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SOME CHARACTERIZATIONS OF QUATERNIONIC
KAEHLERIAN MANIFOLDS WITH CONSTANT
Q-SECTIONAL CURVATURE

By SaNG-SEUP EuM AND JIN SUK PAK

An n-dimensional Riemannian manifold M is of constant curvature, as is
well known, if and only if there exists an umbilical hypersurface with constant
mean curvature passing through every point with every (n—1)-direction at the
point (See [3]), and that M is conformally flat if and only if there exists an
umbilical hypersurface passing through every point with every (n—1)-direction
at the point (See [3]. Tachibana and Tashiro [4] proved that a 2n-dimensional
Kaehlerian manifold is of constant holomorphic sectional curvature % if and
only if there exists a hypersurface with the second fundamental tensor K,, of
the form

Kyo=Zpa—kusu,,

u being a unit vector field, passing through every point and being tangent to
every (2n—1)-direction at the point. So, we may expect an analogous conditions
for a 4m-dimensional quaternionic Kaehlerian manifold (4m=8) to be of constant
Q-sectional curvature ¢. In this sense we shall prove our main theorem giving
a characterization of a 4m-dimensional quaternionic Kaehlerian manifold (4m=8)
with constant Q-sectional curvature, as follows:

THEOREM. For a 4m-dimensional quaternionic Kaehlerian manifold A7I(4m;8),
the following three conditions are equivalent to each other:

(A) M is of constant Q-sectional curvature c.

(B) The system of partial differential equations

VX, =8t X, X~ F XF X, G X,G X~ H X H,' X,

1s completely integrable with unlinown functions X,, {F, G, H} being the quater-
nionic Kaehlerian structure of M.

(C) There exists a hypersurface having the second fundamental tensor Kyq of the
form
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Kyo= %gba_(ubua"f_vbva'i' wbwa)

and passing through every point with every (dm—1)-direction at the point, where
u, v and w are certain mutually orthogonal unit vectors -appearing in (2.1).

The authors thank Prof. S. Ishihara for his valuable suggestions and en-
couragement in developing of this paper.

1. Preliminaries

We shall recall some definitions and theorems given in [1] for later use.
Let M be a differentiable manifold of dimension 7, and assume that there is a
3-dimensional vector bundle V consisting of tensors of type (1,1) over M satis-
fying the following conditions:

(1) In any coordinate neighborhood {U; y}, there is a local base {F, G, H}

of V such that®
FyFr=—0t, Gy'G,'=—0dt, H,*H*=-d:,

1.1 .
GhtH]h — _Hnthh — FJi , thFJh — ___thHJh — Gji , FhlGJn = _GthJh — HJ: .

(2) There is a Riemannian metric g such that g(¢X, Y)+g(X, ¢Y)=0 holds
for any cross-section ¢ of V.

(3) Vthh :erih_Qszh ’
(1.2) VjGih = _erlh_l_ijlh ’
Vszh = quzh_ijin ’

V being the Riemannian connection of (M, g), where F,*, G;* and H,* are res-
pectively the components of F, G and H in (0 y, P, 4, and r, certain local
1-forms defined in UJ, and X, Y arbitrary vector fields. Such a local base
{F, G, H} is called a canonical local base of the bundle V in U, and (A7I, g V)
or M is called a quaternionic Kaehlerian manifold and (g, V) a quaternionic
Kacehlerian structure. Thus a quaternionic Kaehlerian manifold is necessarily
of dimension n=4m (m=1) and orientable (See [1]). We put F;,=F,2m, G
=G,*gy, and H;,=H,*g,,, where g;; are components of the Riemannian metric g.
Denoting by K,;" components of the curvature tensor of (M, g), we put K
=K,;;’gsn. The following formulas were proved in [1]:

Kkjttht_i'Kkjichz = ijGih_Bijih ’

(1.3) Kkijit‘I‘K/e,mGh2 = —ijFih‘l‘Aijin ’
Kkjctht‘f‘Kkaht = BkjFih_Aijih ’
*) The indices 4, i, j, k, s, t run over the range {1, 2,---,4m} and the summation

convention will be used with respect to this system of indices.
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where A, B, and C;, are defined by

k k
14) Ajk=ijk, Bkamek and Ckr—m ik

k being the scalar curvature of (M g), if dim M—4m>8

Let P be an arbitrary point in a quaternionic Kaehlerian manifold (M g) of
dimension 4m and X a tangent vector of M at P. Then the 4-dimensional sub-
space Q(X) of the tangent space of M at P defined by

