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ON FOLIATIONS AND EXOTIC CHARAC-
TERISTIC CLASSES

By NAOTO ABE

§0. Introduction

The main aim of this paper is to formulate some basic notions in differential
topology and differential geometry (vector bundles, connections, and charac-
teristic classes, for example) for foliated manifolds.

Let M be a smooth manifold, & a smooth foliation on M. In § 3, we study
a certain sort of fibre bundles over M, that is, bundles whose transition func-
tions are locally constant on each leaf of &. We will call them “ Z-fibre
bundles”. The normal bundle of & is a typical example of F-fibre bundle. In
order to study the details, we give a finer classification of Z-fibre bundles than
usual. We will call the resulting equivalence classes “ F-isomorphism classes ”.
Relating to this finer classification, we formalize “ F-reducibility ” of the struc-
ture group of an Z-fibre bundle. In the case of the normal bundle of &, the
structure group GL(q, R) is ZF-reducible to O(¢) if and only if M admits a
bundle-like metric with respect to & (see [10] for the definition of the metric).
§ 2 is provided for § 3.

On an Z-vector bundle, we consider an “ Z-flat connection”, which is a
generalization of the Bott’s basic connection on the normal bundle of #. In
§4, we deal with the existence of F-flat connections and relations between F-
reducibility of the structure group and properties of F-flat connections (holonomy
group, for example).

Following the method of Bott, we generalize the notion of “exotic charac-
teristic classes” in [1] to that of a complex Z-vector bundle. These cohomo-
logy classes of M depend only on the Z-isomorphism class of the ZF-vector
bundle. From the point of view in §3, the exotic characteristic classes can be
regarded as topological obstructions to the existence of Z-reduction of the
structure group to the maximal compact subgroup. We show naturality of
exotic characteristic classes with respect to maps between foliated manifolds
which map each leaf of one foliation into a single leaf of another.

The last section is devoted to the study of exotic characteristic classes in
the case of a complex analytic foliation ¥,. We prove a vanishing theorem on
exotic characteristic classes of “ F.-vector bundles”. As a consequence of this
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theorem, we find obstructions to integrability of the transversal almost complex
structure of an almost complex foliation.

The author wishes to express hearty thanks to Professor T. Otsuki for his
encouragement and valuable suggestions. He is also very thankful to Mr. M.
Maeda.

§ 1. Basic definitions and notations

We assume that all objects are smooth and manifolds are paracompact
throughout this paper. Let M be an n-dimensional manifold. We will take the
following point of view toward foliations.

DEFINITION. A foliation of codimension ¢ (0=<¢<n) on M is given by a
local coordinate system F={(U,, (x,% Y. )}(1=a=<n—q, 1=<1=<q) of M such that

Vo' = g (V)  on UnNUg#é.

We call such a coordinate system to be flat. A local coordinate (U, (x%, »*)) of
M is said to be flat with respect to &, if the union FI{(U, (x% »*))} is also a
flat coordinate system.

Two flat coordinate systems & and &’ define the same foliation if the
union F\UF’ is also a flat coordinate system.

For a foliation & on M, we denote the corresponding integrable subbundle
of the tangent bundle T by F. For an open set UCM, &|U denotes the res-
triction of F on U. The trivial foliation of codimension 0 (resp. n) is denoted
by I (resp. O).

By analogy of the above definition, a complex analytic foliation of complex
codimension ¢ on M is defined by a local coordinate system F.={(U,, (x%, ¥.)}
(1a<n—2q,1=i=gq, and each y,* is a complex-valued function) of M such
that

Yo' =Fag' (") on U.NUg#9¢,
where f,s' is holomorphic in addition.

A complex analytic foliation of complex codimension ¢ gives a foliation of
codimension 2¢q. We will call such a foliation the underlying smooth foliation
of the complex analytic foliation.

DEFINITION. Given two foliations, ¥ on M and Z’ on M’, a smooth map
f: M—M is called an (F, F')-map if, for any flat coordinates (U, (x% »*)) with
respect to & and (U’, (x’%, y’7)) with respect to &/, f satisfies
7o f=((»%) on fTHUNNU#¢.

Let & be the canonical foliation of codimension ¢+1 on MXR. We define
a map j;: M—MXR by j,(p):=(p,s) for pe M and s€R. Then j,is an (Z, J)-
map.

DEFINITION. Two (F, F')-maps fo, f1: M—M’ are said to be (F, F’)-homo-
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topic if there exists an (F, ¥')-map H: MX R— M’ such that Hoj,=f, and
Hoj=f.
For complex analytic foliations ¥, on M and %, on M’, we analogously
define an (4., F.’)-map, demanding holomorphy of f’ in the above definition.
Especially an (&, ©')-map (resp. (., 0./)-map) is said to be F-basic (resp.
F-basic).

