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ON UNIQUELY FACTORIZABLE ENTIRE FUNCTIONS

BY MITSURU OZAWA

1. Introduction

A meromorphic function F{z)-—f(g{z)) is said to have / and g as left and
right factors respectively, provided that / is meromorphic and g is entire (g
may be meromorphic when / is rational). F(z) is said to be prime (pseudo-
prime) if every factorization of the above form into factors implies either / is
linear or g is linear (either / is rational or g is a polynomial). If F(z) is re-
presentable as f1(f2 ••• (fn(z)) ••*) and gχ(g2 ••• (gn(z)) •••) and if with suitable linear
transformations λ3, ]—\, •••, n—\

hold, then two factorizotions are called to be equivalent.
ez and cos z occupy a special situation in the factorization theory in the

above sense [7]. They are really pseudoprime and admit infinitely many non-
equivalent factorizations. Further F(z) = z2e2z2 has two non-equivalent factoriza-
tions F(z)=w2o(zez2)=(we2w)oz2. This shows that factorization into two primes
is not unique in general.

In this paper we shall consider some sufficient conditions guaranteeing a
unique factorization into two primes up to equivalence. So far as the present
author knows there is no systematic research in this tendency up to the present
time. The work of this paper does not mean any systematic one either. As
an example of a uniquely factorizable function z2e2z was listed in Gross* book
[4], p. 133.

2. Lemmas

LEMMA 1 (Edrei [2]). Let f(z) be an entire function. Assume that there
exists an unbounded sequence {αn}n=i such that all the roots of f(z)=an(n=l, 2, •••)
lie on a single straight line. Then f{z) is a polynomial of degree at most two.

LEMMA 2. Let f{z) be entire function. Let wx and w2 be two different finite
numbers. Then

N(r, wlf f)+N(r, w2, f)
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has the same order as the one of f.

This is nothing but the well-known theorem due to Borel. See Nevanlinna [5].

LEMMA 3. Let f(z) be an entire function. Then

Σ Θ(a) £ 1.

Here

This is nothing but Nevanlinna's famous theorem for entire functions [5].
This includes

Here v(a) indicates the least order of almost all α-points of f(z).

LEMMA 4. Let f(z) be an entire function whose 1-points and —1-points are
multiple of order 2n, n^l. Then f(z) = cos L(z), where L(z) is an entire func-
tion.

Proof. By the assumption

f(zY-l=g(zY

with entire g(z). Hence

f-g=eiL, f+g=e~iL,

where L is entire. Thus
piL\p-iL

/=-—2~ -cosL.

LEMMA 5. [1] Let f(z) be an entire function of finite order p/^1. Then
f(z) takes every value infinitely often with at most one exception in every sector
whose aperture is greater than π(2—l/pf).

LEMMA 6. [9] Let f(z) be an entire function of order less than one and let
{wn} be an unbounded sequence for which f(z)=wn has roots only in the sector
\π— a r g ^ l ^ ω , 0<ω<τr/2 for every n. Then f(z) is linear.

3. Theorems

THEOREM 1. Let F(z) be gι(z)eHC8^\ where H(w) is a polynomial and gx(z)
is a prime transcendental entire function of finite order having only infinitely
many real zeros. Then F(z) is uniquely factorizable into two primes.

THEOREM 2. Let gλ(z) be a prime transcendental entire function of finite
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order, which has infinitely many zeros. Assume that almost all zeros of gx(z) lie
in Slz^x for every x. Then {g^z)}2 is uniquely factorizable into two primes.

THEOREM 3. Let {an} be a set of complex numbers and {vn} be a set of
positive integers satisfying vx< ••• <vn<vn+i< •••. Assume that

for s < l . Further assume that vλ and ι>2 are copnme. Let gχ(z) be

Then {gλ{z)Y, gx(z) exp H(gx(z)) are uniquely factorizable into two primes, where
H(w) is a polynomial.

THEOREM 4. Let gλ(z) be a prime transcendental entire function of order
pgl<oo. Assume that all zeros of gλ(z) lie in the sector

<^- (pgl<ί).

Then ^ 1e
f lCίri) is uniquely factorizable into two primes.

Several related results were stated in [6].