QX)={Y=aX+bFX+cGX+dHX]|a, b, ¢, d=R}

is called the Q-section determined by X. N
If we denote by ¢(X, Y) the sectional curvature of M with respect to the
section spanned by X and Y at a point, then it is by definition given as

o(X, Y)=—KpunX*Y? XY /(IXIP|YI*—&(X, Y)*),
where | X]| is the length of X. Using (1.3) and (1.4) gives
o(X, FX)=Fk/4m(m+2)—K(X, FX, GX, HX),
(1.5) o(X, GX)=k/4m(m+2)—K(X, GX, HX, FX),
o(X, HX)=Fk/4m(m+2)—K(X, HX, FX, GX)

for a unit vector X if dim M=4m=8 (See [1]). If the sectional curvature o
(Y,Z2) is a constant o(X) for any Y, ZeQ(X), then p(X) is called the Q-sec-
tional curvature of (M g). S. Ishihara [1] proved the following Theorems A
and B:

THEOREM A. Let Q(X) be a Q-section at a point P of a quaternionic Kae-
hlerian manifold (M, g). Then the sectional curvature o(Y, Z) with respect to
the section spanned by any Y, ZeQ(X) 1s a constant p(X) 1f and only if K(Y, Z)
Y—p(X)Z Q*(X) for any Y, Ze Q(X), and in such a case we have p(X)=
(k/4m(m+2))| X|?, where Q+(X) denotes the orthogonal complement of Q(X) in
the tangenl space of M at P, k the scalar curvature, and dim M=4m (=8).

THEOREM B. A quaternionic Kaehlerian manifold of dimension 4m=8 is of
constant Q-sectional curvature c=c(P) if and only if ils curvature iensor has com-
ponents of the form

Kkjih = *Z‘(gkhgji—gjhgln +Flthji_thFki—ZijFih+Gthji

- Gjnth—“ZijGin'*'Hanji"“Hjnsz_ZijHm) ’

where ¢=c(P) is necessarilv a constant.
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2. Hypersurfaces in a quaternionic Kaehlerian manifold of constant Q-
sectional curvature

Let M be a real hypersurface in a quaternionic Kaehlerian manifold M of
dimension 4m. We assume that M is covered by a system of coordinate neig-
hborhoods {U ; ¥"}*®. Then M is covered by a system of coordinate neighbor-
hoods {U; x%, where U=U NM. When M is represented by y’=y’(x*) in terms
of local coordinates (37) in 0(CM) and (x%) in U(CM), we denote the vectors
0.y’ (0,=0/0x") tangent to M by B,’ and the unit normal vector by N’. Then
the transforms F,'B.", Gi'B."*, H,'B,* and F,*N*, G,*N*, H,*N" of B,* and N"
by the canonical local base {F, G, H} in {l7 ; '} can be respectively expressed
as linear combinations of B,* and N*, that is,

thBah — ¢abBbt+uaNi , thNh — _ua.Bat ,
(21) GhIBah :SbubBbl'}'vaNi ’ Gthh =—v°B;’,
thBah = 0abBb1+waNi y Hnth - —w“Bal ’

where @,% ¢,° and 6,° are tensor fields of type (1, 1), u,, v, and w, l-forms,
Ut=u,g»°, v2=v,g" and w*=w,g%, 8,,=&;iBy’B,* the Riemannian metric in M
induced from that of M and (g°*)=(gs.)"*. Then, using (1.1) and (2.1), we can
easily verify

0Pt =—N+uu’,  $ut=0, wut=l1,
2.2) OLlPt=—8+v’, =0, v*=1,
0abﬁc“=—52+wcwb, ﬂb“waO, wbwaI N
and
Do = —0, +um°, D" Ve = —wy,
¢ac¢'ba =0, +vyu’, ¢baua =Wy,
0ac¢ba=—¢ c+vbwcy ¢ awa:_u )
©23) b b b
¢acﬁba:¢bc+wbvcy 0 ve=1uy,
¢acaba:—¢bc+wbucy 05 Ue=—1,,
0ac¢ba:¢'bc+ubwc , ¢bawa:vb .

We denote by V, the operator of covariant differentiation with respect to
the Christoffel symbols {cil} formed with g,,. Then the equations of Gauss and
*) Here and in the sequel the indices h, i, j, k, s, t run over the range {1, 2,---,

4m} and the indices a, b, ¢, d, e over the range {1, 2,.--, 4m—1}. The summa-
tion convention will be used with respect to these two systems of indices.
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Weingarten are respectively
(2.4) V.By'=K,N*, V.N*=—K/"B,*,
where

PoBy' =08~ { G} B+ {f } BBy, PN'=0NH{ L BAN,

{]:]} being the Christoffel symbols formed with g;;, and where K., is the second

fundamental tensor of M with respect to the normal vector N¢ and K,°=K,,g"*
Differentiating (2.1) covariantly along M and taking account of (2.4) we get