§2. F-cocycles

Let M be a manifold with a foliation &, G a Lie group. The presheaf of
all G-valued local Z-basic functions is denoted by Gg. For the general back-
ground of §2 and § 3, see Hirzebruch [6].

DEFINITION. A G-valued Z-cocycle over an open covering U={U,},en Of
M is an assignment of an &|U,N\Ug-basic function g,s: U,NUz—G to each
a, f= A such that, for all @, B,y 4,

Bap"8pr=8pr in UnUgNUr#¢.
The set of all G-valued F-cocycles over U is denoted by Z¥U, Gg).

For example, if {(U,k (x,% ¥.))} is a flat coordinate system of M with
respect to &, then

v:={(0y,"/0yg): U,NUg—GL(q, R)}

is a GL(q, R)-valued F-cocycle. We can regard a G-valued O-cocycle (resp. I-
cocycle) as transition functions of a usual G-bundle (resp. flat G-bundle).

DEFINITION. Let 9°€ZY(U° Gg) and '€ ZY (U, Gg), where U° and U' are
open coverings of M. Then 7° and %' are said to be F-equivalent if they
extend to an F-cocycle over the union VU°UU'. We denote the F-equivalence
class of neZ'(U, Gg) by [7]s or simply ». The set of all F-equivalence clas-
ses of G-valued F-cocycles over M is denoted by H (M, Gg).

Let M’ be another manifold with a foliation Z’. By the definition, we have

ProposiTION 2.1. If %’ is a G-valued F'-cocycle over M’ and f: M— M’ is
an (F, F’)-map, then the induced cocycle f*y’ is a G-valued F-cocyle over M.
And there is a natural map
f*: H(M, Gg)) —> H'(M, Gg) .

When we regard the identity map on M as an (O, ¥F)-map, we denote this
by ¢2. The induced map
§*: H(M, Gg) —> H M, Go)

is neither surjective nor injective in general, where H'(M, Go) can be regarded
as the set of all isomorphism classes of usual G-bundles over M, see [6]. Using
the properties of characteristic classes and exotic characteristic classes, we will
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see this fact in §5 and §6. From these fact, we see that the F-equivalence
relation is finer than the O-equivalence relation in the set of all G-valued Z-

cocycles over M,
We now define the following equivalence relation, which is finer than the

O-equivalence relation and coaser than the F-equivalence relation.

DEFINITION. Two G-valued ZF-cocycles 7° and %' over M are said to be
smoothly Z-homotopic if there exists a G-valued F-cocycle 7 over MXR such
that j¥7 is F-equivalent to %° for s=0,1. The equivalence relation in the set
of all G-valued Z-cocycles over M generated by smooth F-homotopy is called
F-homotopy.

The following fact is well-known, see [6] for example:

Fact 2.2. If maps f,,f,: M—M’ are (O, ©’)-homotopic, then fF=r¥: H'
(M’, Go)—=HY(M, Go). Especially two G-valued O-cocycles over M are O-equi-
valent if and only if they are ©-homotopic.

In general, however, we can only deduce the following proposition which
is weaker than Fact 2.2.

PROPOSITION 2.3. If %’ is a G-valued F’'-cocycle over M’, and (F, F')-maps
fo, f1: M—=M' are (F, F’)-homotopic, then the induced F-cocycles f§v', f¥n' are
F-homotopic.

Let M be a manifold with a complex analytic foliation &., G a complex Lie
group. Replacing F by <. in the above definitions, we define G-valued Z .-
cocycles and ¥ .-equivalence relation. For example, if {(U,, (x,% ¥.))} is a flat
coordinate system of M with respect to ., then

Vo' = {(ayat/ay[:’j) : Uam Uﬁ —_—> GL(‘I’ C)}
is a GL(g, O)-valued Z.-cocycle.

§ 3. Z-fibre bundles and F-reductions

Let M be a manifold with a foliation &, N a manifold, G a Lie group which
acts on N effectively. Let W be a fibre bundle over M with structure group
G, fibre N and projection .

DEFINITION. A fibre bundle W is called an Z-fibre bundle if there exists a
bundle coordinate system {(U,, h,)} of admissible charts [6] such that its transi-
tion functions {g,s} can be regarded as a G-valued F-cocycle over M, where
hy: T (U)—U,XG gives a local triviality of W on an open set U, in M. Such
a coordinate system is said to be flat.

Let W be an Z-fibre bundle. A diffeomorphism h: #~}(U)—UXG, U open
in M, is called an F-admissible chart for the flat system {(U,, h,)} if the union
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{(U,, h)}VU{(U, h)} is also flat.

DEFINITION. Two flat coordinate systems of W make W the same Z-fibre
bundle if and only if every F-admissible chart for one system is an F-admis-
sible chart for the other system.

