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SPREAD RELATION AND VALUE DISTRIBUTION IN

AN ANGULAR DOMAIN OF HOLOMORPHIC CURVES

BY KIYOSHI NIINO

§ 1. Recently Baernstein [1] proved Edrei's spread conjecture [5] for mero-
morphic functions in | z |<oo. Mutδ £6] sharpened the result of Bieberbach [3]
by making use of the spread relation proved in [1].

The purpose of this paper is to extend the spread relation and the results
of Mutδ for meromorphic functions in | z | < o o to ones for holomorphic curves
in the projective space.

The standard symbols of the theory of holomorphic curves in the projec-
tive space

T(r), N(r, a), m(r, a), 3(α),. .

are used throughout the paper (cf. Wu [10]. We take log r as a parameter of
harmonic exhaustion.).

§ 2. Let x: C-*PnC be a transcendental holomorphic curve in the projective
space and T{r) its order function. The order λ and the lower order μ of a
holomorphic curve x: C-+PnC are defined by

respectively.
A positive, increasing, unbounded sequence {rm} is called a sequence of

Pόlya peaks of order p of x: C-+PnC (or T(r)) if it is possible to find positive
sequences {rj}, {rm"} and {εm} such that, as m->oo,

and such that

In this from, Pόlya peaks were introduced by Edrei [4]. He proved that if the
lower order μ is finite, then a sequence of Pόlya peaks exists for every finite
p satisfying μ^p^λ.

Received May 4, 1976

361



362 KIYOSHI NIINO

Let x: C->PnC be a holomorphic curve of finite lower order μ. Fix a se-
quence {rm} of Pόlya peaks of order μ of x. Let Λ(r) be a positive function
with

(1) Λ(r) = o(T(r)) (r-co).

Define the set of arguments i^(r, α)c(—TΓ, π] by

^(r, α)={0; \<x(reiθ), a>\<e'^}

for a<=PnC satisfying <x(z), α > ^ 0 and let

^yi(α) — lim inf meas Eji(rm, a),
m->oo

σ(a) = inίσΛ(a),
A

where the infimum is taken over all functions satisfying (1).
Then we shall prove

THEOREM 1 (Spread relation). Let x: C->PnC be a holomorphic curve of
positive, finite lower order μ. Then

for every a^PnC satisfying <x(z),

Since the spread relation for meromorphic functions in |̂ r| <oo is best pos-
sible, it is clear that our Theorem 1 is best possible.

Our extensions of the results of Mutδ are stated as follows:

THEOREM 2. Let x: C-+PnC be a holomorphic curve of finite lower order
^l with δ(ao)>O for some aQ(=PnC and Δ a sector defined by

(2) J

where ΎJ is an arbitrary positive number. Suppose that the solutions in Δ of
<x(z), ao>=O are finite in number. Then the equation <x(z), a>=0 has an
infinite number of solutions in the sector Δ except at most 2n a^PnC in general
position.

THEOREM 3. Let x: C->PnC be a holomorphic curve of lower order μ (1/2
<μ<l) with δ(aQ)=l for some ao^PnC and Δ a sector defined by

(3) Δ

where η is an arbitrary positive number. Suppose that the solutions in Δ of
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<x{z), ao>=0 are finite in number. Then the equation <x(z), α > = 0 has an
infinite number of solutions in the sector Δ except at most 2n a^PnC in general
position.

§ 2. Proof of Theorem 1. We shall prove our Theorem 1 by making use
of an ingenious method of Baernstein [1, 2].

Let x: C->PnC be a holomorphic curve of positive, finite lower order μ and
a a point in PnC satisfying <x(z)y α > ^ 0 . Then we have a reduced representa-
tion x(z)=(xo(z), *iU),— ,*»(*)): C->Cn+1-{0} of x such that

<x(z)t a>= ^

Then we have

(2.1) N(r, a) = N(r, 0, xQ).

Put

|x(*)|,= max U/z)!

Ts(r) = - ^ _ J ^iog I x(reiθ) \ sdθ- log | ί(0) I f ,

EΆ(r, a)={θ; log |2(r«'»)l.- log \x,{reiβ)\>Λ{r)} .

