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ON HARMONIC MAJORATION

BY TSUNEHIKO SHIMBO

It is easily verified that if u(z) is subharmonic in the unit disk Δ and has
a harmonic majorant on some annulus [_p< \z\ <1], then on Δ so does u. Royden
[6] showed that if u is harmonic in a finite Riemann surface W and has a
positive harmonic majorant on some boundary neighborhood, then on W so
does u. On the other hand Gauthier and Hengartner [1] has recently shown
that if u is subharmonic in the unit disk Δ and has harmonic majorants on
sufficiently small (relative) neighborhoods of each point of the frontier 9J, then
on Δ so does u.

We are concerned with partitionality of harmonic majoration. In the pre-
sent paper we give some extensions of the above statements.

1. Sectional Majoration Theorem.

THEOREM 1. On an open Riemann surface W, let A be a relatively compact
ring domain with frontier ^A—γ^γ^ where γ1 and γ2 are mutually disjoint simple
closed curves. Let W± and W2 be regions on W satisfying that: i) W1Γ\W2= A,
ii) Wk contains γk(k=l, 2), iii) WΊ has positive ideal boundary. Suppose that u
is subharmonic in W^W2 and has harmonic majorants on each of Wλ and W2.
Then u has a harmonic majorant on W^JW2.

Proof. Let us take an analytic simple closed curve /(in A) separating dA.
Let WV(WY) denote the subregion of Wλ(W2l resp.) obtained by removing the
closed ring domain bounded by γ and γ2 (γlf resp.).

Let b be a bounded harmonic function on Wι with the boundary values
h2— hj_ on γ, where h1 and h2 are harmonic majorants of u on Wi and W2, re-
spectively. Let ft^O be a nonnegative bounded harmonic function on WY con-
tinuously vanishing toward γ. We define a function w on W^JW2 as follows:

r/ι2+M on HY
w=

on WY ,

where K and M are positive constants satisfying that

-Kω+b+M>Q in W,.
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Here we may assume that both ω and b are harmonically extended over the
closed annulus Al bounded by γ and γz, and that ωfgO on Aλ. Hence, for suf-
ficiently large K,

hz+M^hί-Kω+b+M on A,.

This inequality implies that w is superharmonic in W^JW2 for such K, which
proves the theorem.

A meromorphic function / on a Riemann surface W is called Lindelδfian
on W if log+ |/0)| has a superharmonic majorant on W. (See Heins [2].) As
an application of the theorem we give a decomposition formula for Lindelδfian
meromorphic functions on a plane region.

THEOREM 2. Let Ω be a plane region whose complement in the extended
plane C consists of mutually disjoint n continua Elt E2, •••, En. Then every Lin.
delόfian meromorphic function f on Ω can be represented in the form

/=/ι+Λ+ •••+/»,

where fk(k=l, 2, •••, n) are Lindelδfian meromorphic functions respectively on the
simply-connected regions C^Ek.

Proof. Without loss of generality we may assume that Ω contains the
point at infinity at which / is analytic and vanishes. Let P be the set of poles
of /. Since P clusters only on dΩ, we can divide P into mutually disjoint n
subsets Pk(k=l, 2, •••, n) each of which is either a countable set clustering only
on Ek or the empty set. Then the usual Aronszajn decomposition

