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THE POINTED HARMONIC VOLUMES OF HYPERELLIPTIC
CURVES WITH WEIERSTRASS BASE POINTS

Yuukl TADOKORO

Abstract

We give an explicit computation of the pointed harmonic volumes of hyperelliptic
curves with Weierstrass base points, which are paraphrased into a combinatorial for-
mula.

1. Introduction

Let X be a compact Riemann surface of genus g >2 and p a point on
X. By Pulte [5], the pointed harmonic volume of (X, p) was defined to be the
homomorphism I, : K ® H — R/Z, using Harris’ method for the harmonic
volume of X [4]. Here, we denote by H = H'(X;Z) the first cohomology group
of X and K the kernel of the intersection pairing H ® H — Z. In this paper, we
compute the pointed harmonic volume of any hyperelliptic curve C with any
Weierstrass point p. In theorem 5.6, we compute that of some special hyper-
elliptic curve Cp with Weierstrass points in an analytic way, by the explicit
computation of Chen’s iterated integrals [2]. Using Proposition 4.1, we can
compute the pointed harmonic volumes of all the hyperelliptic curves with
Weierstrass base points from those of C;. These results are paraphrased from
a combinatorial viewpoint as follows. Let {P;},_, ,,,; denote the set of
Weierstrass points on C, and fix a Weierstrass point P,, 0 <v<2g+1. A
certain homomorphism «,: K @ H —1Z/Z ={0,1/2} is defined in §6, which
depends on the choice of P,.

THEOREM 6.2. For any hyperelliptic curve C and A€ K ® H, we have
Ip,(A) = k,(4) mod Z.

The author [6] computed the harmonic volumes of hyperelliptic curves. But
the computation of the pointed ones of (X,p) is more complicated than that
of X. For any hyperelliptic curve C, it is tedious to compute /, in the case
peC\{Pi}_o1. 2511~ But we have [, =0 or 1/2 modZ in the case pe
{Pj}i0.1...2g11- It has been still unknown which elements of K ® H and Weier-
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strass points p have nontrivial I, or not. In this paper, we compute them
completely.

As an application of the pointed harmonic volume of (X, p), Pulte proved
the pointed Torelli theorem [5]. We denote by z; (X, p) the fundamental group
of X at the base point p e X and J, the augmentation ideal of the group ring
ZTCI (X y P )

THEOREM 1.1 (The pointed Torelli theorem [5]). Suppose that X and Y are
compact Riemann surfaces and that pe X and g€ Y. With the exception of two
points p in X, if there is a ring isomorphism

an(X,p)/J; - Zﬂl(Y,CI)/J;

which preserves the mixed Hodge structure, then there is a biholomorphism
9: X — Y such that ¢(p) =q.

If X is generic (e.g. X is hyperelliptic), then there are no exceptional points.
The pointed harmonic volumes determine the choice of the base points. In the
proof of this theorem, the classical Torelli theorem follows from the preservation
of the mixed Hodge structure and we obtain the biholomorphism X =~ Y. When
we choose the base points, the pointed harmonic volume plays an important
role. Theorem 6.2 also tells the choice of Weierstrass base points on C.

Now we describe the contents of this paper briefly. In §2, we define the
pointed harmonic volume of (X, p), using Chen’s iterated integrals [2]. In §3,
we give a basis of the first homology group H;(C;Z/2Z) of the hyperelliptic
curve C. In §4, we prove Ip, € HO(A;; Hom(K ® H,Z/2Z)). In §5, the pointed
harmonic volume of some special hyperelliptic curve Cy with Weierstrass base
points is computed in an analytic way. This result can be extended to all the
hyperelliptic curves with Weierstrass base points and interpreted from a com-
binatorial viewpoint. In §6, we obtain a simple combinatorial formula of the
pointed harmonic volume of (C,P,).

Acknowledgments. The author is grateful to Nariya Kawazumi for valuable
advice and reading the manuscript. He also thanks Masahiko Yoshinaga for
reading the manuscript. This work is partially supported by 21st Century COE
program (University of Tokyo) by the Ministry of Education, Culture, Sports,
Science and Technology.