DEFINITION. Let W and W’ be F-fibre bundles over M with structure group
G and fibre N. A bundle isomorphism f: W—W'’ which covers identity map
on M is called F-isomorphism if the induced chart (U, h’o f) is an F-admissible
chart of W for every F-admissible chart (U, h’) of W'.

Now we have the following

PROPOSITION 3.1. The set H'(M, Gg) can be regarded as the set of all F-
isomorphism classes of F-fibre bundles over M with structure group G and fibre
N (with a gwen effeclive action).

The proof is analogous to that of the corresponding theorem for H'(M, Go)
in [6]. Z-fibre bundles in the isomorphism class corresponding to y=H'(M, Gg)
are said to be associated to 7.

When an Z-fibre bundle is a vector bundle in the same time, we call this
bundle an Z-vector bundle and local frame fields corresponding to F-admissible
charts are said to be Z-admissible. For a vector bundle V, 'V denotes the
spaces of all smooth cross sections of V.

ExaMPLE 3.1. A usual vector bundle has the canonical O-vector bundle
structure.

EXAMPLE 3.2. A vector bundle with a flat connection has the canonical
g-vector bundle structure of which Z-admissible frame fields are parallel with
respect to the flat connection.

ExXAMPLE 3.3. The normal bundle T/F of a foliation & has the canonical
F-vector bundle structure associated to v in §2. Moreover we generalize this
as follows:

PROPOSITION 3.2. Let & be a foliation on M, F the corresponding integrable
subbundle of the tangent bundle T of M. If E is a subbundle of T such that
EDF and [I'F,'EICTI'E, then T/E has an F-vector bundle structure.

Proof. Let m: T—T/E be the projection, and let n, n-r and n-q be fibre
dimensions of T, E and F respectively. We can take a flat coordinate system
{(Ug (x5 3.)} of M with respect to & such that for each p=M there is a
neighborhood U, ,_U, where 7(0/0y," )N -+ Am(9/0y,7)#0. There exist functions
At on U,, satisfying n(a/aya'»):éutn(a/ay;) over U, , where 1<t<r<u<g.

On U,,, we have
[0/0x,%, 0/0,"— A, (0/0y,")]1= —((8/0x,%) A,)3/9y.) .
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The condition [I'F, 'EJCI'E implies (0/0x,%)A,'=0, that is, (A,%) is F|U,,-
basic. On U,,N\Ug,#¢@, we have ‘

7(0/0y5") = ((0y,'/0y5")+(0y."/ ay,ss)zilu‘)n(a/ 0.,

where 1<s<r. Thus we have an F-cocycle. Q.E.D.

ExaMPLE 34. If V and V’ are J-vector bundles over M, then V* VPV’
and V@V’ have also canonical F-vector bundle structures.

Let M be a manifold with a complex analytic foliation F., N a complex
manifold, G a complex Lie group which acts on N effectively and holomorphi-
cally. Replacing F by &, in the above definitions, we define F.-fibre bundles,
F.-admissible charts and &.-isomorphism.

ExaMPLE 3.5. Let {(U, (x.,% v.%)} be a flat coordinate system of M with
respect to . where y*=u'++/—1v*. The complex subbundle of (T/F)RQC
defined by local frame fields ((z(8/0u®)— +/—1x(3/0v%))/2) is denoted by Q. This
bundle @ is an ZF.-vector bundle associated to the F.-cocycle v, in §2.

Hereafter in this section, we deal with certain reductions of structure groups
of F-fibre bundles over M with &.

DEFINITION. Let W be an Z-fibre bundle over M with structure group G,
H a Lie subgroup of G. The structure group of W is said to be F-reducible
to H if the corresponding element of H'(M, Gg) included in the image of the
map ¢x: H'(M, Hz)—H'(M, G5) which is induced from the inclusion map ¢: H—G.

We have the following fact for usual fibre bundles, see [6]:

Fact 33. If H is a closed Lie subgroup of G for which G/H is a cell, then
the map
tx 2 H'(M, Ho) —> H'(M, Go)

is bijective, that is, the structure group G is always O-reducible to H.

The corresponding fact for Z-fibre bundle does not hold in general. In the
case of F-vector bundle, we can find counterexamples. Comparing with the
definition in [10], we have

PROPOSITION 3.4. The structure group GL(q, R) of the normal bundle T/F is
F.reducible to O(q) if and only 1f M admits a bundle-like metric with respect to <.

This is easily deduced from the following

PROPOSITION 3.5. Let V be an F-vector bundle over M with structure group
GL(k, R)(resp. GL(k, C)). The structure group of V is F-reducible to O(k)(resp.
U(k)) if and only if V admits a metric whose components relative to F-admissible
frame fields are F-basic funclions.
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For the later use, we prepare the following

DEFINITION. A foliation & of codimen 2¢ is called an almost complex
foliation if the structure group of T/F is ZF-reducible to GL(q, C).