/=/o+/ι+Λ+-+Λ,
where

c0 being a circle centered at the origin with sufficiently large radius and ck(k=
1,2, ~ ,ri) being a cycle bounding Ek^JPk, enjoys the following properties: i)
/OΞΞO, ii) fk is meromorphic in C^Ek and vanishes at the point at infinity (k=
1, 2, •••, n), iii) the set of poles of fk is precisely Pk(k—l, 2, ~ ri). We must
verify that fk(k=l, 2, •••, n) are Lindelδfian on their respective domains. To do
this for Λ (for other fk, the reasoning is the same), let us take a closed ring
domain A off E^JE^J ••• \JEn satisfying that the bounded component of the
complement of A contains Pλ and the unbounded component contains P2, P3,
•••, Pn. The previous theorem is available to the case: Wλ— the interior of the
set obtained by removing E^JPλ from the union of A and the bounded com-
ponent of the complement of A, W2=the interior of the union of A and the
unbounded component, u(z)= log+ |/(*)|, ΛI(Z)= h(z)+M, h2(z)=M, where h(z) is
a harmonic majorant of u(z) on Ω less P and M is a sufficiently large constant.
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2. Local Majoration Theorem.

We turn to another partitionality.

THEOREM 3. Let W be a finite Riemann surface with border β which consists
of a finite number of mutually disjoint smooth simple closed curves. If u is
subharmonic in W and has positive harmonic majorants on sufficiently small
(relative) neighborhoods of each point of the border β, then u has a positive
harmonic majorant on the whole surface W.

Before proving the theorem, we note

LEMMA. Let C be a simple closed curve in the plane and /(ζ) be a continuous
function on an open subarc γ of C. Let {un} be a sequence of harmonic func-
tions converging inside C. Suppose that un(n=l, 2, •••) have common continuous
boundary values /(ζ) at each point of γ, and that there exists a harmonic func-
tion U(z) inside C such that U(z)^un(z) (τx=l, 2, —) inside C. Then the limit
function also has continuous boundary values /(ζ) at each point of γ.

The lemma reduces to the case where C is the unit circle, U(z) = Q and
/(ζ)Ξθ. In this case the lemma can be verified by the following fact which is
an immediate consequence of Poisson's integral formula for harmonic functions.
For <*>0, let Ha be the family of functions which: i) are nonnegative and
continuous on the closed unit disk, ii) are harmonic in the (open) unit disk, iii)
are dominated by 1 at the origin, and iv) vanish on the arc γ={eίθ \ \θ\^a}.
Then Ha is equicontinuous near γ in the sense that for any ε>0 and any positive
η(<a) there exists a positive ρ<l satisfying that u(reίθ)<ε for every u^Ha

and r, θ with p<r<l, \θ\^η.
To prove the theorem it suffices to show that u has a harmonic majorant

on some neighborhood of the border β, and hence to show the following: Let
u(z) be a nonnegative subharmonic function on an annulus K\z\<R (<oo).
If u(z) has harmonic majorants on sufficiently small (relative) neighborhoods of
each point of the circle \z =R, then on some annulus ρ< \z\ <R u has a harm-
onic majorant.

To do this, we have only to show

LEMMA. Let {rn} be strictly increasing sequence with a finite limit R (>1)
and for a fixed positive a (<ττ)/, fn(n=\, 2, •••) be nonnegative bounded continuous
functions on tfie arcs {eίθ \θ\<a}, {rne

ίθ \θ\<a} (n=l, 2, •••), respectively. By
hn(n=l, 2, •••) we denote the bounded harmonic functions on the sets Rn~{rew \
Kr<r7l, \θ\<β] having continuous boundary values:

/(ζ) on {e« \θ\<a] ,

MO on {rne
ie; \θ\<a} ,

0 otherwise (except at the points with \θ\—ά).

By Hn(n=l, 2, •••) we denote the bounded harmonic functions on the annuli An=
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|<rn] having continuous boundary values:

/(ζ) on{e«;\e\<a},

Λ(ζ) on {rne
ί° \θ\«x},

0 otherwise (except at the points with \θ\=ά) .

If for some /3(>α) {hn} contains a converging subsequence, so does {Hn}.

