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CURVATURE AND REAL ANALYSIS

BY SAMUEL I. GOLDBERG1

1. Introduction. In a recent paper with S.-S. Chern [3], the author studie
the volume decreasing property of a class of harmonic mappings thereby obtain
ing a real analogue of the classical Schwarz-Ahlfors lemma. The domain A
was taken to be the unit open ball with the hyperbolic metric of constan
negative curvature, and the image space was a negatively curved Riemannia:
manifold with sectional curvature bounded away from zero. In this paper, i
is shown that M may by taken to be any complete Riemannian manifold o
nonpositive curvature provided its sectional curvatures are bounded below b:
a negative constant (see [5]). The technique employed also yields a distant
decreasing theorem when the map is volume preserving.

2. Harmonic mappings. Let M and TV be C°° oriented Riemannian manifold;
of the same dimension n with metrics dsM

2 and dsN

2, respectively, and volum<
elements dvM and dvN. Let /: M~>N be a C°° mapping and A=f*dvN/dvM be th<
ratio of volume elements. We calculate the Laplacian Δ of u=A2 as in [3]
and so recall the necessary Riemannian geometry. Locally, then, dsM

z=*Σ<*>i
and dsN

2=*Σ ωα*
2, where the ωt and ωα* are linear differential forms in M anc

N, respectively. The structure equations in M are

fito,=Σ <θj/\ωji, A»0=Σ <*>ikΛωkj—s- Σ Rljkιωk/\ωl.3 k £ k,L

The Ricci tensor is defined by Rlj=ΣRikjk, and the scalar curvature by R=

Σ RU (The corresponding quantities in TV will be denoted with an asterisk.)
I

Let /*: Λ(N}-*Λ(M) be the pull-back map, and set /*ωα*=Σ A*X. (Ir

the sequel, we will drop /* from such formulas when its presence is clear frorr
the context.) The covariant differential of the tangent mapping /# is definec
by
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dAS+Σ ^Xi+Σ AXα*Ξ=Σ A%,aω, (say)
3 δ j

where AtJ

a=Ajia. The mapping / is called harmonic if Σ -A«α= 0. The follow-
l

ing formula for the Laplacian Δ of w was obtained in [3] :

4rΔu=2 Σ (^)2-C+Λ Σ βαM
α^+z/(#-Σ R^A^A/) ,

^ .7 α,ϊ,J b,c,j

where (£a*) is the adjoint matrix of (4/), C=Σ Ba

%Bb

kAkJ

aA^b is a scalar
invariant of the mapping, dA—^AjWj, and the ^4α

t^ are defined by

δ A: A? £

The mapping / is said to be totally degenerate if u vanishes everywhere.

3. Distortion theorem. We sketch the proof of the following.

THEOREM. Let M be a complete Riemanman manifold whose sectional curv-
atures are nonpositive and bounded below by a negative constant —A. Let
f: M^N be a harmonic mapping of equidimensional spaces of dimension n satisfy-
ing the condition C^O. // N is an Einstein space with scalar curvature R*^
— n(n— 1)A, or if its sectional curvatures are ^—A, then f is volume decreasing.

If f is volume preserving and either N is Einsteiman with R*^— n\n— 1)^4,
or if its sectional curvatures are ^ — nA, then it is distance decreasing.

The technique employed is to distort the metric of the domain M conform-
ally in such a way that the ratio of volume elements attains its maximum on
M. Let ds2 be a Riemannian metric of M conformally related to ds2. Then,
there is a function p>Q on M such that ds2=p2ds2. In the sequel, we distinguish
the elements of M referred to ds2 with a tilda. Put dlogί— ̂ ΣPi^i Then, if
/ is harmonic

~2u Σ (p3}^+u(R- Σ AfAfR**-), q=l/p .
} >>,c,}

LEMMA 1. // / is a harmonic mapping, then

Thus, if C is nonpossitive, so is C.
If u attains its maximum at x<^M, then at x,

A Σ B^Aji

apJΛ-uΔ\Qgp~2u^(pjγ=u[_(n
a,ι,j 3 J

LEMMA 2. Let f be harmonic with respect to (dsM

2, dsN

2) with the property
^O, and let u attain its maximum at x^M. If n=2, or if the function
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P=(n—2} 2 (pj)2jrd\ogp is nonnegative everywhere on M, then either f is totally

degenerate, or else — Σ Rbc*A*A3

c-£—R. at x.
b.c.j

The remainder of the proof is due to HarΈl [5] except for the method
used to establish the boundedness of Δτ. Let y be a point of M and denote
by d(x,y) the distance-from-^ function. Then, t(x)= (d(x, y))2, x^M, is C°° and
convex on M (see [2]). (If M is not simply connected, consider its simply con-
nected covering.) The function τ(x)=d(x, y) is also convex, but it is only con-
tinuous on M. The convex open submanifolds Mp={x^M\t(x}<p} of M exhaust
M, that is, M=U Mp.

p<°°

Consider the metric ds2=(p/p—t)2ds2 on Mp. Then u=(p — t/ρYnu is non-
negative and continuous on the closure Mp of Mp and vanishes on dMp. Since
Mp is compact, u has a maximum in Mp. Since t(x) is convex, the function P
is positive, so we obtain the conclusion of Lemma 2.

Relating the scalar curvatures R of Mp and R of M, we obtain

LEMMA 3. For eαc/& /?, ί/i£r# ^zzsίs α positive constant ε(p) such that the
inequality

holds om M(p). Moreover ε(p)—>Q as p—>oo.

To see that Δτ is bounded as τ-^oo, observe that the level hypersurfaces
of τ are spheres S with y as center. The hessian of τ can be identified with
the second fundamental form h of those spheres, extended to be 0 in the
normal direction. It follows that Δτ— trace h= (n— 1) mean relative curvature
of S. If the curvature K^a\ then from [1; pp. 247-255], Jr^(n— l)α cot aτ.
If we put α2= — a2, then Δτ^(n — l)αcoth aτ.

The theorem is now a consequence of Lemmas 1—3.
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