The underlying smooth foliation of a complex analytic foliation is an almost
complex foliation, where the F-reduction is induced from the complex structure
of @ in Example 3.5.

§4. Connections on F-vector bundles

Let M be a manifold with a foliation &, V and Z-vector bundle over M
with structure group GL(k, K), where K is the real or complex number field.
T* denotes the (complexified) cotangent bundle of M.

DEFINITION. A connection D: I'V—I'(T*®V) on an F-vector bundle V is
said to be F-flat if Dys=0, VX I'(F|U) for every F-admissible local frame
field s.

By this definition, we get
PrOPOSITION 4.1. If a connection D 1s F-flat, then
DXDY_DyDX—D[X,y]:O, VX, YE FF.
Now we show some examples.
ExaMPLE 4.1. There exists the canonical Z-flat connection of T/E in Ex-
ample 3.3 as follows:
Fix a decomposition T=FPF*. Let n,: T—F and r,: T—F* be projections,

D’ a connection on T/E. For every XelI'T,YeI'(T/E), we define a connection
on T/E by

DyY:=n({mX, Y)+Dp,xV,
WherNe YerI'T is such that #(¥)=Y. This is independent of the choice of a
lift Y.
When E=F, this connection is called a basic connection [1].

ExaMPLE 4.2. The flat connection on a 9-vector bundle in Example 3.2 is
I-flat.

We can prove a general theorem on existence of an Z-flat connection on
an Z-vector bundle.

THEOREM 4.2. On an F-vecior bundle V, lhere exists an F-flat connection.

Proof. Let {U,} be an open covering of M with a family of F-admissible
frame fields {s,}. We can assume that this covering is locally finite and admits
a partition of unity {f,}. Define a connection D* on V|U, by D%,=0 for the
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frame s,. And define a connection D on V by X f,D". Then we have
a
Dsa: (2}3 fﬁdgaﬁ * gaﬂ_l)sa .

Since the transition function g,z is F|U,N\Upg-basic, we get
Dys,=0, VX I'(F|U). Q.E.D.

There is the following relation between two <-flat connections on a vector
bundle which has Z-vector bundle structures.

PROPOSITION 4.3. Assume that a vector bundle has two structures of F-vector
bundle V and V’'. Let D (resp. D) be an F-flat connection on V (resp. V’'). Then
V and V'’ are the same F-vector bundle if and only 1f Dy=D"y, YVX&I'F.

Proof. The sufficiency is obvious. Let s (resp. s’) be an F-admissible frame
field of V (resp. V') over U (resp. U’). When UNU’#¢, there exists a map
g: UNU'—GL(k,K) such that s’=gs. Then we have

Dys'=(Xg)s+g(Dygs)=(Xg)s, VXel'(FIUNU').

This formula and the assumption Dy=D’y, YX&'F implies Xg=0, VX<
L(FI\UNU"), that is, g is F|UNU’-basic. Q.E.D.

As for the properties of maps between two foliated manifolds M with &
and M’ with F’, we easily get

PROPOSITION 4.4. Let V' be an F'.vector bundle over M’, D' an F’-flat con-
nection on V'. If f: M—M' 1s an (F, F')-map, then the induced connection f*D’
on f*V’ 1s an F-flat connection on the F-vector bundle f*V'.

As a generalization of standard connection theory on vector bundles, we
get some results which relate to F-reducibility of structure groups of Z-vector
bundles as follows (cf. [4]).

THEOREM 4.5. If an F-vector bundle V admits an F-flat connection D whose
holonomy group is contained in a Lie subgroup G of the structure group GL(k, K),
then the structure group of V 1s F-reducible to G.

Proof. Let B be the linear frame bundle of V, =: B—M the projection.
We take a flat coordinate system {(U,, (x,% ¥,")} such that (x,% 3,"): U,—~R"™?
X R? is a diffeomorphism. Let p,eU, (resp. A,CU,) be the point (resp. subset)
corresponding to the origin (0, 0)(resp. subset {0} XxR% in R *X R%. Let m,:
U,—A, be the induced projection map, then each =, *(p), pe A, is a leaf of
F|U, We can assume that there exists an F-admissible frame field s, of V
over U, for each a. For ueB|U,, there is an element g GL(k, K) such that
u=s,(w(u))g, then we set 7 (u):=s,(w (m(u)))g. Thus we define a bundle map
%,: BlU,~B|A, which covers 7,.