Vs =70y —q.0,*— K u®+ K, "u,,
Vop® =—7.0"+c0,*— K 0+ K, v,

(2.5 V0" =q.0"— Dby — K o+ K, wy ;
Voy=r0p—qewo—Keohp®, Vevy=—rup+Dws—Keahs®,
Vewy=qouy—p.vy—Kea,*,

where p.=p;B.’, .=q;B.’ and r,=r;B.’ .
When the ambient manifold M is of constant @-sectional curvature, subs-
tituting (1.6) in the equation of Codazzi

(2~6) Vcha_Vcha:KkjithkaJBalNh
gives
(27) Vcha—Vcha :%(uc¢ba_ub¢ca—2¢cbua+vc¢ca_vb¢ca

_2¢cbva+wcaba-wbeca'—26cbwa) ’
where ¢ba=¢bcgcay (/}ba:S[)bcgca and 0ba:000gcg,- Thus we have

PROPOSITION. Th~ere is no umbilical real hypersurface in a quaternionic
Kaehlerian manifold M (dim M=8) of constant Q-sectional curvature c, if c+0.

Proof. 1f there is an umbilical real hypersurface in 1\71, we may put K, ,=
[8e. Substituting this into (2.7) and transvecting with g*% we can easily see
that V.¢=0 because of (2.2). Hence ¢=0.

Remark. If {u, v, w} appearing in (2.2) is a Sasakian 3-structure (See [2]),
that is, if %, v and w are three Sasakian structures which are mutually ortho-
gonal and satisfy the relations [u, v]=2w, [v, w]=2u and [w, u]=2v, then
from (2.5) we have

(2'8) ubag‘—uagbc:rc¢ba_qc0bu_chua+Kcaub ’
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(2-9) ¢cb =TVp—qcWp— Kca¢ba ’
(2~10) vbag_vagoc - _rc¢ba+pcebE_chva+Kcan )
2.11) Peo=—Tchp TP Wp— KeaDp® .

Transvecting (2.9) with v* and w® respectively gives
—w,=7.—K,w?, Ve=—¢q.+ K w*

because of (2.3). If we transvect (2.8) with ¢, and 6,° respectively and take
account of (2.2), (2.3) and the equations above, we get (dm—3)r,=0 and (4m—3)
g.=0, and consequently ¢,=7,=0. Similarly if we transvect (2.10) with 6,® and
transvect w® to (2.11) respectively, we can also see p.=0 because of (2.2), (2.3)
and ¢,=7,=0. Therefore (2.8) and (2.10) become

(2.12) U0 —u’gye = — Koyu®+ K *uy
(2.13) V08— 08y = — K0+ K v, .

Contracting (2.12) with respect to a and ¢ gives K ,u’=au, for certain function
a in M, and consequently transvecting (2.12) with u, gives

ch:gcb+(a—l)ucuh .
By a quite same advice we also have from (2.13)
chzgcb'*"(ﬁ—l)vcvb ’

where B is also a function in M. Since # and v are mutually orthogonal unit
vectors, we find K.,,=g.. Hence by means of the previous proposition, when
¢#0, {u, v, w} cannot be a Sasakian 3-structure.

3. Proof of the main theorem

We first consider the system of partial differential equations
(3.1 V,X=—4 gt X, Xi—F XF X~ G, X.G X~ H! X H /X,

for an arbitrary vector X. Then by using (1.2) and (3.1) itself we can easily
verify

VkVJXi‘“VijXi-_- _'Z_(5igji—aj‘gkt+FktFji_F]tFki—2ijF1.t
‘f‘Gk‘Gﬁ—GJtGki—ZijGi‘—i-Hk'Hji-—H]‘H“
—2H,;HYHX,.

Thus the necessary and sufficient condition for the system (3.1) to be completely
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integrable is that the curvature tensor K,;;, of M has the form (1.6) because
of the integrability condition

VkV]Xl‘—VijX,,:—K},ﬂ‘Xz
of (3.1). Hence by using Theorem B we find the equivalence (A)«(B).

