S.L GOLDBERG KODAI MATH. SEM. REP 28 (1977) 211—213

CURVATURE AND REAL ANALYSIS

BY SAMUEL I. GOLDBERG¹

1. Introduction. In a recent paper with S.-S. Chern [3], the author studie the volume decreasing property of a class of harmonic mappings thereby obtain ing a real analogue of the classical Schwarz-Ahlfors lemma. The domain *A* was taken to be the unit open ball with the hyperbolic metric of constan negative curvature, and the image space was a negatively curved Riemannia: manifold with sectional curvature bounded away from zero. In this paper, i is shown that *M* may by taken to be any complete Riemannian manifold o nonpositive curvature provided its sectional curvatures are bounded below b: a negative constant (see $[5]$). The technique employed also yields a distance decreasing theorem when the map is volume preserving.

2. Harmonic mappings. Let M and N be C^{∞} oriented Riemannian manifold: of the same dimension *n* with metrics ds_M^2 and ds_N^2 , respectively, and volume elements dv_M and dv_N . Let $f: M \rightarrow N$ be a C^{∞} mapping and $A = f^*dv_N / dv_M$ be the ratio of volume elements. We calculate the Laplacian \varDelta of $u = A^2$ as in [3] and so recall the necessary Riemannian geometry. Locally, then, $ds_M{}^2{=}\sum \omega_i$ and $ds_N^2 = \sum \omega_a^{*2}$, where the ω_i and ω_a^* are linear differential forms in M and *N,* respectively. The structure equations in *M are*

$$
d\omega_i = \sum_j \omega_j \wedge \omega_{ji}, \ d\omega_{ij} = \sum_k \omega_{ik} \wedge \omega_{kj} - \frac{1}{2} \sum_{k,l} R_{ijkl} \omega_k \wedge \omega_l.
$$

The Ricci tensor is defined by $R_{ij} = \sum_{k} R_{ikjk}$, and the scalar curvature by $R =$ $\sum_i R_{ii}$. (The corresponding quantities in N will be denoted with an asterisk.)

Let $f^*: \Lambda(N) \to \Lambda(M)$ be the pull-back map, and set $f^* \omega_a^* = \sum_i A_i^{\alpha} \omega_i$. (In the sequel, we will drop f^* from such formulas when its presence is clear from the context.) The covariant differential of the tangent mapping f_* is defined by

Received Oct. 23, 1975.

This is a summary of a portion of a lecture given at the Tokyo Institute of Technology on August 15, 1975.

¹ This research was supported in part by the National Science Foundation.

212 SAMUEL I. GOLDBERG

$$
dA_i^a + \sum_j A_j^a \omega_{ji} + \sum_b A_i^b \omega_{ba}^* \equiv \sum_j A_{ij}^a \omega_j \qquad \text{(say)}
$$

where $A_{ij}^a = A_{ji}^a$. The mapping f is called *harmonic* if $\sum_i A_{ii}^a = 0$. The following formula for the Laplacian *Δ* of w was obtained in [3] :

$$
\frac{1}{2}Au=2\sum_{j}(A_{j})^{2}-C+A\sum_{a,i,j}B_{a}^{i}A^{a}{}_{jji}+u(R-\sum_{b,c,j}R_{b}^{*}A_{j}^{b}A_{j}^{c}),
$$

where (B_a^i) is the adjoint matrix of (A_j^a) , $C = \sum B_a^i B_b^k A_{kj}^a A_{ij}^b$ is a scalar invariant of the mapping, $dA = \sum A_j \omega_j$, and the $A^a{}_{ijk}$ are defined by

$$
dA_{ij}^{a} + \sum_{\mathbf{a}} A_{ij}^{b} \omega_{ba}^{*} + \sum_{\mathbf{k}} A_{kj}^{a} \omega_{ki} + \sum_{\mathbf{k}} A_{ik}^{a} \omega_{kj} \equiv \sum_{\mathbf{k}} A^{a}_{ijk} \omega_{k}.
$$

The mapping f is said to be *totally degenerate* if u vanishes everywhere.

3. Distortion theorem. We sketch the proof of the following.

THEOREM. *Let M be a complete Riemanman manifold whose sectional curvatures are nonpositive and bounded below by a negative constant —A. Let* $f: M \rightarrow N$ be a harmonic mapping of equidimensional spaces of dimension n satisfy*ing the condition* $C \leq 0$. If N is an Einstein space with scalar curvature $R^* \leq$ $-n(n-1)A$, or if its sectional curvatures are $\leq -A$, then f is volume decreasing. *If f is volume preserving and either N is Einsteinian with* $R^* \leq -n^2(n-1)A$, *or if its sectional curvatures are* $\leq -nA$, then *it is distance decreasing.*