Then, since |X(-J) | 5 ^ \x(z)\ ^(n+ϊ)m\x(z)\,, we have

(2.2) E'A(r, a)(zEΛ{r, a)

and using a result in [10, p. 105],

(2.3) 7Xr)-T,(r) = o(l) (r-oo).

Hence Γ(r) and Γ,(r) have the same Pόlya peaks. Further we may assume that

(2.4) l*(0) | ,=l and A(0) = l ,

where h(z)=cz'kx0(z) with a suitable non-zero constant c and a non-negative
integer k. Put

= EAl(r, a, h)={θ; log \x(reiβ)\s-\og \h{reiβ)\

Then it follows from (1), (2.1) and (2.3) that

(2.5) AM = o(T(r)) = o(Ts(r)) ( r - oo),

(2.6) E(r) = EΆ(r, a),

N(r, 0, h) = N(r, a)-klogt ,
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and so

/o rτ\ s, N 1 , Mr, a) ! «. N(r,0,h)(2.7) δ(α) = l— hmsup J Λ y • = 1— hm s u p — ψ , \ J .
r-oo i \T) r-*oo 1 9[T)

Therefore in order to prove our Theorem 1, from (2.2), (2.5) and (2.6), it is
sufficient to prove that

(2.8) liminf meas E(rm)^ min{2ττ, Λ-sin-H-^ψ2-) }.
μ

Now define

I.-log \Krέ"*)\}dω

+ N(r,0,h), (z = reiθ, 0<r<oo, O^β^π),

where the supremum is taken over all measurable sets Ed(—π, π] whose
measure equals 2Θ. Then T*(z) is defined on {z; Imz^O} and for 0<r<oo,

(2.9) T*(reι«) - T*(-r) = Ts(r),

(2.10) T*(r) = N(r, 0, A) = N(r).

Further we have for r ^ r o > 0

(2.11) T*(retθ)£T,(r),

because | ^ ) U ^ | ^ O ( ^ ) I and if ^=0 then we may assume that c=l . Since
log I Λ(2Γ) I, and log|Λ(2r)| are subharmonic, it follows from Theorem A' in Baerns-
tein [2] and (2.4) that T*(z) is subharmonic in {z; Im^>0} and is continuous
on {z; Im^^O}.

If δ(a)=0 there is nothing to prove, so from now on we assume that δ(a)
>0. Put

Then we have

(2.12) 0<γ^l, 0<^^l/2 and l-δ(a)^ cosπγμ.

Define

v(z) = Γ*(^) (z=reiθ, 0<r<oo, 0 ^ 0 ^ Γ).

Then v(z) is subharmonic in {z; Im2'>0}. Therefore from the reasoning of
Baernstein [1, pp. 430-433] and taking (2.7) and (2.9)-(2.12) into account, we
obtain the following result:

(2.13) v(smeiθ) £ T5(rm)(cos (π-θ)rμ+am) (m - 1 , 2, - 0 < θ < π),

where sm=rm

1/r and {am} is a sequence tending to zero. Let
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Then (2.8) is equivalent to the inequality

(2.14) liminf<

We have

Ts(rm) = - ^ - J^log I * ( r m θ | sdω

) { l 0 g

Dividing by Ts(rm) and remembering (2.11), we find that

(2.15) Urn T*%fp =1.

Let
M = {m σm< 2πγ} .

If M is a finite set, then (2.14) holds and we have finished, so we assume that
M is infinite.

The point

belongs to the domain of v(z), i.e. the upper half-plane, if and only if
in which case we have

T*(rmeισ™/2) = v(smeισm/2η (m e M ) .

Using this in (2.15), comparing with (2.13), and remembering (2.12), we deduce
that

lim σJ2y — π,

which shows that (2.14) holds in this case also.
Thus the proof of Theorem 1 is complete.

§ 3. In order to prove our Theorem 2 and Theorem 3 we need some pre-
liminary results.