Fix u,=B as a reference point for the holonomy group of the Z-flat con-
nection D. Given a connection on V, we denotes the parallel displacement
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along a piece-wise smooth curve ¢ in M by ¢. Choose a family of piece-wise
smooth curves {c,} in M such that all start from =(u,) and each ends at p,.
Set u,:=C4u, in #7*(p,). For any ueB|U,, let v, be the ray (with respect to
the above coordinate) in A, from p, to w(w(x)). The parallel displacement of
u gives a point 7, '(F(w)=u.,g for some g&GL(k, K) and then we define a
map ¢,: B|U,~GL(k, K) by ¢, (u): =g. Define a new frame field over U, by
$2(0) : =5 (D) @alsa(P))t for peU, Then this is also an F-admissible frame
field of V because of the definition of ¢, As to these new frame fields, we
have, for pcU,NUg+9,

$5(P) = $(D)Ral(s5(D))(@a(ss(£))) " .

Set Z.3: =@ (sp(D))@a(sp(p)))™* for pe U,N\Upg Then by the well-known method
in the usual holoromy reduction theorem, we can show that the transition func-
tions {£,s} take values in G. Q.E.D.

As an inverse version of this theorem, we get the following

THEOREM 4.6. If G is a reductwe Lie subgroup of GL(k,K) and the struc-
ture group of an F-vector bundle V is F-reducible to G, then V admits an F-flat
connection of which holonomy group 1s contained in G.

Proof. Let B be the linear frame bundle of V, gi(k, K) the Lie algebra of
GL(k,K), w: TB—gl(k, K) a connection form which corresponds to an %-flat
connection D on V in Theorem 4.2. If a local section s: U—B is an F-admis-
sible frame field, then ix(s*w)=0, VXeI'(F|U), and vice versa.

As G is reductive, there is a linear subspace m of gi(k, K) such that gl(%, K)
=mPg, AD(G)mCm, where ¢ is the Lie algebra of G. We denote the g-com-
ponent of w by w’. Let B’ be the subbundie of B which gives the F-reduction
to G, ¢: B’—B the inclusion map. Then we can prove that the induced form
*w’: TB’—g is a connection from and that 1x(s*(¢*w’))=0, VX I'(F|U) for
every F-admissible frame field s of V which takes value in B’. The linear
connection D’ on V which corresponds to ¢*w’ is an F-flat connection with
holonomy group contained in G. Q.E.D.

Next we consider reductions which are given by tensor fields on V. From
Proposition 3.5, we easily get

PROPOSITION 4.7. Let D be an F-flat connection on a real (resp. complex)
F.vector bundle V. Then a metric tensor field g on V gives an F-reduction to
O(k) (resp. U(k)) if and only if Dyg=0, VX&I'F.

For an Z-vector bundle V and a metric g on V, an Z-flat connection D
satisfying Dyg=0, VX&I'F, is not a metric connection in general. However
we can find an Z-flat connection D’ on V which coincides with D with respect
to F (see Proposition 4.3) and is a metric connection (i.e. D’3yg=0, VX&I'T).
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Proposition 4.7 is true for other tensor fields on V. Relating to an almost
complex foliation, if a tensor field / on V gives an Z-reduction of the structure
group GL(2k, R) to the subgroup GL(k, C), then DyzJ=0, VX I'F for an F-flat
connection D on V.

Hereafter in this section, we deal with the complex analytic foliation. Let
M be a manifold with a complex analytic foliation F., & the underlying smooth
foliation of Z., and V an Z.-vector bundle over M.

DEFINITION. An Z-flat connection D: I'V—-I'(T*®V) is said to be F -flat,
if Dys=0, YXeI'(Q|U), for every F.admissible local frame field s, where Qis
the complex conjugate of @ in Example 3.5.

For the existence of F.-flat connections on &.-vector bundles, we have

THEOREM 4.8. On an F.-vector bundle V, there exists an F.-flat connection.

The proof is analogous to that of Theorem 4.2.

§5. Connections and characteristic classes

We will use the Chern-Weil theory of characteristic classes in the form as
described in [3]. Let V be a complex vector bundle over a manifold M, T* the
complexified cotangent bundle of M, A*(M) the graded algebra of all complex-
valued grobal forms on M. For a connection D: I'V—-I'(T*®V) and a local
frame field s of V, we denote the connection (resp. curvature) matrix relative
to s by 6(s) (resp. 6(s)) or simply 8 (resp. 6).

Let I*(GL(k, C)) denote the graded algebra of complex-valued adjoint-in-
variant symmetric multilinear functions on gl(k, C). For ¢=I"(GL(k, C)) and Ac
gl(k, C), we denote ¢(4, -+, A) by ¢(A) for simplicity. Then adjoint-invariancy
of ¢ is equivalent to

o(gAg ) =¢(A), Vge GL(k, C), VAegl(k, C).

Let D° and D' be connections on V.

DEFINITION. Homomorphisms of C-modules
ADY): I'(GL(%k, C)) — A*(M)  and
A(D°, DY) : I"(GL(k, C)) —> A* (M)
are defined as follows: for o= I"(GL(%k, C)), locally
ADYg:=¢(0Y),
A0, DY =7’f01(p(01—0°, ', -, 0t
where ©° is the curvature matrix of the connection tD'+(1—¢)D".