2. The pointed harmonic volume

We recall the definition of the pointed harmonic volume of a pointed Rie-
mann surface (X, p). Here X is a compact Riemann surface of genus g > 2 and
p a point on X. We identify the first integral homology group H;(X;Z) of X
with the first integral cohomology group by the Poincaré duality, and denote it by
H. For closed l-forms ;; and w;;, i=1,2,...,m, on X such that
Jy 2l o1 iAwy; =0, we obtain the 1-form 5 such that dyp =>"", w1 ;A wy;
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and [, 7 A0 =0 for any closed 1-form « on X. Here, % is the Hodge star
operator which depends only on the complex structure and not the choice of
Hermitian metric. We identify H with the space of all the real harmonic 1-forms
on X with integral periods by the Hodge theorem. We denote by K the kernel
of the intersection pairing (,): H® H — Z.

DErFINITION 2.1 (The pointed harmonic volume [5]). For >, ¢; ® b;e K
and c € H, the pointed harmonic volume is defined to be

m m
Ip<<2ai®b,~> ®c> = ZJ aib[—J n mod Z.

i1 =1 7 y
Here 7 is the 1-form on X which is associated to Y., a; ® b; in the way stated
above and y: [0,1] — X is a loop in X at the base point p whose homology class
is equal to ¢. The integral fy a;b; is Chen’s iterated integral [2], that is, fy a;b; =
ngtlgtzglfi(tl)gi(tz) dtdty for y*a; = fi(t) dt and y*b; = g;(¢) dt. Here ¢ is the
coordinate in the unit interval [0,1]. See Chen [2] for iterated integrals and
Harris [4], Pulte [5] for the (pointed) harmonic volume.

Remark 2.2. By the definition of I,, we have I,((>-",a;®b)®c) =
—L((>" bi®a;) ®c) mod Z.

3. Hyperelliptic curves

Let C be a hyperelliptic curve and Z, the field Z/2Z. In this section, we
explain the first homology group of C with Z,-coefficients.

We define the hyperelliptic curve C as follows. It is the compactification of
the plane curve in the (z,w) plane CZ

where po, p1, ..., pag+1 are some distinct points on C. It admits the hyperelliptic
involution given by 1: (z,w) — (z,—w). Let 7 be the 2-sheeted covering C —
CP!, (z,w) + z, branched over 2g + 2 branch points {p},_ ;. 2, and P,e C a
ramification point such that n(P;) = p;. It is known that «V{P[}i'zo,Lﬁng+1 is just
the set of all the Weierstrass points on any hyperelliptic curve C.

For points p; and p;, we denote by p;p; a simple path joining p; and p;.
We draw simple paths popi, pipa, ..., pagprg+1 and pogr1po such that all the
2g+ 2 arcs do not intersect except for endpoints of them. We take a disk
D = CP! whose boundary is (U;:gopjij)UngHpo (Figure 1, g=2). We
picture two copies of CP! as above and call them Q; and Q;. We make
crosscuts along pocpai1, Kk=0,1,... 9, and construct the hyperelliptic curve
C by joining every poxpas1 on € to the corresponding one on Q; for k=
0,1,...,9. See 102-103 in [3] for example. We may consider Q; = C for
i=0,1.
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FIGURE 1. D < CP!

FIGURE 2. Q< C

The hyperelliptic involution : interchanges a point on €, and the corre-
sponding one on Qp, and fixes P;, i=0,1,...,29+ 1. We choose a base point
Qo € Qo and denote Q1 =1(Qo) € Q. Let y;, j=0,1,...,29+1, be a simple
path in D joining #(Qo) and p;. We denote by j; the lift of y; in Qo from Qy to
P; (Figure 2, g =2). Set e =7;- z(?j)fl, where the product p; - 1(37]-)71 indicates
that we traverse y; first, then 1(37]-)71. It is a path in C which is to be followed
from Qp to P; and go to Q; in Figure 3. It is clear that ¢; - i(e;,) is a loop in C
at the base point Qy. Moreover we have homotopy equivalences relative to the
base point Qy

o O XX}
Pagiy P, Poyy P

g Faa!

FIGURE 3. ¢ =7;- 1(}?,»)’1
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n(e;) n(ey)
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7(Qy) = 7(Q;) Pi n(Qg) = n(Q)) bi
cP! cp!

FIGURE 4. A deformation of ¢;

ej-1(ej)) ~1 and e-i1(er)----- ey - 1(ergr1) ~ 1.

We set a; = ey -1(exy) and b; = ey -1(ez2) -+ e -1(eg), and denote by
x; and y; the homology classes of a; and b; respectively. Then we have
{xi, ¥itic12.., 18 @ symplectic basis of Hi(C;Z) in Figure 1 in [6].