THEOREM 5. Let F(z) be an entire function of order less than 1, which has
the form f(g(z)), where

with prime numbers Vj(3^vn<vn+1) and g(z) is a prime polynomial. Then F(z) is
uniquely factorizable into two primes.

THEOREM 6. Let F(z) be an entire function of order zero, which has the
form f(g(z)), where

w

with prime numbers v3, S^vn<vn+1 and nx—\ and prime numbers nh 3^nL<nι+1

for /Ξ>2 and further VjΦnt for all j and I. Further assume that g(z)=a3 has
only simple roots for all j . Then F(z) is uniquely factorizable into two primes.
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It seems to the present author that there are several extensions of the
above theorem.

4. Proof of Theorem 1. Let F(z) be f{g(z)).

Case 1). / and g are transcendental entire.
(a). Suppose that f(w)=0 has infinitely many roots {wn}ntι. Let us con-

sider g(z)=wn. Then all the roots of g(z)=wn for all n lie on the real axis,
whence follows that g{z) is a polynomial of degree at most two by Lemma 1.
This contradicts the transcendency of g.

(b). Suppose that f(w)=0 has only finitely many roots {wj}^. Further
suppose that w^w2. In this case

with a polynomial P(w) and non-constant entire L(w). Hence

By w1φw2 we can make use of Lemma 2 and conclude that the order pg of g
is finite. Hence with a polynomial M(z)

H(g1(z))+M(z)—L(g(z))=2mπi, m: an integer. Let {zL} be the set of gx{zt)
=0. Then P(g(zi))=0 and hence g{zh)^w3 with P(wj)=0. Therefore

M(zι) = L(wJ)-H(0)+2mπi,

which is bounded for /—>oo, since j runs over a finite number of indices. Thus
M(z) is a constant. Hence

which contradicts the primeness of gχ(z).

(c). Suppose that f(w)=0 has only one root wλ. (There must be at least
one zero of f(w).) In this case

with a non-constant entire function L(w). Thus

Since nN(r, wlf g)=N(r, 0, g^)^m{r, g^) and ρgl<°°, we can construct the canonical
product N(z) by the zeros of g(z)—w1. Then N(z) is of finite order. Let us put

with entire Q(z). Hence
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g l ( z ) e H C g i c ™ = N(z)nenQ<iz:>+L(:8(iz:>:>

and

gl(z)=N(z)ne™>

with a polynomial M(z). Hence

gl(z)=Wno(N(z)emz>/n).

Then primeness of gl{z) implies n = l . Thus

Further

If ρg=oo, then QO) is transcendental and then the right hand side is of infinite
order but the left hand side is of finite order. This is a contradiction. Hence
pg <oo and then Q(z) is a polynomial. Let {zt} be the set of zeros of gx(z).
Then

Thus M(zt)—Q{zι) is bounded and M(z)—Q(z) reduces to a constant. Therefore

£iC*) = c(gC2r)—M>I)

and

l(z)) = A+L(g(z))+2mπi,

with a constant A. Thus

Hence

f(w) = c(w-w1)eHWw-wi»

= {We11™} o λ(w), λ(w)

and

Thus f(g(z)) is equivalent to {W0HCM0} O ^ ( Z ) .
Case 2). /(ι^) is a polynomial. If f(w)=0 has two different roots, then by

Lemma 2 ρg<oo and then by the second fundamental theorem of Nevanlinna
pg^Pg^00- Then

is clearly absurd. Hence f(w) has only one zero wx and
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Let us put g(z)—w1=N(z)eQCz:> with the canonical product N(z) formed by the
zeros of g(z)—w1 and entire Q(z). N(z) is well defined. Then

and

o {N(z)emz>/n}

with a polynomial M(z) and a constant B. The primeness of gλ(z) shows n = l .
Therefore f(w) is linear. We may omit this case.

Case 3). g(z) is a polynomial. In this case f(w)—0 has infinitely many
zeros {wn}ntx. Suppose that the degree of g{z) is not less than 3. Then g{z)
—wn has roots not lying on the real axis when n is sufficiently large. Suppose
that g(z) is quadratic, that is, a(z—a)2jrb, aφO. Let x be z—a. Then

g1(x+a)eHCgiCx+a^=f(ax2+b).

