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SPREAD RELATION AND VALUE DISTRIBUTION IN
AN ANGULAR DOMAIN OF HOLOMORPHIC CURVES

By KivosHr N1No

§ 1. Recently Baernstein [1] proved Edrei’s spread conjecture [5] for mero-
morphic functions in |z| <co. Mutd [6] sharpened the result of Bieberbach [3]

by making use of the spread relation proved in [1].
The purpose of this paper is to extend the spread relation and the results
of Muto for meromorphic functions in [z| <co to ones for holomorphic curves

in the projective space.
The standard symbols of the theory of holomorphic curves in the projec-

tive space

T(?’), N(T’, a)y m(r, a)) 5(0)’ o
are used throughout the paper (cf. Wu [10]. We take log 7 as a parameter of
harmonic exhaustion.).

§2. Let x: C—P,C be a transcendental holomorphic curve in the projective
space and 7T(r) its order function. The order 2 and the lower order p of a

holomorphic curve x: C—P,C are defined by
log T(r)

10gT(r) 14 p=1liminf - :

2=11131°s°up logr oo logr

respectively.

A positive, increasing, unbounded sequence {r,} is called a sequence of
Pélya peaks of order p of x: C—P,C (or T(r)) if it is possible to find positive
sequences {7,’}, {r»”} and {e,} such that, as m—oo,

, &0

and such that

In this from, Pélya peaks were introduced by Edrei [4]. He proved that if the
lower order p is finite, then a sequence of Pdlya peaks exists for every finite
o satisfying p<p=<aA
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Let x: C—P,C be a holomorphic curve of finite lower order p. Fix a se-
quence {r,} of Pdlya peaks of order g of x. Let A(r) be a positive function
with

M Ar)=o(T(r))  (r—o0).
Define the set of arguments E4(r, a)C(—m, 7] by

Efr, 9)={0; | <x(re'’), a>| <e 4T}
for aeP,C satisfying <x(z), a>=0 and let

o4(a)=1im inf meas E,(7,, a),
a(a) -——ilr‘1f agsa),

where the infimum is taken over all functions satisfying (1).
Then we shall prove

THEOREM 1 (Spread relation). Let x: C—P,C be a holomorphic curve of
bositive, finite lower order p. Then

. 4 . _,7 0(a) \V?
o(a)= m1n{27r, 7s1n 1<T) }
for every ac P,C satisfying <x(z), a>=0.

Since the spread relation for meromorphic functions in |z| <oco is best pos-
sible, it is clear that our Theorem 1 is best possible.
Our extensions of the results of Mutd are stated as follows:

THEOREM 2. Let x: C—P,C be a holomorphic curve of finite lower order
p=1 with d8(ay)>0 for some a,eP,C and 4 a sector defined by

Y _ 2 .y 0(a) \?
2 A—{z, largz—ow| <= Tsm (—2—> +7/},
where 7 is an arbitrary positive number. Suppose that the solutions in 4 of
<x(z), a,>=0 are finite in number. Then the equation <x(z), a>=0 has an
infinite number of solutions in the sector 4 except at most 2n a< P,C in general

position.

THEOREM 3. Let x: C—P,C be a holomorphic curve of lower order p (1/2
<p<l) with d(a,)=1 for some a,eP,C and 4 a sector defined by

3 A:{z; | arg z—w| <—2ﬂ7+77},

where 7 is an arbitrary positive number. Suppose that the solutions in 4 of
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<x(z), a,>=0 are finite in number. Then the equation <x(z), a>=0 has an
infinite number of solutions in the sector 4 except at most 2n ac P,C in general
position.

§2. Proof of Theorem 1. We shall prove our Theorem 1 by making use
of an ingenious method of Baernstein [1, 2].

Let x: C—P,C be a holomorphic curve of positive, finite lower order # and
a a point in P,C satisfying <x(z), a>=%0. Then we have a reduced representa-
tion %(2)=(x,(2), x,(2), .-+, x,(2)): C—C***—{0} of x such that

__x(2)
< x(2), a>—%,—, x,(2)=£0.
Then we have
2.1) N(r, a)=N(r, 0, x,).

Put

1%(@)|s= max | x,(2)] ,
T =5 | log |%re")|.d0— log 130)],,

ElY(r, a)={0; log | X(re*’)| ,— log | x(re*’)| > A(r)} .
Then, since |%(2)|, < |%(2)] £ (n+1)V%|%(2)|;, we have
(2.2) Ey(r, a)CTE4(r, a)
and using a result in [10, p. 105],
2.3) T(r)—Tsr)=0(1) (r—o0).
Hence T(r) and T,(r) have the same Pdlya peaks. Further we may assume that
(24) |%0)],=1 and A0)=1,

where h(z)=cz *x,(z) with a suitable non-zero constant ¢ and a non-negative
integer k. Put