Let Hyz, denote H,(C;Z,) and B branch locus {Pi}ico1. 2g11- We deform
the path ¢; in C and denote it by e/ in C\z !(B) as follows. The path e/
avoids P; in a sufficiently small neighborhood at P; so that n(e]) goes around p;
which does not any p; with k # i (Figure 4) and the set of homology classes
{n(e))}izo.1...2y is @ basis of H\(CP'\B;Z,). Moreover we have n(ey) + n(ef)
+-tm(ey, ) = 0 e H|(CP'\B;Z,). Since the coefficients are in Z,, the
homology class of ¢/ is independent of the choice of it. From the 2-sheeted
covering 7, we have the well-defined homomorphism vy : H — H(CP'\B;Z,)
which factors through H,(C\n~!(B);Z) (Arnol’d [1]). We obtain the linear map
v: Hz, — H{(CP'\B;Z,) induced naturally by vo. It immediately follows that
v(x; mod 2) = n(e};_,) + m(ey;), v(y; mod 2) = n(e)) + n(e]) + --- + n(eh;_;), and v
is injective. The map v gives the short exact sequence

0 — Hyg, N H1(CP1\B; 7,) — 7, —0.
Here the map H{(CP'\B;Z,) — Z, is the augmentation map n(e!) — 1. Fix a

1
Weierstrass point P,. Let f; denote zn(e)) +n(e}) for i=0,1,...,2g+1. We
remark that f; may be considered as an element of Hz, and f, =0. For i=

1,2,...,g9, we have the identification

{Xi = hi-1+ fa,
yvi=fo+ i+t S,

in Hz,. It is clear that fo+ fi + -+ fog41 = 0.

For any hyperelliptic curve C and Weierstrass point P; € C, the hyperelliptic
involution 1 fixes /p, and acts on Hyz, as (—1)-times. Then we have the value
of Ip, is 0 or 1/2mod Z from the equation Ip = (—1)311:/. mod Z. We may
consider Ip, € Hom((K ® H)z,,Z), where (K ® H),, denotes (K ® H) ® Zy.

(3.1)

4. Pointed harmonic volumes of hyperelliptic curves and the moduli space
of Riemann surfaces

We recall some results about the moduli space of Riemann surfaces.
Let X, be a closed oriented surface of genus g. Its mapping class group, denoted
here by I'j, is the group of isotopy classes of orientation preserving diffeo-
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morphisms of X, which fix s points on X, for s=0,1. We denote I'y = FO
The group 1"1 acts on the Teichmiiller space ”ql of X, with a marked pomt and
the quotient space M, l'is the moduh space of Rlemann surfaces of genus g with
a marked point. The group F acts naturally on the first homology group
Hi(Z;;Z) of Z,.

Let 7, I ﬂ be the moduli space of hyperelliptic curves of genus g with
a marked Welerstrass point P,. For the rest of this paper, we suppose that a
marked point is a Weierstrass point. The hyperelliptic mapping class group A;
is the subgroup of I'y defined by

{peTy; 1 =19,0(P,) = P},

where 1 is the hyperelliptic involution of X,. We have Al c Fl The moduli
space ! is known to be connected and has a natural structure of a quasi-
prOJectlve orbifold. The group Aq can be considered as its orbifold fundamental
group. For any ZAg-module M, we may consider the dual M* = Hom(M,Z,)
as a ZzA;-module in a natural way. We denote I, = Ip,.

ProposITION 4.1.  We have
O/Al. *
LeH (A;(K®H)"),
ie. I, is a A;-invariam in the dual (K ® H)".

Proof. Let % be a locally constant sheaf with a stalk Homz(K ® H,Z,).
In a similar way to Harris’ method [4], I, varies in #! continuously. For any
hyperelliptic curves, I, = 0 or 1/2 mod Z. We remark that the pointed harmonic
volume is uniquely determined for any point on %l. The locally constant sheaf
& has a global section 1, associated to I,. Moreover %;1 is arcwise connected.
Therefore I, is a constant section of % and I, is invariant under the action of the

orbifold fundamental group A; of Jfgl. O

5. Pointed harmonic volumes of a hyperelliptic curve C

We compute the pointed harmonic volume of a pointed hyperelliptic curve
(Co, P,). See §3 and 4 in [6] for details. We define the hyperelliptic curve Cp
by the equation w? = z%+2 — 1. We take Q; = (0,(—1)'v—1),i=0,1, and P; =
(¢7,0), j=0,1,...,29 + 1, where { = exp(2nv/—1/(2g +2)). We define a path
ej:[0,1] = Gy, j=0,1,...,2g+1, by

(2;@,\/__1 1—(21)2"”) for 0 << 1/2,
((2 20087, /1 1—(2—2;)29+2) for1/2<r<1.

