta-\frac{\beta_{\theta}}{2}\right),i=1,2,\ldots,T\right\}$. For any $\Omega(\theta_i,\beta_{\theta_i})$, put $\Omega_i=\Omega\left(\theta_i,\frac{\beta_{\theta_i}}{2}\right)$. By Lemma 2, we have

$$S(r,\Omega_{i},f) \leq A_{\theta_{i}} \{ n(r\sigma^{2m},\theta_{i},\beta_{\theta_{i}},f=\infty) + n(r\sigma^{2m},\theta_{i},\beta_{\theta_{i}},f=a) + n(r\sigma^{2m},\theta_{i},\beta_{\theta_{i}},f^{(k)}=b) \} + B_{\theta_{i}} \log r,$$

Put $A = \max_{1 \le i \le T} \{A_{\theta_i}\}$ and $B = \max_{1 \le i \le T} \{B_{\theta_i}\}$. The above expression sum from i = 1 to T, we have

$$S(r,f) \le A \sum_{i=1}^{T} \{ n(r\sigma^{2m}, \theta_i, \beta_{\theta_i}, f = \infty) + n(r\sigma^{2m}, \theta_i, \beta_{\theta_i}, f = a) + n(r\sigma^{2m}, \theta_i, \beta_{\theta_i}, f^{(k)} = b) \} + BT \log r,$$

Hence

$$\begin{split} T(r,f) &= \int_{0}^{r} \frac{S(t,f)}{t} \, dt \\ &\leq \int_{1}^{r} \frac{A \sum_{i=1}^{T} \{ n(t\sigma^{2m}, \theta_{i}, \beta_{\theta_{i}}, f = \infty) + n(t\sigma^{2m}, \theta_{i}, \beta_{\theta_{i}}, f = a) + n(t\sigma^{2m}, \theta_{i}, \beta_{\theta_{i}}, f^{(k)} = b) \}}{t} \, dt \\ &+ \int_{1}^{r} \frac{BT \log t}{t} \, dt + \int_{0}^{1} \frac{S(t,f)}{t} \, dt, \\ &\leq A \sum_{i=1}^{T} \{ n(r\sigma^{2m}, \theta_{i}, \beta_{\theta_{i}}, f = \infty) + n(r\sigma^{2m}, \theta_{i}, \beta_{\theta_{i}}, f = a) \\ &+ n(r\sigma^{2m}, \theta_{i}, \beta_{\theta_{i}}, f^{(k)} = b) \} \log r\sigma^{2m} + BT \log^{2} r + T(1,f) \end{split}$$

So, by using (5), we have

$$\begin{split} \limsup_{r \to \infty} \frac{T(r, f)}{\log^{\lambda} r} \\ & A \sum_{i=1}^{T} \{ n(r\sigma^{2m}, \theta_{i}, \beta_{\theta_{i}}, f = \infty) + n(r\sigma^{2m}, \theta_{i}, \beta_{\theta_{i}}, f = a) \\ & \leq \limsup_{r \to \infty} \frac{+ n(r\sigma^{2m}, \theta_{i}, \beta_{\theta_{i}}, f^{(k)} = b) \} \log r\sigma^{2m}}{\log^{\lambda} r} \\ & \leq A \sum_{i=1}^{T} K_{\theta_{i}} < \infty. \end{split}$$

This contradicts (4) and the Theorem follows.

REFERENCES

- [1] H. Chen, The singular directions of a meromorphic functions of order zero corresponding to Hayman's inequality, Acta Math. Sinica 30 (1987), 234–237.
- [2] T. Y. CHERN, A note on Hayman direction for meromorphic functions of finite logarithmic order, Southeast Asian Bulletin of Mathematics 24 (2000), 521–523.
- [3] C. T. CHUANG, Singular directions of meromorphic functions, Science Press, Beijing, 1982.
- [4] H. Guo, J. Zheng and T. W. Ng, On a new singular direction of meromorphic functions, Bull. Austral. Math. Soc. 69 (2004), 277–287.
- [5] W. HAYMAN, Meromorphic functions, Clarendon Press, Oxford, 1964.
- [6] P. Hu, A generalization of Q. D. Chang and Le Yang's theorem, Acta Sci. Natur. Univ. Shandong 25 (1990), 137–147.
- [7] Y. Lu And G. Zhang, On Nevanlinna direction of meromorphic function, Science in China, Ser. A. 3 (1983), 215–224.
- [8] М. Тѕил, Potential theory in modern function theory, Maruzen Co. LTD, Tokyo, 1959.
- [9] L. YANG, Meromorphic functions and their derivatives, J. London Math. Soc. 25 (1982), 288–296.
- [10] L. YANG, Value distribution theory, Science Press, Beijing, 1982 (in Chinese), Springer-Verlag, 1993 (in English).
- [11] Y. Yang and M. Liu, On the Borel direction of K-quasimeromorphic mappings, Acta Math. Scientia, Ser. B. 24 (2004), 75–82.

Zhao-Jun Wu School of Mathematics South China Normal University Guangzhou, 510631 P.R. China