From the Chern-Weil theory, we have
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Fact 51.  d(A(D")¢)=0  and
d(A(D°, D))= ADHp—A(D)¢p .

In other words, the closed form A(D')¢ represents a complex de Rham
cohomology class [A(D")¢]e H* (M), and the induced homomorphism of graded
algebras

ADY*: I*(GL(k, C)) —> H*(M)

does not depend on the choice of connections on V. We can prove that A(DY)*
depends only on the O-isomorphism class [V]e. Denote the subalgebra A(D')*
(I*(GL(k, C))) by Chern*(V), Chern*(V)N\H"(M) by Chern"(V).

Let & be a foliation of codimension ¢ on M, V a complex F-vector bundle
over M.

PROPOSITION 5.2. If D' is an F-fiat connection on V, then

ADYe=0  for ¢ such that deg ¢>gq.

The proof is analogous to the corresponding theorem in [1] because of

Proposition 4.1. From Theorem 4.2, we have

COROLLARY. If a wvector bundle V has a structure of an F-vector bundle,
then
Chern"(V)=0 for r>2q=2-codimgp%F .

Let #, be a complex analytic foliation of complex codimension ¢ on M,V
an .-vector bundle over M. By analogy with Proposition 5.2, we can prove

PROPOSITION 5.3. If D' is an F.-flat connection on V, then
ADYe=0  for ¢ such that degp>q.
And from Theorem 4.8, we have

COROLLARY. If a vector bundle V has a structure of an F,-vector bundle,

then
Chern "(V)=0 for r>2¢=codim p%,.

Remark. With certain geometrical conditions, the elements of Chern*(V)
whose cohomology dimensions are greater than just the codimension of the
foliation would vanish as in the above corollary. The following fact is an
interpretation of one of the results in [9].

Fact 54. If the structure group GL(q, C) of the complexified normal bundle
(T/FYQC of a foliation F is F-reducible to U(g), then

Chern"((T/F)RC)=0 for r>¢g=codimzZ.
We can prove an analogous result.

PROPOSITION 5.5. Let V be an F-vector buncle over M. If an F.admassible
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covering of M for V admuts a partition of unity consisting of F-basic functions,
then
Chern"(V)=0 for r>qg=codimzF ,

where an F.admissible covering for V 1s an open covering whose elements admit
F.admissible frame fields of V.

§ 6. Exotic characteristic classes of F-vector bundles

In this section, we generalize the notion of exotic characteristic classes in
[1] to that of complex F-vector bundles. These classes depend only on the
F-isomorphism class of an F-vector bundle. For this purpose, we construct a
cochain complex WU(k), at first.

DEFINITION. Let C[c¢,, ¢y, -+-, s, €] be the polynomial ring over the complex
number field C in variables ¢y, ¢;, -+, ¢, ¢, with dimensions dim ¢;=dim ¢, =21,
1=1,2, -+, k, I, the ideal generated by monomials whose dimensions are greater
than 2¢. Denote the quotient ring Clc¢, -+, €x1/1, by CJlcy, -+, Cx]. Let
E (h,, -+, h;) be the exterior algebra over C generated by h,, -+, h, with dim
h;=2i—1, i=1,2,---, k. WU(k), is a cochain complex

Ec(hlt ) hk)®cq[6h 51; cty Cpy c-k]
with differential d,, given by
dyc,=d,¢, =0 and dyh,=(c;—¢,)/24/—1 .

We denote the cohomology class of ce WU(k), by [c].
Let & be a foliation of codimension ¢ on M, V a complex Z-vector bundle
over M with structure group GL(k, C).

DEFINITION. Let D' be an F-flat connection on V, D° a metric connection
on V with respect to some Hermitian metric on V. A graded algebra homo-
morphism

Ay 2 WU(R), —> A*(M)
is defined by requiring
ZV(Ct) L= 2<D1)61 y ZV(C-L) L= Z(Dl)a. )
Ay(h,) . =(A(D°, DY&;—A(D°, DV)E,)/2+/—1, 11k,

where the invariant polynomials ¢, are given by

—_ k
det (Y A)=1+ S rea)  for A=k, O).

T
LEMMA. dAy=2yd,.

Proof. By Fact 5.1, the assertion is obvious for ¢, and ¢,. By Fact 5.1 and
the fact that
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EA)=6(4) for Acu(k),
where u(k) is the Lie algebra of U(k), we get
d(Ay(h,)) = (d(AD°, D)Z,) — d(A(D°, DNE))/2 v/ —1
=AD" —ADNE)/2+/ —=1—(AD")e;—A(D")E,) 2/ —1
=)= ())/2V —1~0
=2y((¢,—¢.)/2V —=1)=Ay(d,h,) . Q.E.D.

