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ON HARMONIC MAJORATION
By TSUNEHIKO SHIMBO

It is easily verified that if u(z) is subharmonic in the unit disk 4 and has
a harmonic majorant on some annulus [p< |z|<1], then on 4 so does . Royden
[6] showed that if u is harmonic in a finite Riemann surface W and has a
positive harmonic majorant on some boundary neighborhood, then on W so
does u. On the other hand Gauthier and Hengartner [1] has recently shown
that if u is subharmonic in the unit disk 4 and has harmonic majorants on
sufficiently small (relative) neighborhoods of each point of the frontier 04, then
on 4 so does u.

We are concerned with partitionality of harmonic majoration. In the pre-
sent paper we give some extensions of the above statements.

1. Sectional Majoration Theorem.

THEOREM 1. On an open Riemann surface W, let A be a relatively compact
ring domain with frontier 0 A=y,\Jy,, where y, and y, are mutually disjoint simple
closed curves. Let W, and W, be regions on W satisfying that: i) WN\W,=A4,
ii) Wy contains y,(k=1, 2), iii) W, has positive ideal boundary. Suppose that u
is subharmonic in W,UW, and has harmonic majorants on each of W, and W,.
Then u has a harmonic majorant on W, JUW,.

Proof. Let us take an analytic simple closed curve y(in A) separating 0A.
Let W, (W,) denote the subregion of W,(W,, resp.) obtained by removing the
closed ring domain bounded by y and 7, (y,, resp.).

Let b be a bounded harmonic function on W, with the boundary values
hy—h; on y, where h; and h, are harmonic majorants of « on W, and W,, re-
spectively. Let w=0 be a nonnegative bounded harmonic function on W,’ con-
tinuously vanishing toward y. We define a function w on W,UW, as follows:

{hﬁ-M on W,/
w=

h—Kw+b+M on W/,
where K and M are positive constants satisfying that

—Kw+b+M>0 in W,.
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Here we may assume that both w and b are harmonically extended over the
closed annulus A; bounded by 7 and 7., and that @=0 on A,. Hence, for suf-
ficiently large K,

hot+-M=h,—~Kw+b+M  on A,.

This inequality implies that w is superharmonic in W,UW, for such K, which
proves the theorem.

A meromorphic function f on a Riemann surface W is called Lindel6fian
on W if log* |f(z)| has a superharmonic majorant on W. (See Heins [2].) As
an application of the theorem we give a decomposition formula for Lindel6fian
meromorphic functions on a plane region.

THEOREM 2. Let 2 be a plane region whose complement 1n the extended
plane C consists of mutually disjoint n continua E,, E,, ---, E,. Then every Lin-
delifian mervomorphic function f on £ can be represented in the form

f:f1+f2+ +fny

where fy(k=1, 2, -, n) are Lindelifian meromorphic functions respectively on the
simply-connected regions C~<E,.

Proof. Without loss of generality we may assume that £ contains the
point at infinity at which f is analytic and vanishes. Let P be the set of poles
of /. Since P clusters only on 02, we can divide P into mutually disjoint n
subsets P,(k=1, 2, ---, n) each of which is either a countable set clustering only
on E, or the empty set. Then the usual Aronszajn decomposition

f:fo+f1+f2+ +fn:

where

=] 48

L 4 (k=0,1,2, 1),

¢, being a circle centered at the origin with sufficiently large radius and c,(k=
1,2, -, n) being a cycle bounding E,JP,, enjoys the following properties: i)
fo=0, ii) f, is meromorphic in C>~FE, and vanishes at the point at infinity (k=
1,2, -, n), iii) the set of poles of f, is precisely P,(k=1, 2, ---n). We must
verify that f,(k=1, 2, ---, n) are Lindel6fian on their respective domains. To do
this for f; (for other f,, the reasoning is the same), let us take a closed ring
domain A off E,JVE,J --- UE, satisfying that the bounded component of the
complement of A contains P, and the unbounded component contains P, P,
-, P,. The previous theorem is available to the case: W,=the interior of the
set obtained by removing E;\/P, from the union of A and the bounded com-
ponent of the complement of A, W,=the interior of the union of A and the
unbounded component, u(z)=log* |f(2)|, h(z)=h(z)+ M, h,(z)=M, where h(z) is
a harmonic majorant of u(z) on £ less P and M is a sufficiently large constant.
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2. Local Majoration Theorem.