For i=1,2,...,9, we denote by w; a holomorphic 1-form z'~!dz/w on
Co. Itis known that {cw;};,_; , , is a basis of the space of holomorphic 1-forms
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on Cyp. Let B(u,v) denote the beta function fol (1= x)"" dx for u,v> 0.

(2g +2)v-1
= ;. Th h
Set w; 3B/ (29 +2).1/2) ;i en we have

o _ G|
Jwﬁﬁ@mef)mm J@: —,
aj bj +1
where i,j e {1,2,...,g}. The integral L, ! depends only on the homology class
of y, since w] is a closed 1-form.
We compute the iterated integrals of real harmonic 1-forms of C, with
integral periods. Let Q, and Q, be the non-singular matrices whose (i, j)-entries

are
J ! and J o
4 bj
respectively. We define real harmonic 1-forms o; and f;, i=1,2,...,g, by
o o] Bi o]
=R[ (@) "] : and | @ [=-R[(@Q)"
0 w, B, o,

respectively. It is clear that [, a;= [, f; =0 and [, o; =d; = —[, f;, where J;
is Kronecker’s delta. Let ® : H (Cy;Z) — H'(Cy;Z) denote the Poincaré dual.
We have O(x;) = o; and O(y;) = p; for i=1,2,...,9. Hence, {o;,f;},_1, , 18
a symplectic basis of H'(Cy;Z). o
Let ¢, be a complex number Z;]:] (" for any integer u. It is obvious that

g forue (2g+2)Z,
_ )1 for u e 2Z\(2g9 + 2)Z,
u
1 u
lj—g” forue2Z + 1.
Furthermore, ¢, is pure imaginary and ¢_, = —¢, when u is odd. In addition to

the formulas (1), (2), (3), and (4) of Lemma 3.8 in [6], it iS to show

Lemma 5.1. On the curve Cy, we have

5 J oiff; = ———— tk—2i(torx—2j — ta),
(5) L AT Gy )

-1 k J
(6) J wf =——— (tw—si—2 — tou—2i) Y towyou—2i-2 ¢
o 2<g+1>2; 2 ’
Here i, j,ke{l,2,...,g}.

Proof. We compute the case (5) in the following way. Let 4;,, and B;; be
(j,m) and (i,[)-entries of (Q,)"" and (Q)" respectively.
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g g
J up; = J R (Z B; /a),'> R (Z Aj‘ma),’n>
@ a =1 m=1

1 g - _ -
N I =1 1 —r—
-7 E (Bi-lAfsmwlwm+Bi-lAjvmwlwm+BiylA/7mwlwm+Bi»lAj"mw/wm)
a

k[, m=1

1 g i
— R Z (Bl-_lAj’m J ], + Bj 14; n J wlwm>
2 1,m=1 A o

We use Lemma 3.5 in [6] and calculate

Gy Buidin | ofo,

I,m=1

_ Z ¢ 211 _|_&: C ( 1+£ ZW) C<l+m)(2]€71)(1 _2cm+cl+m)

I, m=1 C 2
BN zjm (2k-2)) 1(2k~2i-1) I
~ 3 Y 1 =7 = (1)
g 2%kl
Z—Z > (= " (takiot + toa2i) — (" (tk2i1 — bakaig1)}
m=1 v=2k-2j

C 2ji ]m

1J m(2k—2j)
=5 E 1- —2i— —2i
2 { Cm ( C )(121( 2i-1 + k-2 )

2k—1
Z Cn1(b+1)<12k72i71 — lzk2i+1>}

v=2k—2j

N =

2%k-1
{(lzkzil + tok-2i) (fak-2j — tak) — (Lak-2i-1 — lok—2i41) Z lu+1}

v=2k—2j

=5 {(l‘zkzi1 + toge—2i) (tak—27 — tak) — (tak—2i-1 — tok—2it1) Z tv}~
v=2k—2j+1
Similarly, we have

(g+1) Z B,/Ajmj )@,

I,m=1

NS

2%
{(lzkzm + o 2i) (tog 2 — tox) = (bokaiot — ki) Y tv}~

v=2k—2j+1
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Therefore, we obtain the result

—1 l

oiff; = ————— = R 2(tak—2i—1 + ta—2i) (tok—27 — toxc)
Jak J 2(g + 1)2 2 /

2%
— 2(tok—2i-1 — tak—2i+1) Z ty
v=2k—2j+1
even
=ty it — 1)
2(g+1)* ’
Similarly we compute the case (6). O