Hence g^x+oc) and g^—x+oc) have the same zeros and hence with a polyno-
mial M(x)

Therefore by

) = H(g1(-x+a))+2pπi

with an integer p. Let {zn} = {xn+a} be the set of zeros of gx(z). Then

M(xn)+H(!0) = H(0)+2pπi.

Hence {M(xn)} is bounded and hence M(x) is a constant. So we have M(x)
=2pπi. Therefore 5>

1(Λ:+α:)=<g'1(—x+a), that is, with entire G(w) g!(x+ot)=G(x2),
g1(z)=G((z—a)2). This contradicts the primeness of gχ{z).

Case 4). f(w) is meromorphic (not entire) and transcendental. In this case
g is entire and with entire f*(w), M(z)

Therefore

If f*(w)=0 has infinitely many zeros {^Jz=i, then wo+eMCz>=wt has only real
roots for all /. Thus by Lemma 1 wQ+emz:> must be a polynomial, which is
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evidently a contradiction. Hence f*(w) has only a finite number of zeros. Hence
with non-constant entire N(w)

f*(w) = P(w)emm , P(w0) Φ 0 ,

F(z) = e ~ n M < i z ψ ( m

Let us consider

P(wo+eM(iz>) = Σ A<e'M™ = Q(w) o eMW .
.7 = 0

If Q{w) has two different zeros, then by Lemma 2 peχPM^Pg1<
00 and hence

M i s a polynomial. Thus with a polynomial R(z)

with an integer s. Let {zt} be the set of zeros of gλ(z). Then P(w0

Jremzi:>)=^0
and wo+eMCtϊ>=Wj, P(Wj)=Q. Thus

Here j can move onto at most finitely many integers. Hence R(z)+nM(z) is a
constant d. Hence

gx(z) =

={•

This gives a contradiction by the primeness of gλ(z). Hence Q(w) has only one
zero. Hence

P(wo+eMW) = Aiw-ivX o eMW .

Here w.ΦO, since P(wo)Φθ and ( - I J M M / ^ Φ J ) . In this case

/°exp Jf — pNCr,wlfe
M > ^ PNCr,0,g^ ^ i 0 ^ ! < ° °

Hence M(^) is a polynomial. If M is not linear, then

has zeros not lying on the real axis if t moves all integers. But they 'must be
a subset of zeros of g^z). This is absurd. If M(z) is linear, then M(z) = az+b.
Again we put

Then R(z) is a polynomial and

R(z) + nM(z) - Ni

with an integer p. Again we put z=zlt ^ Ί ( ^ ) = 0 . Then
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Rizύ+nMbd

is bounded. This is a constant d. Hence

R(z) = d—naz—nb.

Thus

g1(z)= {A{w-wx)
m o eaz+h}e-naz~nh

Since Wp o ecaz+byp=eaz+b, the above gλ(z) is not prime. This is a contradiction.
Case 5). f(w) is rational (not polynomial).
(a). Suppose that g(z) is entire. In this case

P(w0) Φ 0 .

Here P(w) is a polynomial and M(z) is entire. Hence

In this case we can arrive at a contradiction quite similarly as in Case 4).
(b). Suppose that g(z) is really meromorphic. In this case f(w) should

have at most two different poles by Picard's theorem. If

with a polynomial Q{w) and two positive integers nly n2, then

wλ-w,) (BΦO)

The degree of Q should not be greater than n^n^ Let us consider

and

f*{w)=f{λ~\w)).

Then

f*(g*(z))=f(g(z)).

g*(z) is entire. Hence this case reduces to Case 5), (a). If
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with a polynomial Q(w) and a positive integer nlf then

BeM

with entire Λ(z)^ const. Then by putting

we have the equivalence of

f*(g*(z))=f(g(z)).

Here g*(z) is entire. Hence this case reduces to 5), (a).
This completes our proof of Theorem 1.