A(ry=A(r)+klogr— log |c],
E(r)=Ex(r, a, )= {0 log |X(re’’)|,— log | h(re®)| > A4,(r)} .
Then it follows from (1), (2.1) and (2.3) that
(2.5) A4,(r)=0o(Tr)=0o(T(r))  (r—0c0),
(2.6) E(r)=E4(r, a),
N(r, 0, h)=N(r, a)—klog? ,
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and so

2.7 o(a)=1— 1ir£§°up -LVT(,Z’,)G) =1— lim sup L%’:’g,’)h) .

T—00

Therefore in order to prove our Theorem 1, from (2.2), (2.5) and (2.6), it is
sufficient to prove that

2
2.8) liryrgjff meas E(r,) = min{Zﬂ', —s—sin" igi)l/ }

Now define
TH(2)=sup—5— [ _{log |%(re**)|,—log | h(re'*)|}do»

+N(, 0, h), (z=re??, 0<r<oco, 0=6=<m),

where the supremum is taken over all measurable sets EC(—x, #] whose
measure equals 2. Then T*(z) is defined on {z; Im 2z=0} and for 0<r<oo,

(2.9) T*(re™)=T*(—r)=Tr),
(2.10) T*(r)=N(r, 0, b)= N(r).
Further we have for r=7,>0

(2.11) T*(re'”) = Ty(r),

because |%(z)|;=|x,(2)| and if k=0 then we may assume that c=1. Since
log|%(2)|, and log|A(2)| are subharmonic, it follows from Theorem A’ in Baerns-
tein [2] and (2.4) that T*(z) is subharmonic in {z; Im z>0} and is continuous

on {z; Imz=0}.
If d(a)=0 there is nothing to prove, so from now on we assume that d(a)

>0. Put

r= -217 min {Zﬂ, %sin”(j‘(gg)_ ) 1/2}

Then we have

2.12) 0<yr=1, 0<yru=<1/2 and 1—d(a)< cosmyp.

Define
v(2)=T*z") (z=re?, 0<r<oo, 0<0<=nm).

Then v(z) is subharmonic in {z; Im2z>0}. Therefore from the reasoning of
Baernstein [1, pp. 430-433] and taking (2.7) and (2.9)-(2.12) into account, we
obtain the following result:

(2.13) V(spe*®) < T(rp)(cos (x—0)y p+ay,) (m=1,2,---;0<0<n),

where s,=7,"" and {a,} is a sequence tending to zero. Let
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on,=meas E(r,).
Then (2.8) is equivalent to the inequality
(2.14) liﬂinf Om 221y .
We have

Tlrm)= Zl—zf _:10g [Z(rme™) | dw
="21?f _”"{108 |Z(rme*®) | ,— log | h(rne)|}dor+N(ry)

<5 [, 108 15rae) | —log h(rme™)|} dat Ay(r)+N(r)

STH(rpetn*)+ Ay(rm) .
Dividing by Ty(7») and remembering (2.11), we find that

. T*(rpe'm?)
(2.15) L{EL——TS(VT =
Let
M={m; o,<2rmy}.

If M is a finite set, then (2.14) holds and we have finished, so we assume that
M is infinite.
The point
(rmetam/Z)I/T — Smewm/zy

belongs to the domain of v(z), i.e. the upper half-plane, if and only if meM,
in which case we have

T*(rpe' ™) = v(s,e* ™) (meM).

Using this in (2.15), comparing with (2.13), and remembering (2.12), we deduce
that
limo,/2y=m,

Mm—oco

meM

which shows that (2.14) holds in this case also.
Thus the proof of Theorem 1 is complete.

§3. In order to prove our Theorem 2 and Theorem 3 we need some pre-
liminary results.