Using the symplectic basis {x;, y;}
a basis of K as follows:

iz1.2,..4 © H1(C; Z) stated in §3, we choose

(1) i ®z; (i #J)

(2) xi®yi—x1® ¥ (i#1)

B) xi®yi+yi®x (i=12,....9)(
4) z; ® z; i=12,...,9)

where z; denotes x; or y;, and so on. By the definition of the pointed harmonic
volume I,, we obtain

L(x®yi+yi®x)®z)=0 mod Z for any ik,
and

1/2modZ if z;®z @z =xi@x; ® yi or y; ® i ® X,
0 mod Z otherwise,

I\,(Z,‘ ® Zj ® Z]/c/) = {

for any hyperelliptic curve C. It is enough to consider the case (1) and (2). For
the rest of this paper, we omit mod Z, unless otherwise stated.

We compute the pointed harmonic volume of (Cy, Qp). From Lemma 5.1,
Lemma 3.8 in [6], and the equation L,j_;y =0 (Lemma 4.2 in [6]), it is to show

ProposITION 5.2. Case (1). If i #k and j # k, then we have
Io(5®2 ® =) =0.
If i=k or j=k, then we have
IQo(xi ® Xj ® yi) =N,

(g—Jj+Du if i</,

IQO(X[®){/®yi) = {(29_]'4_2)/1 1fl>],
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IQO()/[@XJ'@X,') = (2g—|— 1)/1,
(g+j+ D if i<y,
Io,(vi ® ¥, ® x;) = .
0,(Vi ® ¥, ® xi) {jﬂ i
Case (2). If i#k and k # 1, then we have
I, (xi ® yi —x1 ® y1) ® z;/) = 0.

If i=k or k=1, then we have

Io,(xi ® yi—x1 ® y1) ®x;) = (9 +2)u,
Io,(xi ® yi —x1 ® ¥1) ® yi) = (29 — i +2)u,
Io,((xi ® yi — x1 ® ¥1) @ x1) = gp,

Ip (i @ yi—x1 @) ® 1) = (9+2)1.

Here we denote u=1/(2g+ 2).

Remark 5.3. From Remark 22 we do not need to compute
I, (x; ® X; ® i), 1g,((¥i ® xi — y1 ® x1) ® x;), and so on.

We calculate the difference between I, and Ip,. For hi @ hh ® h3 e K® H,
we  set Av(hl R ® h3) = Iv(hl R ® h3) — IQo (/l] Rh ® h3) mod Z. Let
4,:10,11 = Cy be a path r— (£0",v/—1V1—129+2)e Cy. Tt is clear that
;1 e 4,’s are loops in Cj at the base point P,. From the equation (2.2) in [4],
we have

LemMmA 54.

Ayl @y ® h3) = (h17h3)J
/

v

/’12 — (hg,hg,)J h] mod Z.
, 4

It is clear that

1 -1 Y
= ——R(ty2i + by2i and J =R .
|, = gt b ST (Z )

These equations and Lemma 5.4 give the following Lemma.

LemmA 5.5. Case (1). If i #k and j #k, then we have
Av(z,-®z_;®z,’c') =0.
If i=k or j=k, then we have
_ [gu if v=1or2,
Alxi @ @ i) = {(2g+ Dy if v 1and2,
ju if v>2i—1,
(g+j+Dp ifv<2i—1,

A(xi @y ® i)
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(g+2)u ifv=1or2,
if v#1and 2,
2g—j+2)u ifv>2i—1,
(g—j+Du ifv<2i—1.
Case (2). If i#k and k # 1, then we have

AYi®x®x;) =

ANyi®y ®x) = {

A ®@yi—x1 ® 1) ®Z,/(I) =0.
If i=k or k=1, then we have
_Jor if v=2j—1 or 2j,
Ay((xi ® yi = x1 ® 1) ® xi) _{(2 + Du if v#2j—1 and 2/,

ifv>2i—1,
+i+ D ifv<2i—1,

A((xi ® yi —x1 @ »1) ® i) (g
(g+2)u ifv=1or2,

{u if v#1and 2,

A((Xi®yi—x1® y1) ®x1)

g+ DHu if v>1,

((Xl@yl_x1®yl ®y1 = qgu lfVSl.

By combining Proposition 5.2 and Lemma 5.5, we have the pointed har-
monic volume I, of (Cy, P,).

