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SOME CHARACTERIZATIONS OF QUATERNIONIC

KAEHLERIAN MANIFOLDS WITH CONSTANT

Q-SECTIONAL CURVATURE

BY SANG-SEUP EUM AND JIN SUK PAK

An n-dimensional Riemannian manifold M is of constant curvature, as is
well known, if and only if there exists an umbilical hypersurface with constant
mean curvature passing through every point with every (n—Indirection at the
point (See [3]), and that M is conformally flat if and only if there exists an
umbilical hypersurface passing through every point with every (n—Indirection
at the point (See [3]. Tachibana and Tashiro [4] proved that a 2n-dimensional
Kaehlerian manifold is of constant holomorphic sectional curvature k if and
only if there exists a hypersurface with the second fundamental tensor Kba of
the form

u being a unit vector field, passing through every point and being tangent to
every (2n—Indirection at the point. So, we may expect an analogous conditions
for a 4m-dimensional quaternionic Kaehlerian manifold (4m ̂ 8) to be of constant
Q-sectional curvature c. In this sense we shall prove our main theorem giving
a characterization of a 4m-dimensional quaternionic Kaehlerian manifold (4m^8)
with constant Q-sectional curvature, as follows:

THEOREM. For a Arn-dimensional quaternionic Kaehlerian manifold M(4m^8),
the following three conditions are equivalent to each other:

(A) M is of constant Q-sectional curvature c.

(B) The system of partial differential equations

is completely integrable with unknown functions Xu {F, G, H} being the quater-
nionic Kaehlerian structure of M.

(C) There exists a hypersurface having the second fundamental tensor Kha of the
form
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Kba = -j-gba-(ubua+vbva+wbwa)

and passing through every point with every (4m—1)-direction at the point, where
u, v and w are certain mutually orthogonal unit vectors appearing in (2.1).

The authors thank Prof. S. Ishihara for his valuable suggestions and en-
couragement in developing of this paper.

1. Preliminaries

We shall recall some definitions and theorems given in [1] for later use.
Let M be a differentiate manifold of dimension n, and assume that there is a
3-dimensional vector bundle V consisting of tensors of type (1,1) over M satis-
fying the following conditions:

(1) In any coordinate neighborhood {0 yh}, there is a local base {F, G, H)
of V such that"0

FJF? = -d), GΛ*G/=-3J, H^H^-δ),

Gh

tH* = -Hh*GJ

h = FJ

t, Hh*F* = -Fh*H,h = GS, FΛ 'G/==-GA F/ = # / .

(2) There is a Riemannian metric # such that g(φX, Y)+g(X, φY)=0 holds
for any cross-section φ of V.

(3) Vff^rfif

(1.2) rjGf^-rjF

V being the Riemannian connection of (M,g), where Ft

h, Gt

h and Ht

h are res-
pectively the components of F, G and H in {0 yh}, pJy q3 and r3 certain local
1-forms defined in 0, and X, Y arbitrary vector fields. Such a local base
{F, G, H} is called a canonical local base of the bundle V in 0, and (M, g, V)
or M is called a quaternionic Kaehlenan manifold and (g, V) a quaternionic
Kaehlerian structure. Thus a quaternionic Kaehlerian manifold is necessarily
of dimension n—^m ( m ^ l ) and orientable (See [1]). We put Fih = Ft

sgsh, Gih

=GiSgsh and Hih=Hι

sgshy where gjt are components of the Riemannian metric g.
Denoting by Kkjί

h components of the curvature tensor of (M, g\ we put Kkjih

=KkjiSgsJι- The following formulas were proved in [ 1 ] :

k j t h ι k j i t F h

t = CkjGih—BkjHih,

(1.3) K^GS+KkjuGS = -CkjFih+ΛkjHih,

Hκ = BkjFih—ΛkjGkjFih—ΛkjGih,

*) The indices Λ, ί, j , k, s, t run over the range {1, 2, •••, 4m} and the summation
convention will be used with respect to this system of indices.
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where ΛkJt BkJ and CkJ are defined by

( L 4 ) A*k= 4m(m+2) Fjk> Bkj== 4m(m+2) G*k a n d C*> = 4m(m+2) Hjk>

k being the scalar curvature of (M, g), if dimM=4m^8.
Let P be an arbitrary point in a quaternionic Kaehlerian manifold (M, g ) of

dimension 4m and J£ a tangent vector of M at P. Then the 4-dimensional sub-
space Q(X) of the tangent space of M at P defined by