Remark. Any solution X, of differential equation (3.1) is not globally defined
evenwhen the manifold is simply connected if the manifold is complete. We
shall now show this fact in the followings. From (3.1) we easily obtain X ,X,
=(|| X|*+¢c/4) X,, which means that any integral curve y of the vector field X"
is a geodesic. Denote by 7" the components of the tangent vector of y (with
arclength as its parameter). Then transvecting (3.1) with #77* implies that

dl XIl/ds= XI*+c/4

holds along 7. Integrating the differential equation above gives along 7

—(+/¢/2) cot {(Vcs/2)+(x/2+a},  (c>0)
1XIl=y —(+/Tc[/2) coth{(+/Tc[ s/2)+a}, (c<0)
—1/(s+a), (c=0)

where @ is an arbitrary constant. This equation shows that X" is not globally

defined if the manifold is complete.
Next we assume that there exist hypersurfaces satisfying the condition (C)
stated in the theorem. Then, using the equation (2.6) of Codazzi, we have

(3.2) KkjithkajBalNh =— —Z—(2¢cbua+ub¢ca"uc¢ba+2¢'cbva+vb¢ca

_vc¢ba+20cbwa+wbeca—wcaba) .
Transvecting (3.2) with ¢°®u® and taking account of (2.1), (2.2) and (2.3), we find
2(m—1)c={F¥—N¥FN)+(F N YN} (F N )N Ky i, .

Since F* K= (k/2(m+2))F,, which is a consequence of (1.3) and (1.4) (See
[17), the above equation implies

(3.3) Am—1)c=k/2(m+2)—25(N, FN).

Transvecting (3.2) with ¢®® and 6°w® respectively, we can similarly find
2m—1)c=k/2(m+2)—20(N, GN),

39 2(m—1)c=Fk/2(m~+2)—20(N, HN).

On putting c=k/4m(m+2), (1.5), (3.3) and (3.4) give
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(35) K(N, FN, GN, HN)=K(N, GN, HN, FN)=K(N, HN, FN, GN)=0.
On the other hand, from the first equation of (1.3), we have

KpjinN*GI N FIN'G*N™+ K, ;i N*G/N*N'H !N™ =0
because of (1.1) and (1.4). Thus we obtain
(3.6) K(N, GN, N, HN)=0
since K;;;n N* G/ N*F!N*G*N™ = (K ;1B "By Bo! N")u‘v*v*=0.
Similarly, using the second and third equations of (1.3), we also obtain
3.7 K(N, FN, N, GN)=0, K(N, HN, N, FN)=0.

Combining (3.5), (3.6) and (3.7), we get K(Y,Z)Y—(k/4dm(m+-2))Z< Q*(N) for
any Y, Ze Q(N),~ and consequently Theorem A implies the implication (C)—(A).
Finally let M be a 4m-dimensional (4m=8) quaternionic Kaehlerian manifold
of constant Q-sectional curvature c. Then the system (3.1) of partial differential
equations with unknown vector field X is completely integrable. Let P be an
arbitrary point and consider a solution of (3.1) with arbitrary initial value (X,)»
at P satisfying (g;X’X%)p=1. Putting o= X,dy*, we find do=0 because of
V,X,=V.X,. Thus the pfaffian equation w=0 is completely integrable. Let M
be the integral manifold of w=0 passing through P. Since X* is normal to M,
we can put X‘=uN*, where g is a function in M. Substituting (3.1) and X,
=pN, into the equation of Weingarten B,’B,V ,X,=—pK,, for M, we have

(88) Kba=agba_['/‘(ubua—i'vbva_!—wbwa) ’

where we have put a=—c/4p. Thus, differentiating covariantly the both sides
of (3.8) along M, we can find

Vcha.-'Vcha:(Vca)gba_(Vba)gca+(Vc/")(ubua+vbva+wbwa)
_’(Vb#)(ucua+vcva+wcwa)_%(2¢cbua+ub¢ca'—'uc¢ba

+2¢'cbva+vb¢ca_Uc¢ba+20cbwa+ wbaca_’wcaba) ’
from which and (2.7),
(Vca)gba_(yba)gm'i' (Vc,u)(ubua+vbva+ wbwa)_(Vbﬂ)(ucua+vcva+ Wewe)=0.

Transvecting the above equation with g°* and u’u®+v°v%+w’w® we find res-
pectively

4m—2) ca+3V .pp— UV op)tte— W op)v.— (W pt)w. =0,

p.a—uW a)u,— WV ), — (W ,a)w,
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+3V oyt — U opyrte— @V opt)v.— (W o), =0.
C-mbining the last two equations, we get
Am—5W a + ¥ a)u,+ 0V a)v .+ (wV a)w,=0,
which implies that
ulV ,a=v¥V . a=w¥ ,a=0

and consequently that V' .«a=0. Hence, taking account of ap=-—c/4, we have
p=const. By means of the initial condition we find g?*=1. Thus we may
suppose that y=—1, which implies

Kyo= —Z—gba._<ubua+ VpVa+Wog)

because of (3.8) and apg=—c/4. As P and the initial value (X,)p of direction
at P are arbitrary, we complete the proof for the implication (A)—(C).
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