THEOREM 5.6. Case (1). Elements of K® H at which the values of the
pointed harmonic volume I, are 1/2 mod Z are given by
Xi®x®yi, x0x,®y if v=2—-1 or 2
Xi®y®yi, V®xi®y if (i<jv>2—1)or (i>jv<2—-1),
Vi®x®x, xQy®x if v=2 -1 or 2,
Yi®yi®xi, y®yi®x if (i<jv>2i—1)or (i>jv<2i—1).
The values at the other elements are 0 mod Z.
Case (2). Elements of K ® H at which the values of the pointed harmonic
volume I, are 1/2 mod Z are given by
x®yi—-x1®y1)®x;, (Yi®xi—y1®x1)®x; if v#£2i—1 and 2i,
X ®yi-x®y)®yi, (Vi®xi—-y»®x)®y if v<2i-1,
X ®yi—x1®@y)®x1, (¥®xi—y1®x1)®x; if v#1 and 2,
(Xi®yi—x1®y)®y1, (Vi®xi—-y®x)®y if v>1
The values at the other elements are 0 mod Z.
From Proposition 4.1, this theorem can be extended to any hyperelliptic

curve C with Weierstrass base points. But this extension is complicated. We
reconsider Theorem 5.6 from a combinatorial viewpoint. We apply an element
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AeK® H to the identification (3.1) in the group (K ® H),,. Then we have

(Amod2)=>" ., Apgrfy ® Sy ® f, where A4,,,€Z,={0,1}. The nota-
tion # means the cardinality of a set. A counting function x,: K ® H —
12/Z ={0,1/2} is well-defined by

1
Ky(A) = 3 (#{(p,q.1); Ap g.r = 1,#{p,q,r} =2}) mod Z.

Here #{p,q,r} =2 means p=g #rorqg=r+# porr=p#gq. By the long but
easy computation, we obtain the correspondence.

COROLLARY 5.7. On the curve Cy, we have
I,(A) = x,(A) mod Z.
Example 58. (1) f A=x,®x;® y; (i<j and v=2j—1), we have
ky(A) = 10((foie1 + 121) ® 53 ® (Jo+ fi + -+ faiz1))
=x,(f2ii1 ®fy ® fai1) =1/2.
R IfA=x®x;®y (i>jand 2i <v), we have
Kko(A) = 1 ((faim1 + f21) @ (-1 + ) @ (o + /i + - + faim1))
= 15,(f2ic1 ® f2i-1 ® frjm1 + fric1 @ frj-1 ® fric1 + fric1 @ f2j ® fo

+ /i1 @ 155 ® frict + [5i ® fri-1 @ frj—1 + o ® o ® f))
=1/24+1/2+1/2+1/2+1/2+1/2=0.

6. A combinatorial formula of 7,

In this section, we compute the pointed harmonic volume 7, = Ip, of (C, P,)
by another combinatorial way. Let S»,,; be the (2g + 1)-th symmetric group.
Using the natural projection A; — S»441, the group Hy, is naturally considered as

a ZSy,1-module (Arnol’d, V. L. [1]). From the slight modification of Lemma
5.5 and Proposition 5.7 in [6], we have

LemMmAa 6.1.
H(A: (K@ H)') = H(Syg11: (H)) = Zo.

Moreover the unique nontrivial element 1, € H'(Sayi1; (H®?)") is an Syy1-
homomorphism H®3 — Z, defined by

1 i}(‘ #{i7j7k}:27

0 otherwise,

Wi ® £ ® fi) = {

for any i, j, k except for v.
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From Lemma 6.1, we have
THEOREM 6.2. For A€ K ® H, we have
I,(A) = x,(A) mod Z.

Using the equation f;i=n(e)) +n(e/), we obtain (4mod2)=

> parApq,mle,) @nle,) ® n(e;). Another counting function xy:K® H —

1Z/Z =1{0,1/2} is defined by

1
K (A) = 5(#{(17,(1, N4, =1,#{p,q,r} =2,p,q,r #v}) mod Z.

COROLLARY 6.3.
1,(A)

k! (A) mod Z.

Proof.:  We use the notation e(p,q,r) =n(e,) ® n(e,) @ n(e;) only here.
The equation

ﬁ@ﬁ,@fr:e(p7q7r)+e(p,q,v)+e(p,v,r)+e(p,v,v)
+e(v,q,r)+e(p,q,v)+e(v,v,r)+e(v,v,v)
gives x,(A4) = x[(A4). ]
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