5. Proof of Theorem 2. Let F(z)=(gx(z))2 be f{g(z)).

Case 1). / and g are transcendental entire. In this case the order pf of /
is equal to 0 by Pόlya's theorem [8]. Hence f(w)=0 has infinitely many roots.
Assume that f(w) has three zeros wlt w2, wz of odd orders. Then at least one
of g{z)—wv y=l, 2, 3 has at least one simple zero z*. Then F(z*)=f(g(z*))=Q
and F(z) has the zero z* of odd order. However the order of z* should be
even by the form of F(z). This is a contradiction. Therefore f(w)=Q has at
most two zeros of odd order. Hence three cases may occur:

i). f(w) = {w—w^iw—w^Y^w)2,

ϋ). f(w) = (w-w1)
λiKwγ9

iii). f(w) = Kw)2,

where h(w) is entire and λlf λ2 are odd integers.
Case iii). Then

This contradicts the primeness of g^z).
Case ii). Then g(z)=w1+X(z)2 and hence

Therefore
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which contradicts the primeness of gx(z).
Case i). In this case with entire L(z)

g{z) = -g-{w1 + w2)+~γ(w1 -w2) cos L(z)

by Lemma 4. Then

&(*) = ±i4 (sin ^)λ\co$~γh(B+D cos L).

L should be linear by the primeness of gx(z). Then this function gλ(z) has
infinitely many zeros in Slz^xQ for some x0. This is a contradiction.

Case 2). / is transcendental entire and g is a polynomial. In this case /
should have infinitely many zeros {Wj} 3Zλ. Then g(z)=Wj for j*zj0 have infini-
tely many roots in &z^x0 for some x0 if g (-z) is not linear. This is a contra-
diction.

Case 3). f(w) is a polynomial. Similarly as in Case 1) three cases occur:

ϋ). /(u;) = (u;-u;i

iii). /(κ;) = /ι(u/)2,

where /ι is a polynomial and Λj, Λ2 are odd integers.
Case iii). Then gi(z)=±h(g(z)). Hence Λ should be linear. Let us put

±h(w)=aw+b. Therefore

w

2=f(w)o—

Hence two factorizations are equivalent.
Case ii). Then g(z)-wx=X(z)2. Hence

By the primeness of gx(z) we have that either X(z) is linear or h{w) is a con-
stant and λλ=l. This is absurd.

Case i). Then the same reasoning as in Case 1), i) leads us to a contra-
diction.

Case 4). f(w) is meromorphic (not entire). Then g is transcendental entire
and
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with entire /*, a polynomial M and a positive integer n. Hence

gl(z)2 = F(z) = e'n»f*(w0+e*).

In considering on the growth of both sides p/*=0. Hence f*(w) has infinitely
many zeros {wj}^. Then

has roots satisfying

M=log(wj—wo)+2tπι, t: an integer,

and hence there are infinitely many roots of gx(z)=Q in &z^z0 for some x0.
Case 5). / is rational (not a polynomial) but g is entire. In this case

where 0, M are polynomials. Hence

Similarly as in Case 4) we have a contradiction.
Case 6). / is really rational and g is really meromorphic. This case can

be reduced to Case 5) by constructing a linear transformation λ so that

g* = λ(g), f*=f(λ~1)

and that g* is entire as in Case 5), (b) in the proof of Theorem 1.
The proof of Theorem 2 has been completed.

6. Proof of Theorem 3.

In order to prove Theorem 3 we need to verify the primeness of gx(z)
defined in Theorem 3.

LEMMA 7. gχ{z) defined in Theorem 3 is prime.

Proof. Suppose that gi{z)—f{g(z)) with transcendental entire / and g. In
this case ρf—0 by Pόlya's theorem. Hence f(w)=0 has infinitely many roots
{tt/n}n=! denoting their orders by {μn}n=i respectively. Let us consider g(z)=wnj

n=l, 2, •••. Then there is at least one index, say n0, for which g{z)~wnQ has
infinitely many simple zeros by Lemma 3. Hence there must be infinitely many
zeros of gλ{z) having the same multiplicity. This is absurd.