We turn to another partitionality.

THEOREM 3. Let W be a finite Riemann surface with border B which consists
of a fimte number of mutually disjoint smooth simple closed curves. If u 1s
subharmomic in W and has posihwe harmonic majorants on sufficiently small
(relative) neighborhoods of each point of the border (8, them u has a positwe
harmonic majorant on the whole surface W.

Before proving the theorem, we note

LEMMA. Let C be a simple closed curve in the plane and f(£) be a continuous
Sfunction on an open subarc y of C. Let {u,} be a sequence of harmomic func-
tions converging inside C. Suppose that u,(n=1, 2, ---) have common continuous
boundary values f({) at each pownt of y, and that there exists a harmonic func-
tion U(z) inside C such that U(z)Su,(z) (n=1, 2, ---) wnside C. Then the limit
SJunction also has continuous boundary values f({) at each point of 7.

The lemma reduces to the case where C is the unit circle, U(z)=0 and
f(©)=0. In this case the lemma can be verified by the following fact which is
an immediate consequence of Poisson’s integral formula for harmonic functions.
For a>0, let H, be the family of functions which: i) are nonnegative and
continuous on the closed unit disk, ii) are harmonic in the (open) unit disk, iii)
are dominated by 1 at the origin, and iv) vanish on the arc 7={¢; |0|=<a}.
Then H, is equicontinuous near 7 in the sense that for any ¢>0 and any positive
p(<a) there exists a positive p<1 satisfying that u(re??)<e for every usH,
and 7, 6 with p<r<1, |0|=7.

To prove the theorem it suffices to show that u has a harmonic majorant
on some neighborhood of the border j, and hence to show the following: Let
u(z) be a nonnegative subharmonic function on an annulus 1< |z| <R (<oo).
If u(z) has harmonic majorants on sufficiently small (relative) neighborhoods of
each point of the circle |z|=R, then on some annulus p<|z| <R u has a harm-
onic majorant.

To do this, we have only to show

LEMMA. Let {r,} be strictly increasing sequence with a fimte limit R (>1)
and for a fixed positwe a (<n)f, fo(n=1, 2, --+) be nonnegative bounded continuous
Sfunctions on the arcs {€¥; |0 <a}, {r,e'?; |0|<a} (n=1, 2, --), respectively. By
h, (n=1, 2, ---) we denote the bounded harmonic functions on the sets R,={re*’;
1<r<r, |0|<B} having continuous boundary values:

Q) on {e; |0]|<a},
Q) on {re”; |0]<a},
0 otherwise (except at the points with |0|=a).

By H,(n=1, 2, ---) we denote the bounded harmonic functions on the annuli A,=



ON HARMONIC MAJORATION 281

[1<|z|<r,] having continuous boundary values:
O on {e; 10]<a},
[0 on {re’; |0]1<a},
0 otherwise (except at the points with |0|=a).
If for some B(>a) {h,} contains a converging subsequence, so does {H,}.

Proof. Fix a point z, with 1<|z|<r, a<argz<pf. Let g, G, be the
Green functions with pole z, of regions R,, A,, respectively (n=1, 2, ---).
We assert that for sufficiently large M

Gn(2)=Mgn(2)
in the sets {re*’; 1<r<r,, |0|<a} (n=1,2, ). To see this, set
Mn:maX Gn(z)/gn(z)

over the segments {re?; 1<r=<r,, |0|=a}, where the values of G,(2)/g,(z) at
the end points are interpreted as the values of

(aGn/ar)/(agn/ar) (n:]-r 2) ”') .