Q(X)={Y = aX+bFX+cGX+dHX\a, b, c, d^R}

is called the Qsection determined by X.
If we denote by σ(X, Y) the sectional curvature of M with respect to the

section spanned by X and F a t a point, then it is by definition given as

σ(X, Y)^-KkμhX
kY^Xi

where \\X\\ is the length of X. Using (1.3) and (1.4) gives

σ(X, FX) = k/4m(m+2)-K(X, FX, GX, HX),

(1.5) σ(X, GX) = k/4m(m+2)-K(X, GX, HX, FX),

σ(X, HX) = k/Am(rn+2)-K(X,HX,FX,GX)

for a unit vector X if dimM=4m^8 (See [1]). If the sectional curvature σ
(Y,Z) is a constant^ p(X) for any Y,Z<=Q(X), then p(X) is called the Q-sec-
tional curvature of (M,g). S. Ishihara [1] proved the following Theorems A
and B:

THEOREM A. Let Q(X) be a Qsection at a point P of a quaternionic Kae-
hlerian manifold (M, g). Then the sectional curvature σ(Yy Z) with respect to
the section spanned by any Y, Z^Q(X) is a constant p(X) if and only if K(Y, Z)
Y-p(X)Z^Q1(X) for any Y,Z^Q(X), and in such a case we have ρ(X) =
(k/4rn(rn+2))\\X\\2, where Qλ(X) denotes the orthogonal complement of Q(X) in
the tangent space of M at P, k the scalar curvature, and dimM=4ra (^8).

THEOREM B. A quaternionic Kaehlerian manifold of dimension 4m ̂ 8 is of
constant Qsectional curvature c=c{P) if and only if its curvature tensor has com-
ponents of the form

— GjhGki—2GkjGih+HkhHji—HjhHkι—2HkjHih),

where c=c(P) is necessarily a constant.
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2. Hypersurfaces in a quaternionic Kaehlerian manifold of constant Q-
sectional curvature

Let M be a real hypersurfacejn a quaternionic Kaehlerian manifold M of
dimension Am. We assume that M is covered by a system of coordinate neig-
hborhoods {0 yh}*\ Then M is covered by a system of coordinate neighbor-
hoods {U; xa}, where U—Ur\M.^ When M is represented by yJ=y*(xa) in terms
of local coordinates (yj) in U(dM) and (xα) in U(czM), we denote the vectors
9ay

J (da=d/dxa) tangent to M by Ba

3 and the unit normal vector by NJ. Then
the transforms Fh

ιBa\ Gh

ιBa

h, Hh

ιBa

h and Fh

ιNh, Gh

ιNh, Hh

ιNh of Bα

h and Nh

by the canonical local base {F, G, H} in {0 y } can be respectively expressed
as linear combinations of Bα

h and ΛfΛ, that is,

Fh

%Bα

h = φα'B^+UαN1, Fh

ιNh = -uαBα

ι,

(2.1) Gh

ιBα

h = φα

bBb^vαN
i, GΛWΛ = - ? ; α 5 α

ι ,

Hh

ιBα

h = ΘJB

where 0α

δ, 0 α

δ and ^α

δ are tensor fields of type (1, 1), uα, vα and wα 1-forms,
uα=ubg

αb, vα=vbg
αb and wα=wbg

α\ gbα=gjiBb

JBα

ι the Riemannian metric in M
induced from that of M and (g^—igbα)'1- Then, using (1.1) and (2.1), we can
easily verify

(2.2) ΦαbΦcα=-%+vev
b, φb

αvb = 0,

θα

bθc

α=-δb+wcw\ θb

αwb = 0,

and

φb

αVα =-Wb,

φb

αUα = Wb ,

W = -Φte+vbw
e, φb

αwα = -ub,
(2.3)

φ c θ α φ c c θ b

α v α = u b ,

Φα°θb

α = -ψb

C + WbU
C , θb

αUα =-Vb9

OαΦb* = Φbcjrubw
c, φb

αwα = vb.

We denote by Vα the operator of covariant differentiation with respect to

the Christoffel symbols { £ λ formed with gbα. Then the equations of Gauss and

*) Here and in the sequel the indices h, i, j , k, s, ΐ run over the range {1, 2, •••,
Am} and the indices α, b, c, d, e over the range {1, 2, •••, 4m —1>. The summa-
tion convention will be used with respect to these two systems of indices.
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Weingarten are respectively

(2.4) FcBb* = KcbN*, FCN* = -Kc

bBb*,

where

XkiJ bεing the Christoffel symbols formed with gjif and where Kcb is the second

fundamental tensor of M with respect to the normal vector N* and Kc

a=Kcbg
ba.