Suppose that / is transcendental entire and g is a polynomial. If / has
infinitely many zeros, then g should be linear by the same reasoning as in the
above. Since gλ is of order less than one, pf<l. Hence / has infinitely many
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zeros.
Suppose that / is a polynomial. Then by Lemma 3 / has only one zero

wλ. Hence

If μ^2, then every zero of gx has its order μxxn with a positive integer xn

depending on the zero. The coprimeness of vλ and v2 implies a contradiction.
Hence μλ—l and / is linear.

gi is not periodic. Hence by Gross' theorem [3̂ ] g1 is prime

Proof of Theorem 3. The case gχ{z)2. In this case all zeros have orders
2vn. Hence by a small modification of the proof of Lemma 5 it is possible to
conclude that

This gives an equivalent factorization to W2og1(z). It still remains to consider
the case that / is meromorphic or rational. Then it is sufficient to consider g
as entire. Thus g has the form

Since then ρg^l>pg\, we arrive at a contradication.
The case &(*) exp #(&(*)). Let F(z)=gι(z) exp Hig^z)) be f(g(z)). If / is

transcendental (entire or meromorphic), then / has only one zero by Lemma 3.
Hence

or

If the latter case occurs, then

On compareing the growth of both sides we have a contradiction. Hence the
former case occurs. By the coprimeness of vx and v2 p should be equal to one.
Thus

We now put g{z)-w1^gι{z)emz\ Then

Let us consider the growth of both sides. Then M(z) should be a constant.
Hence g{z)—w1~cg1{z) and
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H(g1(z)) = logc+L(w1+cg1(z))+2mπi.

Therefore

If f(w) is a polynomial, then it should be linear by Lemma 3. If f(w) is rational
and g is entire, then

This is again a contradition, since g{z)—w1 has infinitely many simple zeros.
If f(w) is rational and g is meromorphic, then the same process as in the proof
of Theorem 1 does work.

7. Proof of Theorem 4.

In the proof we shall describe only parts for which we need a different
method from the one in the proof of Theorem 1. Let F(z)=g1(z)eHCglC*^ be

Case 1). / and g are transcendental entire.
a). Suppose that f(w)—Q has infinitely many roots {wn}n=lt Let {znl} be

the set of roots of g(z)=wn. Then

\π—aτgznl\ ^\

Evidently ρgSpgl<°°. If ^ ^ 1 , then

The complementary sector has its aperture

2 π ^

Hence by Lemma 5 there must be infinitely many roots of g(z) = wn(n^n0) in
this complementary sector. This is a contradiction.

If ρg<\ but pβl^l, then

If ^ < 1 and ^ J < 1 , then
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In these cases g(z) reduces to a linear polynomial by Lemma 6.
Case 3) and Case 4). We need different processes from those in the proof

of Theorem 1. However it becomes easier.

8. Proof of Theorem 5. Let F(z)=f1(g1(z)).

Case 1). Λ and gλ and transcendental entire. In this case the orders of Λ
and gλ are less than one. Hence there are infinitely many zeros {wn} of fx{w)
and so for some wn there are infinitely many simple roots of gi(z)=wn. There-
fore there are infinitely many roots of F(z)—0 having the same multiplicity.
This is absurd.

Case 2). fλ is transcendental entire and gλ is a polynomial. Let us put

where {μj} are positive integers and ε is equal to either 1 if w=0 is a zero of
Λ or 0 if w—0 is not a zero of fλ and A is a constant. Since gι(z)=w has
only simple roots if \w\ is sufficiently large, gχ{z)=Wι, fλ{wι)—Q have only roots
having the same order μt if / is sufficiently large. Hence μt is equal to a vm.
Let us list up all the μt which are equal to vm. There are only finitely many
such μljf j=l, -" , s. Here we may assume that / ;^/ 0. Let us put

Then

by pG<l, pg<l. Hence if s^2 g is not prime. This is absurd. Thus only one
μι coincides with vm for any sufficiently large /^/ 0 . We now put l = l(m).
Further

with a constant C=C(m) for every m^m0. Let z tend to oo. Then

g(z)-αm = C ( }

gi(z)-wUm}

 y J

tends to a constant <xo/βo, where

g=αoz*+ — +αp,
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Hence C(m) does not depend on m. And