Proof. Fix a point z0 with K|* 0 |<r l f a<aτgz0<β. Let gn, Gn be the
Green functions with pole z0 of regions Rn, An, respectively (n=l, 2, •••)•

We assert that for sufficiently large M

in the sets {reiff Kr<r7l, \θ\<a} (n=l, 2, •••). To see this, set

Mn=maxGn(z)/gn(z)

over the segments {r^ l^r^rn, |0|=α}, where the values of Gn(z)/gn(z) at
the end points are interpreted as the values of

(dGJdr)/(dgn/3r) (n=l,2,-)

Suppose that there exists a subsequence {Mnk} with Mnk— >co(k— >oo). We may
assume Mn— >oo(n— »oo), so that we can take a {zn} such that

K\zn\<rn, |argz n |=α (n=l, 2,

and

By Cauchy's mean value theorem we can find a {/on} with Kpn<rn (n=l, 2, •••)
satisfying either that μn-+oo(n-^cv), where μn(n=l, 2, •••) are the values of
(dGn/dr)/(dgn/dr) at z=pne

ιe* or pne~loc> But this contradicts the uniform con-
vergence in an appropriately extended, or that for iufinite n dGn/dr=dgn/dr=Q
at z=Pne

l<1 or Pne~ld region of the sequences of the Green functions and of
their derivatives.

3. We finish up with a classification of Riemann surfaces.

By 0AL, OR, Oi we denote the classes of Riemann surfaces not admitting
respectively nonconstant : Lindelδfian analytic functions, analytic functions
whose real parts are dominated by positive harmonic functions, //^functions
(i.e., analytic functions whose moduli are dominated by harmonic functions).

We establish the strict inclusion relations :
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i) 0AL<==OR. 0ALdOR is due to the following theorem (Heins [2]). Every
analytic function whose real part is dominated by a positive harmonic function
is Lindelδfian. Here we show that Myrberg's example (Myrberg [4]) is an
example for the concerned strict inclusion relation. Let F be two-sheeted cover-
ing surface of the plane given by the equation

w2— sin,?— 0.

We remove from F a closed disk K on one sheet, and denote the resulting
surface by Flf The valence of the projection π of Fl onto the plane is at most
two, thereby π is a Lindelδfian analytic function on Flt (Heins [2].) Hence
F!&OAL. Here we need only a weak version of Heins' result. Every meromor-
phic function such that the set of values taken by the function only a finite
number of times has positive (logarithmic) capacity is Lindelόfian. This can
be directly proved by Theorem 1 and the following elementary fact : the identity
function of the plane is Lindelofian on regions whose complements have positive
capacity.

To show F^OR suppose that / is an analytic function whose real part is
dominated by a positive harmonic function h on Flf On the plane less the
projection of K, we consider the function

where z+ and z~ are the points over z. Then φ is a single-valued analytic
function, and

H(z)—h(z+)-\-h(z ) is a single-valued positive harmonic function. Therefore it
follows that φ is meromorphic in a neighborhood of the point at infinity. On
the other hand, φ(z)—0 at z— nπ (n=±l, ±2, •••)• Consequently ^^0, which
shows f(z+)=f(z~) and that / can be analytically continued onto F. A similar
reasoning applied to efw concludes that / is a constant.

ii) 0ΛξOj. ORaOl is trivial. Let £0 be a compact set on the segment
{ — l+ιy, —1/2 < 3; < 1/2} of linear measure 0 and positive capacity. Let E be
the set { — 1+iy+im; — l+ιy^E0, m integer}. We show that R—C^E has the
desired property. The fact that R belongs to Oλ is seen from the following
theorem due to Heins [3]. The sets of linear measure 0 on a finite number of
mutually disjoint analytic simple closed curves are null sets for //^functions.

To see R&OR let ω be the harmonic measure of the imaginary axis with
respect to the left half plane less E. Since ω(z+i)=ω(z),

sup ω(— -y

We define a function w on R as follows:
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iX+A

For sufficiently large constant A, w is (nonnegative and) superharmonic in R
and dominates the real part of the identity function on R. Hence R&0R.

The idea used in the present paper of constructing superharmonic functions
by two harmonic functions with same boundary values is found in [5].
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