The technique employed is to distort the metric of the domain *M* conformally in such a way that the ratio of volume elements attains its maximum on *M.* Let $d\tilde{s}^2$ be a Riemannian metric of *M* conformally related to ds^2 . Then, there is a function $p > 0$ on M such that $d\tilde{s}^2 = p^2 ds^2$. In the sequel, we distinguish the elements of M referred to $d\tilde{s}^2$ with a tilda. Put $d\log p = \sum p_i\omega_i$. Then, if f is harmonic

$$
\frac{1}{2} \tilde{\Delta} \tilde{u} = 2 \sum_{j} (\tilde{A}_{j})^{2} - \tilde{C} + (n-2)q^{2n+2} [A \sum_{a,i,j} B_{a}{}^{i} A_{i,j}{}^{a} p_{j} + u \Delta \log p -2u \sum_{j} (p_{j})^{2}] + \tilde{u} (\tilde{R} - \sum_{b,c,j} \tilde{A}_{j}{}^{b} A_{j}{}^{c} R_{bc}^{*}), \qquad q = 1/p.
$$

LEMMA 1. If f is a harmonic mapping, then

$$
\widetilde{C} = q^{2n+2} [C - (n-2)u \sum_{j} (p_j)^2].
$$

Thus, if C is nonpossitive, so is C. If \tilde{u} attains its maximum at $x \in M$, then at x,

$$
A \sum_{a,i,j} B_a^{\ a} A_{ji}{}^a p_j + u \Delta \log p - 2u \sum_j (p_j)^2 = u [(n-2) \sum_j (p_j)^2 + \Delta \log p].
$$

LEMMA 2. Let f be harmonic with respect to (ds_M^2, ds_N^2) with the property $C \leq 0$, and let u attain its maximum at $x \in M$. If n=2, or if the function

 $P=(n-2)\sum (p_j)^2+A\log p$ is nonnegative everywhere on M, then either f is totally *degenerate, or else* $-\sum_{b,c,j} R_{bc} \cdot \widetilde{A}_j \cdot \widetilde{A}_j \cdot \leq -\widetilde{R}$ at x.

The remainder of the proof is due to Har'El [5] except for the method used to establish the boundedness of *Δτ.* Let *y* be a point of M and denote by $d(x, y)$ the distance-from-y function. Then, $t(x)=(d(x, y))^2$, $x \in M$, is C^{∞} and convex on *M* (see [2]). (If M is not simply connected, consider its simply connected covering.) The function $\tau(x)=d(x, y)$ is also convex, but it is only continuous on M. The convex open submanifolds $M_{\rho} = \{x \in M | t(x) < \rho\}$ of M exhaust *M*, that is, $M = \bigcup_{\rho < \infty} M_{\rho}$.

Consider the metric $d\tilde{s}^2 = (\rho/\rho - t)^2 ds^2$ on M_ρ . Then $\tilde{u} = (\rho - t/\rho)^{2n} u$ is nonnegative and continuous on the closure \bar{M}_{ρ} of M_{ρ} and vanishes on ∂M_{ρ} . Since \bar{M}_{ρ} is compact, \tilde{u} has a maximum in M_{ρ} . Since $t(x)$ is convex, the function P is positive, so we obtain the conclusion of Lemma 2.

Relating the scalar curvatures \tilde{R} of M_ρ and R of M , we obtain

$$
\tilde{R} = \frac{(\rho - t)^2}{\rho^2} R - 2(n - 1) \frac{\rho - t}{\rho} \frac{dt}{\rho} - 4n(n - 1) \frac{t}{\rho^2}, \qquad t < \rho.
$$

LEMMA 3. For each ρ , there exists a positive constant $\varepsilon(\rho)$ such that the *inequality*

$$
\widetilde{R} \ge -n(n-1)A - \varepsilon(\rho)
$$

holds om $M(\rho)$ *. Moreover* $\varepsilon(\rho) \rightarrow 0$ as $\rho \rightarrow \infty$.

To see that $\Delta\tau$ is bounded as $\tau \rightarrow \infty$, observe that the level hypersurfaces of *τ* are spheres S with *y* as center. The hessian of *τ* can be identified with the second fundamental form *h* of those spheres, extended to be 0 in the normal direction. It follows that *Δτ—* trace *h= (n—* 1) mean relative curvature of S. If the curvature $K \ge a^2$, then from [1; pp. 247-255], $\Delta \tau \le (n-1)a \cot a\tau$. If we put $a^2 = -\alpha^2$, then $\Delta \tau \leq (n - 1)\alpha \coth \alpha \tau$.

The theorem is now a consequence of Lemmas 1—3.

BIBLIOGRAPHY

- [1] R. L. BISHOP AND R. *].* CRITTENDEN, "Geometry of Manifolds", Academic Press Inc., New York, 1964.
- [2] R.L. BISHOP AND B. O'NEILL, Manifolds of negative curvature, Trans. Amer. Math. Soc. 145 (1969), 1-49.
- [3] S.-S. CHERN AND S.I. GOLDBERG, On the volume-decreasing property of a class of real harmonic mappings, Amer. *].* Math., 97 (1975), 133-147.
- $\lceil 4 \rceil$ S.I. GOLDBERG, On the distance-decreasing property of a class of real harmonic mappings, Geometriae Dedicata, 4 (1975), 61-69.
- [5] Z. HAR'EL, Harmonic mappings and distortion theorems, thesis, Technion, Israel Inst. of Tech., Haifa, 1975.

UNIVERSITY OF ILLINOIS URBANA, ILLINOIS 61801