Differentiating (2.1) covariantly along M and taking account of (2.4) we get

(2.5) Fcθb

a = qcφb

a-pcψb

a-Kcbw
a+Kc

awb;

Fcub = rcvb-qcwb-Kcaφb

a, F cvb = -rcub-
i

Γpcwb-Kcaψb

a,

Vcwb = qcub-pcvb-Kcaθb

a,

where pe=PjBc

J, qc=qjBc

J and rc=rjBc

J.
When the ambient manifold M is of constant Q-sectional curvature, subs-

tituting (1.6) in the equation of Codazzi

(2.6) FcKba-FbKca - KkjihBc

kBb>BJNh

gives

(2.7) PcKba-FbKca = -j-(ueφba-ubφca-2φebua+veφca-vbφea

-2ψcbva+wcθba-wbθca-2θcbwa),

where φba—φbCgca, Φba—ψbgca and Oba=θb

cgca. Thus we have

PROPOSITION. There is no umbilical real hypersurface in a quaternionic
Kaehlerian manifold M (dim M^8) of constant Q-sectional curvature c, if cφO.

Proof. If there is an umbilical real hypersurface in M, we may put Kcb—
μgcb. Substituting this into (2.7) and transvecting with gba, we can easily see
that Fcμ=0 because of (2.2). Hence c=0.

Remark. If {u, v, w) appearing in (2.2) is a Sasakian 3-structure (See [2]),
that is, if u, v and w are three Sasakian structures which are mutually ortho-
gonal and satisfy the relations [w, v] = 2u/, [y, w~\ — 2u and [_w, u\ — 2v, then
from (2.5) we have

(2.8) ubδ
a

c-uagbc = rcψb

a-qcθb

a-Kcb
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(2.9) φcb = rcvb-qcwb-Kcaφb

a,

(2.10) vbδ*-υagbe = -rcφb

a+pcθb

a-Kcbv
a+Kc

avb,

(2.11) ψcb = -rcub+pcwb- Kcaφb

a.

Transvecting (2.9) with vb and wb respectively gives

— wc — rc—Kcaw
a, vc = —qc+Kcaw

a

because of (2.3). If we transvect (2.8) with ψa

b and θb respectively and take
account of (2.2), (2.3) and the equations above, we get (4m—3)rc=0 and (4m—3)
qc=0, and consequently qc=rc=0. Similarly if we transvect (2.10) with θb and
transvect wb to (2.11) respectively, we can also see pc=0 because of (2.2), (2.3)
and qc=rc=0. Therefore (2.8) and (2.10) become

(2.12) ubδ<}-uagbc = -Kcbu
a+Kc

aub,

(2.13) vb9*-vagbc = -Kcbv
a+Kc

avb.

Contracting (2.12) with respect to a and c gives Kcbu
b=auc for certain function

a in M, and consequently transvecting (2.12) with ua gives

Kcb=gcb+(a-l)ucιιb.

By a quite same advice we also have from (2.13)

where β is also a function in M. Since u and v are mutually orthogonal unit
vectors, we find Kcb=gcb. Hence by means of the previous proposition, when
cφO, {U, v, w} cannot be a Sasakian 3-structure.

3. Proof of the main theorem

We first consider the system of partial differential equations

(3.1) ViX^-^

for an arbitrary vector X. Then by using (1.2) and (3.1) itself we can easily
verify

+Gk

tGji-G;GH-2GkjGi

t+Hk%i-H/HH

—IHkjH^Xt.

Thus the necessary and sufficient condition for the system (3.1) to be completely
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integrable is that the curvature tensor Kkjih of M has the form (1.6) because
of the integrability condition

of (3.1). Hence by using Theorem B we find the equivalence (A)«-*(B).

Remark. Any solution X% of differential equation (3.1) is not globally defined
evenwhen the manifold is simply connected if the manifold is complete. We
shall now show this fact in the folio wings. From (3.1) we easily obtain XΨ 3XX

=(\\X\\2jrc/4:)Xτ, which means that any integral curve γ of the vector field Xh

is a geodesic. Denote by γh the components of the tangent vector of γ (with
arclength as its parameter). Then transvecting (3.1) with γjγι implies that

d\\X\\/ds=\\Xf+c/i

holds along γ. Integrating the differential equation above gives along γ

-(Vc/2) cot {(V?s/2)+(ττ/2)+α} , (c>0)

-(VTcΓ/2) coth{(VTcΓs/2)+α} , (c<0)

(c=0)

where a is an arbitrary constant. This equation shows that Xh is not globally
defined if the manifold is complete.