Then 4y induces a homomorphism A,* from the cohomology of WU(k), to
the complex de Rham cohomology H*(M).

PROPOSITION 6.1. Ap*: H¥(WU(k))—H*(M) 15 independent of the choices of
metrics, metric connections and F-flat connections on the F-vector bundle V.

Proof. Let g, (resp. g1) be a metric on V, D,° (resp. D,°) a metric connec-
tion with respect to g, (resp. g.), and D,', D,'F-flat connections on V. Let

p: MxR—M be the projection, & the canonical foliation of codimension q on
MxR. In this situation, there exist the following objects:

D': the &-flat connection on the induced F-vector bundle p*V such that
j*D'=sD}+(1—=s5)Dy},

g: a metric on p*V such that j,*¢=g, and j,*8=g,,

D°: a metric connection on p*V with respect to £ such that JO*DOZDOO and
7%D°=D,° (see [8]).

It is sufficient that we show the assertion on the indicated #’s. For s=0, 1,
we have

1D, DYE) =1 240" =400, 1465, -, 10t
0
:1J. 151’(031—0301 @st: Tty @st)dt:’z(Dsoy Dxl)gz .
0
Together with the fact that jo*=j,*: H*(Mx R)—H*(M), the proof completes.
Q.E.D.

We will call the elements of Ap*(H¥(WU(k),)—[C,[cy, -+, Cr]]) the exotic
characteristic classes of V by analogy with [1]. By Theorem 4.6, we get

PROPOSITION 6.2. If the structure group GL(k,C) of an F.vector bundle V
1s F-reducible to U(R), then all of the exotic characteristic classes of V vanish,
that 1s, Im (A4y*)=Chern*(V).

In other words, the elements of the exotic characteristic classes are ob-
structions to existence of F-reduction to the maximal compact subgroup U(k).
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Following to the method of Vey in [5], we get

PROPOSITION 6.3. Putting u,”:=(c,—¢,)/2+/—1 and u,*:=(c,+¢,)/2 wn
Cley, =+, €4, we have Cyley, -+, Cx]=Cluy™, uy*, =+, uy ", u,*] and dyu,” =d,u,*
=0, dyh;=u,”. A basis for H¥(WU(k),) 15 given by the following two types of
classes of cocycles.

(A)' h‘tl/\ cee /\h”®u"1‘ “ee u]m‘ . u81+ eee u3t+7
where 1=y, <<y =k, 1=5= =)n=min(q, k) and
1<s5,< -+ =<s, <min(q, k) satisfying

1) u+5+ - +imtsi+ - +5.>q (cocycle) and

2) 1=, (independency).

(B): Ug e ug,”,
where 1<s,<-- <s,<min(q, k).

The classes of type (A) (resp. (B)) correspond to exotic (resp. Chern) chara-

cteristic classes.
For ¢’ =g, the canonical projection induces the cochain homomorphism

o s WU(R)y —> WU(R),.

Let ' be a foliation of codimension ¢’ on M’, V’/ be an Z’-vector bundle
over M’ with structure group GL(k, C). By Proposition 4.4, we have

PROPOSITION 6.4. If f: M—M 1s an (F, F')-map, then the following diagram
1s commutative :

HXWU(k)g) <— HXWU(k)g)

Gerd* | e | G
HA M) <—  H¥M)
f*

COROLLARY. If lwo F-vector bundles V and V' over M with structure group
GL(k, C) are F-asomorphic, then

Ap¥=Ap* on H¥WU(R),) .
By an analogous proof to that of Proposition 6.1, we have

PROPOSITION 6.5. If two F-vector bundles V and V' over M with structure
group GL(k, C) are F-homotopic, then

Ap* =2, * on Im (p2*)*.

This proposition and Proposition 2.3 imply
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COROLLARY. If two (F, F')-maps f,, fr: M—M' are (F, F')-homotopic and
V' is an F'-vector bundle over M’ with structure group GL(k, C), then

('2f0'V’)* = ('{fl*V’)* on Im (qu“)* .

We will call the elements of A,*Im (p,2*')* the rigid classes of V by analogy
with [5]. It holds that

Chern*(V)C Ay* Im (0,4 )* C A *H=(WU(k),)

where they are invariants of V relative to O-isomorphism, F-homotopy and Z-
isomorphism respectively. We will call the elements of Ay*(H*(WU(k),)—
Im (p,2*)*) the non-rigid exotic characteristic classes of V. We get easily

PROPOSITION 6.6. The elements of H¥(WU(k),)— Im (p,2*")* are given by the
classes of the cocycles of type (A) in Proposition 6.3 with

utgt o Fim st e s, =g+1.