Suppose that there exists a subsequence {M,,} with M,,—oco(k—co). We may
assume M,—oo(n—o0), so that we can take a {z,} such that

1<]an<7’m 1argzn[:a’ (n:]'r 2y )

and
Gn(21)/8n(2s)—00  (n—00).

By Cauchy’s mean value theorem we can find a {p,} with 1<p,<7, (n=1, 2, --+)
satisfying either that g,—oco(n—co), where p,(n=1,2, ---) are the values of
(0G,/0r)/(0g,/0r) at z=p,e** or p,e *“. But this contradicts the uniform con-
vergence in an appropriately extended, or that for iufinite n 0G,/dr=0g,/0r=0
at z=P,e' or P,e " region of the sequences of the Green functions and of

their derivatives.

3. We finish up with a classification of Riemann surfaces.

By Oyz, Og, O, we denote the classes of Riemann surfaces not admitting
respectively nonconstant: Lindeldfian analytic functions, analytic functions
whose real parts are dominated by positive harmonic functions, H'-functions
(i.e., analytic functions whose moduli are dominated by harmonic functions).

We establish the strict inclusion relations:

041.S0<0,.
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i) 04.%0g 0,4.COg is due to the following theorem (Heins [2]). Every
analytic function whose real part is dominated by a positive harmonic function
is Lindeldfian. Here we show that Myrberg’s example (Myrberg [4]) is an
example for the concerned strict inclusion relation. Let F be two-sheeted cover-
ing surface of the plane given by the equation

w?®—sin z=0.

We remove from F a closed disk K on one sheet, and denote the resulting
surface by F;. The valence of the projection = of F, onto the plane is at most
two, thereby x is a Lindeldfian analytic function on F,. (Heins [2].) Hence
Fie¢0,;.. Here we need only a weak version of Heins’ result. Every meromor-
phic function such that the set of values taken by the function only a finite
number of times has positive (logarithmic) capacity is Lindelofian. This can
be directly proved by Theorem 1 and the following elementary fact : the identity
function of the plane is Lindeltfian on regions whose complements have positive
capacity.

To show F,=0p suppose that f is an analytic function whose real part is
dominated by a positive harmonic function 2 on F,. On the plane less the
projection of K, we consider the function

B = (eI =y,

where z* and 2z~ are the points over z. Then ¢ is a single-valued analytic
function, and

|¢(2) I S4e2(h(z+)+h(z—)) .

H(z)=h(z*)+h(z") is a single-valued positive harmonic function. Therefore it
follows that ¢ is meromorphic in a neighborhood of the point at infinity. On
the other hand, ¢(2)=0 at z=nmw (n==1, +2, ---). Consequently ¢=0, which
shows f(z*)=f(z") and that f can be analytically continued onto F. A similar
reasoning applied to ¢/ concludes that f is a constant.

ii) Op§0,. OrCO, is trivial. Let E, be a compact set on the segment
{—1+4wy; —1/2<y<1/2} of linear measure 0 and positive capacity. Let E be
the set {—14+iy+im; —1+wy<=E, m integer}. We show that R=C><F has the
desired property. The fact that R belongs to O, is seen from the following
theorem due to Heins [3]. The sets of linear measure 0 on a finite number of
mutually disjoint analytic simple closed curves are null sets for H!-functions.

To see R&Op let  be the harmonic measure of the imaginary axis with
respect to the left half plane less E. Since w(z+i)=w(2),

1
_fﬁy’;f’ o) +zy><1.

We define a function w on R as follows:
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x+A x=0

w(x+1y)=
Aw x<0.

For sufficiently large constant A, w is (nohnegative and) superharmonic in R
and dominates the real part of the identity function on R. Hence ReOp.

The idea used in the present paper of constructing superharmonic functions
by. two harmonic functions with same boundary values is found in [5].
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