Next we assume that there exist hypersurfaces satisfying the condition (C)
stated in the theorem. Then, using the equation (2.6) of Codazzi, we have

(3.2) KkjihBc

kBbWa

ιNh = — l - ( 2 φ c b u a + u b φ c a - u c φ b a + 2 ψ c b v a + v b ψ c a

-vcψba+2θcbwa+wbθca—wcθba).

Transvecting (3.2) with φchua and taking account of (2.1), (2.2) and (2.3), we find

2(m-l)c= {Fk>-NKFt'N
t)+(Ft

kNt)N'KF*Nβ)NhKkJih.

Since FkjKkjih = (k/2(m+2))Fhι which is a consequence of (1.3) and (1.4) (See
[1]), the above equation implies

(3.3) 2(m-l)c = k/2(m+2)-2σ(N, FN).

Transvecting (3.2) with ψcbva and θcbwa respectively, we can similarly find

2(m-l)c = */2(m+2)-2σ(iV, GN),
(3.4)

2(m-l)c = k/2(m+2)-2σ(N, HN).

On putting c=fc/4m(ra+2), (1.5), (3.3) and (3.4) give
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(3.5) K(N, FN, GN, HN) = K(N, GN, HN, FN) = K(N, HN, FN, GN) = O.

On the other hand, from the first equation of (1.3), we have

KkjthN
kGs

JNsFι

tNiGr

hNr+KkjUNkGs

JNsNίHr

tNr = 0

because of (1.1) and (1.4). Thus we obtain

(3.6) K(N, GN, N, HN) = 0

since KkjthN
kGs'NΨι

tNίGr

hNr = (KkjthBc

kB^Ba

tNh)ucvbva = O.

Similarly, using the second and third equations of (1.3), we also obtain

(3.7) K(N, FN, N, GN) = Q, K(N, HN, N, FN) = 0.

Combining (3.5), (3.6) and (3.7), we get K(Y,Z)Y-(k/4m(m+2))ZeiQ±(N) for
any Y, Z<Ep(ΛΓ)^and consequently Theorem A implies the implication (C)-»(A).

Finally let M be a 4m-dimensional (4m^8) quaternionic Kaehlerian manifold
of constant Q-sectional curvature c. Then the system (3.1) of partial differential
equations with unknown vector field X is completely integrable. Let P be an
arbitrary point and consider a solution of (3.1) with arbitrary initial value (Xι)P

at P satisfying (gjiX
jXi)P = l. Putting ω=Xidyι, we find dω — ΰ because of

FjXi=PιXJ. Thus the pfaffian equation ω=0 is completely integrable. Let M
be the integral manifold of ω=0 passing through P. Since X1 is normal to M,
we can put Xi=μNί, where μ is a function in M. Substituting (3.1) and X3

=μNj into the equation of Weingarten Bb

jBaΨJXι =—μKba for M, we have

(3.8) Kba = agba+μ(ubua+vbva+whwa),

where we have put a=—c/4μ. Thus, differentiating covariantly the both sides
of (3.8) along M, we can find

F cKba-F bKca = (F Ca)gba-(F ba)gca+(F cμ)(ubua+vbva+wbWa)

- ( F \ μ ) ( u e u a + v e v a + w e w a ) — γ ( 2 φ c b u a + u b φ c a - u c φ b a

+2ψcbva+vbψca-vcψba+2θcbwa+wbθca-wcθba),

from which and (2.7),

(Vc<*)gba—(Pb°ί)gca+(Fcμ)(ubua-+-vbva-\-wbwa)—(Fbμ)(ucιιa+vcva+wcwa) = 0 .

Transvecting the above equation with gba and uhua+vJ)vajrwhwa, we find res-
pectively

(4m-2)Fca+3Fcμ-(uaFaμ)uc-(vaFaμ)vc-(waFaμ)wc==0,

3yca-(uaF aa)uc-(vaF aa)vc-(wΨ aa)wc
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+3Fcμ-(uΨaμ)uc-(vΨaμ)vc-(wΨaμ)wc=0.

Combining the last two equations, we get

(4m-5)F cα + (uaFaa)uc+(vaFaa)vc+(wΨaa)wc=O,

which implies that

uΨca = vΨea = wΨca — 0

and consequently that Fca=0. Hence, taking account of aμ=—c/Af we have
μ= const. By means of the initial condition we find μ2=l. Thus we may
suppose that μ=—l, which implies

ba = -j-gba-(ubua-i-vbva-\-wbwa)

because of (3.8) and aμ——cjL As P and the initial value (XZ)P of direction
at P are arbitrary, we complete the proof for the implication (A)—>(C).
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