Let U be the unit disc, i.e. U={w; |w|<1}. U admits a finite harmonic
exhaustion. Hence, from Corollary 2 in Toda [8] (cf. [7, Theorem BJ]) we
deduce
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LEMMA 1. Let y: U—P,C be a holomorphic curve in the projective space
satisfying
. 1
lmtq_slup T(t)/log T =
If a;eP,C, j=1,2,-,2n+1, are in general position and <y, a,>#0 for all j,
then
2n+1
jZ) oa)=2n.
=1

Put V={z; |z| <R<}. Then we prove

LEMMA 2. Let x: V—P,C be a holomorphic curve in the projective space.
Suppose that there is acP,C such that <x(z), a> has no zero in V. Then for

0<r<t<R and |z|=r,

t—r ¢ 1 _ 1 _
T2 4 {log Tz asT — 7 log (et D}—4

where A is a constant.

Proof. Let x: V—P,C be a holomorphic curve with {x(z), ad#0 in V.
Then there is a reduced representation X(2)=(x,(2), x,(2), ---, x,(2)): V—C"*!
—{0} such that x,(z)=1 and <{x(z), a)=1/|%(z)|. Hence we have

1 " +
3.1 logm=log |%(2)| = lrg]ag)i log | x;(2)| +%log (n+1).
Since x;(z) is holomorphic in V, it is well known that for 0<7<t<R and |z|=r,

log| x,(2)| £+~ [ “log | x(te)] d6

A

t
t+: zxf log | %(te")|d6

and so

max log [x(2)| < H_: —Zli—foznlog | %(te*%)|d6 .

Hence, combining this with (3.1) and a result in [10, p. 105], we obtain with a
constant A

log [zsasT — 3108 (1D =T+ 4)

and consequently, for |z|=r<t<R

T(t) 2 +{log oz asT — 5-log (1+D}—A.
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This proves our Lemma 2.

Next we consider the region
(3.2) Q={z; | arg =0 | <5, |2 |>K}

and the conformal transformation

w'—u7—1

33) W= =97,
Then the function
3.4) z=Ke"u=Ke*’¢(w)

maps the unit disc U onto the region 2. (3.3) and (3.4) imply

O e x
where

2 7 —s”7 0_ i
@5  B= s2rju(ﬁ-zris)—cﬁgg(r(aaﬂ)w)) (z=re”, s=ul =r/K).
Hence

(1—|w])/2<B<21—|wl),

so that, for sufficiently large values of 7, (3.5) yields
7 7
(36) L cos (r(0—w)) <1—|w| <8- KL

Now we have the following lemma which corresponds to Lemma in
Muto [6]:

LEMMA 3. Let x: C—P,C be a transcendental holomorphic curve of finite
lower order p. Suppose that for a,eP,C, j=0,1,--,2n, in general position,
{x(2), a,> has no zero in L defined by (3.2) and that there exists an unbounded
sequence {rne*™} such that

1 T(r,)
@7) 108 Ttrme ™™, ay] ~ Tog 7w’
(3.8) lﬁm—w|<—27;——e (>0).
Then u=<y.

Proof. Put

W w)=x(Ke**$(w)),
where ¢(w) is the function defined by (3.3). Then y: U—P,C is a holomorphic
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2n
curve such that {y(w), a,>*0 in U (=0,1, -, 2n), and so Eo o(a,, y)=2n+1.

Hence it follows from Lemma 1 that

1
(3.9) T(t, H=o(log=)  (t—c0).
Put

W= G N ((rm/K)e* ™).

Then combining this with (3.7), we have

1 B 1 T(rm, X)
(3.10) O T, T ~ O [Calrme ™™, ad] ~ log 7m

and from (3.8)

cos (y(0n—w)=£>0 for all m.
Hence (3.6) implies

7 i
(3.11) S(EY <1-lwal <8(E)
for sufficiently large m. Taking

(3.12) tn=|wn| +A—wnl)/2

and using Lemma 2, we have

619 Tt )2 pn {0t T,y gy~ los (D} -4
Hence (3.10)-(3.13) imply
(314) Tt »2§-(E) T2

for sufficiently large m. (3.9), (3.11) and (3.12) yield
(315) Ttw, )< A, log 5-(2-

with a positive constant A,. Combining (3.14) with (3.15), we obtain
T(rm %) _

“logrm = & ( ){A+A11°g ( >}
and hence, for any positive number 9,
T(rp, x) Srn’*®

provided m is large enough. This relation implies u=y. Q.E.D.
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§4. Now we prove our Theorem 2 and Theorem 3.

Proof of Theorem 2. Let x: C—P,C be a holomorphic curve of finite lower
order p#=1 with d(a,)>0 for some q,=P,C.