Let U be the unit disc, i.e. U={w; \w\<l}. U admits a finite harmonic
exhaustion. Hence, from Corollary 2 in Toda [8] {cf. [7, Theorem B]) we
deduce
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LEMMA 1. Let y: U-+PnC be a holomorphic curve in the projeciive space
satisfying

lim sup T(θ/log -Λ-τ-= oo .

If a^PnC, j=l,2, — ,2n+l, are in general position and <y, a}>^0 for all j ,
then

Put V={z; \z\<R^oo}m Then we prove

LEMMA 2. Let x: V-^PnC be a holomorphic curve in the projective space.
Suppose that there is a^PnC such that <x(z), a> has no zero in V. Then for
0<r<t<R and \z\=r,

where A is a constant.

Proof. Let x: V^PnC be a holomorphic curve with <*(*), a}Φ0 in V.
Then there is a reduced representation x(z)=(xo(z), x^z), •••, xn{z)): V-*Cn+1

— {0} such that xo(z)=l and (x(z), a}=l/\x(z)\. Hence we have

(3.1) l og|<jc(i),fl)|= 1°g 1^)1 ^maxlog I ^ U ) l + ^ - l o g ( n + l ) .

Since Xj(z) is holomorphic in V, it is well known that for 0<r<t<R and \z\=r,

log\xj(z)\ ^ - ^ - ^ - J J V g \xj(tei0)\dθ

and so

max tog i */*) I ̂  -P±r - 4 - f '"log | x(teiθ) \ dθ .

Hence, combining this with (3.1) and a result in [10, p. 105], we obtain with a
constant A

and consequently, for \z\=r<t<R
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This proves our Lemma 2.

Next we consider the region

(3.2) Ω = {z; \zrgz-ω\<-~-, \?\

and the conformal transformation

(3.3) w= ζZ

Then the function

(3.4) z=Keιωu = Keιωφ(w)

maps the unit disc U onto the region Ω. (3.3) and (3.4) imply

where

(oz) B - 2(sr-s-Qcos(r(fl-ω)) (z-reiθ s-\u\-r/K)

Hence

so that, for sufficiently large values of r, (3.5) yields

(3.6) ^ c o |

Now we have the following lemma which corresponds to Lemma in
Muto [ 6 ] :

LEMMA 3. Let x: C-*PnC be a transcendental holomorphic curve of finite
lower order μ. Suppose that for a3<=PnC, j = 0,l, ~ ,2n, in general position,
(x(z), a3} has no zero in Ω defined by (3.2) and that there exists an unbounded
sequence {rmeiθm} such that

1 T(r )
( 3 7 ) l 0 g \<x > ?(rmei9m), ao}\ >

(3.8) \θm-ω\<-ξr-ε

Then μ^γ

Proof. Put

y(w) = x(Ketωφ(w)),

where φ(w) is the function defined by (3.3). Then y: U->PnC is a holomorphic
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2n

curve such that <y(w), α ; > ^ 0 in U O = 0,1, — , 2n), and so Σ δ(aJ9y)

Hence it follows from Lemma 1 that

(3.9) T(t, y) = o

Put

Then combining this with (3.7), we have

( 3 1 0 ) l 0 g \<y(w)aQ}\'= l0gΊU(r^iθΊ^>Γ > log" * "

and from (3.8)

cos(γ(θm-ω))^ξ>0 for all m .

Hence (3.6) implies

(3.11)

for sufficiently large m. Taking

(3.12) tm=\wm\+(l-\wm\)/2

and using Lemma 2, we have

(3.13) T(tm, ^ ^ r f e l -

Hence (3.10)-(3.13) imply

(3.14) T ( ί m (

for sufficiently large m. (3.9), (3.11) and (3.12) yield

(3.15) T(ίm> ^ ^ i42 log ^

with a positive constant Aλ. Combining (3.14) with (3.15), we obtain

and hence, for any positive number δ,

provided m is large enough. This relation implies μ^γ. Q. E. D.



SPREAD RELATION AND VALUE DISTRIBUTION 369

§ 4. Now we prove our Theorem 2 and Theorem 3.