We may assume that the set of integers {/̂ /0} and the set of integers {m^m0}
have one-to-one correspondence so that l0 corresponds to m0 by rerabelling of
{/} and {m} if necessary. Under this assumption

i Si _ amo 1 Λ g \ Km)-1

Hence

• ft fl

Since μι — vm for m^mo(/^/o),

Thus am—wιC is a constant J9 for m^m0. Hence g=CSl+D. Further

implies that

=is1(i--f-
Hence

and

This means that

This gives just two equivalent, factorizations of F.
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Case 3). fλ is a polynomial and g1 is transcendental entire. We assume
that deg Λ ^ 2 . If Λ has two different zeros wλ and w2, then both of g=wx

and g—w2 have only roots of order at least v ^ 3 . This is absurd. Hence fλ=
A^iv—Wi)71, n ^ 2 . In this case /i(^i(^))—0 has roots of order which is not prime.
This is again absurd.

Case 4). fx is transcendental meromorphic (not entire). Then

since F is not entire if gλ is a polynomial. In this case l^ρgl^ρF<l. This
is absurd.

Case 5). fλ is rational and gλ is transcendental entire. Then

and ρgl<l imply a contradiction.
Case 6). Λ is rational and g"i is meromorphic (not entire). Let ax be a

pole of Λ. Then g1-a1Φθ. Let £2 be l/C^-flα). Then F=R(g2). This reduces
to the case 5).

9. Proof of Theorem 6. Let F(z) be

Case 1). Λ and gλ are transcendental entire. Evidently fλ and g1 are of
order zero. Hence

\ ^

where A is a constant and ε is either 1 if Λ(0)=0 or 0 if ^(0)^0. We firstly
consider the case ε—1. F(z) has only one simple zero bλ. Hence there must
be at least one μh which is equal to 1. Further F has only zeros of prime
order v3 or nt 1^2 excepting only one, that is, blΛ Assume that there are two
μlf being equal to 1, say μ3 and μk. Then either gi(z)=c3 or gι(z)=ck has in-
finitely many simple zeros. Hence F should have infinitely many simple zeros,
which is a contradiction. Thus only one μt is equal to one. We may put
μo=l. Then we may put μ{^2 for / ^ l . Since F does not have any zeros of
not prime order excepting only blf all μt (/^l) should be prime numbers and
all the equations g1=cι should have only simple zeros. Hence we may assume
that μij=vh by relabelling if necessary, for 7=1, 2, •••. Therefore
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with a suitable entire function Mt. If z=bh then gx should be equal to zero
whose order is nt. Hence

gl(z)=g(z)L(z)

with a suitable entire function L. Thus

N(r, alf g)=Έ N(r9 clJf g1)+N(r, 0, Mt)

and

N(r, 0, gι) = N(r, 0, g)+N(r, 0, L).

Since the orders of g and gx are equal to zero,

N(r, 0, g) = 0—oO.))m(r, g),

N(r, aι,g) = a-o(ί))m(r,g),

N(r, 0,g1) = a-o(ί))m(r,g1),

N(r, ch, ft) = (l-<KD)«(r, 5i)

hold for a set of upper density one. Therefore

for an integer s and

(l

Thus s should be equal to one. This means that μt=iΊ and

Evidently L and Mt are of order zero. Hence

shows that

m(r, L) = o(m(r, g)) = o(m(r,

m(r, Mι) = o(m(r, g)) = o(m(r,

for a set of upper density one. On the other hand

Hence

N{r, 0, g)+N(r, -%-,
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Therefore for a set of upper density one

(l-0(l))m(r, g)+o(m(r, g)) = o(rn(r, g)),

which gives evidently a contradiction. Hence Mt and L should be constants.
Hence

-£?- = 4- and C=l.

Thus B=Cι/at. This gives

Hence

Therefore by making use of two representations of F we have ^45=1. This
means that fiig^z)) is equivalent to f(g(z)).

If μ1=l but j«0^2, then we have the equivalence of f(g(z)) and fx{g{z))
similarly. For the case of ε=0, we have the same conclusion similarly.

Case 2). fx is transcendental but gx is not. If the degree of gλ is larger
than 1, then it is impossible to get only one zero bt of F with a sufficiently
large index /. Thus we have a contradiction.

Cases 3), 4), 5), 6). These cases do not occur as in § 8.
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