Let V be a real F-vector bundle. We denote Ayg¢ by 4y for simplicity,
where V®C is the complexification of V. By direct calculations, we have

PROPOSITION 6.7. If D° (resp. D*) 1s the connection on VRC which 1s extended
from a metric (resp. F-flat) connection on V by linearlity, then

Ayu,” = (—1)“2A(DYEE for 1=odd,
Aph,=(=1)@D2(D°, DYRE  for 1=odd,
Ayu,t =(—=1)"22(D")¢ 7 for j=cven, and
u,”,

Ayr=0 for other generators wu,”, h,,

where wmvariant polynomials &,® are given by

k
det(z—Z—tﬂA):Hg peR(A)  for Aegl(k, C).

This proposition suggests that we might deal with only the following co-
chain complex for real F-vector bundles.

DEFINITION. Let [ be the largest odd integer <k. WO(k), is a cochain
complex E(hy, hs, -, h)QC[u,~, uy*, us™, u,™, -+, w7, (wy4,*)] with d,, given by
dyu,*=d,u,”=0 and dyh;=u,".

If k=g, then the cochain complex WO(q), coincides with WO,RC which is
the complexification of WO, in [1].

ExaMPLE 6.1. For ¢=1 and k=1, we have

dw(hy@u, 7)) =(u," ) =0 in WO(k)q .
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Let & be a foliation of codimension ¢ on M, V a real F-vector bundle over M
with structure group GL(k, R). The resulting cohomology class A,*[A,&(u,7)?]
€ H?**(M) is called the generalized Godbillon-Vey invariant of V (cf. [7]). If
Z is a foliation of codimension 1, then A7,z*[A,Qu,”] coincides with the God-
billon-Vey invariant [1]. Proposition 6.6 shows that generalized Godbillon-Vey
invariants are non-rigid exotic characteristic classes.

EXAMPLE 6.2. A vector bundle V with a flat connection D has the canonical
g-vector bundle structure. Moreover Proposition 4.3 guarantees the existence
of one-one correspondence between flat connections on V and 9-vector bundle
structures on V. Denote by V), the corresponding Z-vector bundle to a flat
connection D. As I is the foliation of codimension 0, we may choose the fol-
lowing :

WU(k)O :Ec<hl’ E) h‘k) Wlth dwhl :0 ’

then we have an isomorphism H*¥(WU(R))=WU(K),. If D and D’ are flat
connections on V such that V, and Vj, are g-homotopic, then

XVD*I:/%]:'ZVD'*Ehz] for 1=2,

that is, h, is rigid for i=2. This fact follows from Proposition 6.6.

§7. Exotic characteristic classes of & -vector bundles

Let &, be a complex analytic foliation of complex codimension ¢ on M, V,
an .-vector bundle over M with structure group GL(k, C). We denote ¥ the
underlying smooth foliation of codimension 2¢, and by V the underlying %-
vector bundle of V..

DEFINITION. Let Clc¢,, ¢y, -+, Ci, €] and E.(hy, ---, h,) be the same as in the
definition of WU(k), in §6. And let I,,,, be the ideal in C[¢,, -+, ;] generated
by monomials in variables ¢’s and monomials in variables ¢’s whose dimensions
are greater than 2g. WU(k),” is a cochain complex

Ec(h'ly R h’k)®<C[cb C_I’ 0y Cpy C—k]/IZQ,Zq)

with the same differential d,, as that of WU(k),.

Especially WU(q)," coincides with WU, in [2]. Replacing the Z-flat con-
nection D' in the definition of A, in §6 by an Z.-flat connection, we define the
graded algebra homomorphism

Ay, s WU(R), — A*(M),
which induces the homomorphism (4,,)*: H¥(WU(kR),)—H*(M).

PROPOSITION 7.1. (Ay./)* is independent of the choices of metrics, metic con-
nections and F.-fiat connections on V..
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The proof is analogous to that of Proposition 6.1. Moreover we can prove
that (4y,)* depends only on the F.-isomorphism class of V., using the complex

analytic version of Propositions 4.4 and 6.4.
As the ideal I,, is contained in /., there is the canonical projection

p: WU(k),, —> WU(R),,
which induces the homomorphism p*: H¥(WU(k),)—H*(WU(k),).

PROPOSITION 7.2. The following diagram is commutative :

H*(WU(k)2q) H*(M)

Ay
p*
Ay )*

H*(WU(k))

COROLLARY. If an F-vector bundle V over M has a structure of an .-
vector bundle, then

Ayfu=0 for ueKer (o*)(CH*(WU(k),,)) .

This corollary is a generalization of the corollary of Proposition 5.3. Because
we have
Ay*(Ker p¥*)D U Chern"(V)
4q=2r>249

Let & be an almost complex foliation of real codimension 2¢, T/F the
normal bundle witn structure group GL(g, C), then the elements of A% (Ker p*)
(CH*(M)) are regarded as obstructions to integrability of the transversal almost
complex structure of <.
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