Proof of Theorem 2. Let x: C^PnC be a holomorphic curve of finite lower
order μ^l with δ(ao)>Q for some ao^PnC.

Suppose, to the contrary, that there exist ω arid η(η>0) such that for the
sector Δ defined by (2) and a^PnC, j~0,1, •••, 2n,in general position, solutions
in Δ of the equations <*(z), α,> = 0 0 = 0 , •••, 2n) are finite in number. Then
there is a number K such that (x(z), aj}Φθ in Ω defined by

argz-ω\ Kπ-^sin-^ψ^+y, \z\>κ}.

Let {rm} be a sequence of Pόlya peaks of order μ of *. Put
•T(r). Then Λ(r) satisfies (1). Hence it follows from Theorem 1 (Spread rela-
tion) that

lim inf meas EΛ(rm, a^^-^-si
m-»oo μ

Therefore, taking

f = 2*-fsin

we obtain an unbounded sequence {rmeιβm} such that

l o ς r 1 > T(rm)
1 O g |<x(re*»-) > logrm

hold for sufficiently large m. Hence Lemma 3 implies μ^γ. From the defini-
tion of γ, however, we have γ<l and so μ<l, which contradicts our assump-
tion μΞ>l.

Thus the proof of Theorem 2 is complete.

Proof of Theorem 3. Let x: C^PnC be a holomorphic curve of lower order
μ ( l / 2 < μ < l ) such that δ(ao)=l for some ao^PnC.

Suppose, to the contrary, that there exist ω and η (>0) such that for the
sector Δ defined by (3) and α^ePnC, 7=0,1, •••, 2n, in general position, solutions
in Δ of the equations (x(z), dj}=0 0 = 0 , * ,2n) are finite in number. Then
from the argument used in the proof of Theorem 2, remarking π<π/μ<2π, we
deduce that μSμπ/{π-\-2μη). This is a contradiction.

Thus the proof of Theorem 3 is complete.

§ 5. Our argument for holomorphic curves x: C-+PnC is applicable to the
case of algebroid functions.
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Let f(z) be an rc-valued algebroid function of finite lower order μ defined
by an irreducible equation

A0(z)fn+A1(z)fn~1+ ... +AΛ-ι(z)f+An(z) = 0,

where A0(z), •••, An(z) are entire functions without common zeros. Fix a se-
quence \rm) of Pόlya peaks of order μ of f{z) (or T(r, /)) . Let fj(z) be the
7-th determination of f(z) and Λ(r) a positive function with

(5.1) Λ(r) = oOXr,f)) (r-oo).

Define the set of arguments EΛ(r, τ)c(—TΓ, TΓ] by

EA(r, τ)={θ; min | / K ) - r | < β ^ Γ ) }

EA(r, ™)={θ; max | / / r θ l > ^ ( r ) }

and let

rm, r ) ,

where the infimum is taken over all functions A(r) satisfying (5.1). Then from
the reasoning in § 2, taking results of Valiron [9, pp. 21, 22] into account, we
deduce

THEOREM 1' (Spread relation). Let f(z) be an n-vaίued algebroid function of
positive, finite lower order μ. Then

For algebroid functions we are able to have lemmas which correspond to
our Lemma 1, Lemma 2 and Lemma 3 in the case of holomorphic curves.
Hence we deduce

THEOREM 2'. Let f(z) be an n-υalued algebroid function of finite lower order
^l. Suppose thai f(z) has a deficient value τ. Let Δ be a sector defined by

where η is an arbitrary positive number. Suppose that the solutions in Δ of f(z)
=τ are finite in number. Then the equation f(z)=a has an infinite number of
solutions in the sector Δ except at most 2n—l values of a{aφτ).

THEOREM 3'. Let f(z) be an n-valued algebroid function of lower order μ
( l / 2 < μ < l ) . Suppose that f{z) has a deficient value τ satisfying δ( r )=l . Let Δ
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be a sector defined by

where η is an arbitrary positive number. Suppose that the solutions in Δ of f(z)

=τ are finite in number. Then the equation f(z)=a has an infinite number of

solutions in the sector Δ except at most 2n—l values of a (aΦr).
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