Suppose, to the contrary, that there exist w and 7 (>0) such that for the
sector 4 defined by (2) and a;€P,C, j=0, 1, -+, 2n, in general position, solutions
in 4 of the equations <{x(2), a,>=0 (=0, ---, 2n) are finite in number. Then
there is a number K such that {x(2), a,>+0 in £ defined by

.Qz{z; | arg z—o| <ﬂ—%sin'1(—5(§°)—)1/2+v, lzI>K}.

Let {r,} be a sequence of Pdlya peaks of order g of x. Put A(r)=(og7)™*
-T(r). Then A(r) satisfies (1). Hence it follows from Theorem 1 (Spread rela-
tion) that

. . /0 12
llrﬂrll.'lilf meas E (7, ao)g%_Sm 1( (Zao) ) )

Therefore, taking

T _ 4 . 7 0(ay) \V*
7—277—73111 ‘(T"> +27,

we obtain an unbounded sequence {r,e‘**™} such that

i 1 T(rp)
O8 TCxlrme'™™), apy] = logry ’

_ T __ 7
[On—w] < 27 5

hold for sufficiently large m. Hence Lemma 3 implies g#<y. From the defini-
tion of y, however, we have y<1 and so #<1, which contradicts our assump-
tion p=1.

Thus the proof of Theorem 2 is complete.

Proof of Theorem 3. Let x: C—P,C be a holomorphic curve of lower order
¢ (1/2<p<1) such that d(a,)=1 for some g, P,C.

Suppose, to the contrary, that there exist @ and » (>0) such that for the
sector 4 defined by (3) and q;€P,C, j=0, 1, ---, 2n, in general position, solutions
in 4 of the equations <{x(z), a,»=0 (=0, ---, 2n) are finite in number. Then
from the argument used in the proof of Theorem 2, remarking #<w/pu <2z, we
deduce that p<pr/(x+2p¢n). This is a contradiction.

Thus the proof of Theorem 3 is complete.

§5. Our argument for holomorphic curves x: C—P,C is applicable to the
case of algebroid functions.
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Let f(z) be an n-valued algebroid function of finite lower order g defined
by an irreducible equation

Al "+ AR s+ An (D) An(2)=0,

where Ay (z), ---, A,(z) are entire functions without common zeros. Fix a se-
quence {r,} of Pélya peaks of order g of f(2) (or T(r, f)). Let f;(z) be the
j-th determination of f(z) and A(r) a positive function with

(5.1) Ar)y=0o(T(r, f))  (r—oo).
Define the set of arguments E,(r, 7)C(—mx, n] by

Er, T)=1{0 ;lmin | fi(re?®)—z| <e 4™} (z# 0),
=J=n
E (r, c0)={0; max | f(re?)| > ea™)
=J=n

and let
o4(r)=liminf meas E (7, ),

()= inf o4(7),
4

where the infimum is taken over all functions A(r) satisfying (5.1). Then from
the reasoning in § 2, taking results of Valiron [9, pp. 21, 22] into account, we
deduce

THEOREM 1’/ (Spread relation). Let f(z) be an n-valued algebroid function of
positive, finite lower order p. Then

a(t)= min{27r, —;l—sin"(%)w} ;

For algebroid functions we are able to have lemmas which correspond to
our Lemma 1, Lemma 2 and Lemma 3 in the case of holomorphic curves.
Hence we deduce

THEOREM 2'. Let f(2) be an n-valued algebroid function of finite lower order
p=1. Suppose thal f(2z) has a deficient value ©. Let 4 be a sector defined by
1 B 2 ) e
A—{z, | arg z—w| <= Tsm ‘(——2—) -Hy},

where 7 is an arbitrary positive number. Suppose that the solutions in 4 of f(z)
=t are finite in number. Then the equation f(z)=a has an infimite number of
solutions in the sector 4 except at most 2n—1 values of a(a#1).

THEOREM 3’. Let f(2) be an n-valued algebroid function of lower order p
(1/2<pu<1). Suppose that f(z) has a deficient value t salisfying 6(t)=1. Let 4
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be a sector defined by

where 7 is an arbitrary positive number.

A:{z; larg z—w| <—%—+7]},

Suppose that the solutions in 4 of f(2)

=t are finite 1n number. Then the equation f(z)=a has an infinite number of
solutions in the sector 4 except at most 2n—1 values of a (a+7).

(1]
£z2]
£3]
(4]
(5]
£6]
£7]
£8]
£9]
[10]
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