S.I. GOLDBERG KÕDAI MATH. SEM. REP 28 (1977) 211–213

CURVATURE AND REAL ANALYSIS

BY SAMUEL I. GOLDBERG¹

1. Introduction. In a recent paper with S.-S. Chern [3], the author studie the volume decreasing property of a class of harmonic mappings thereby obtain ing a real analogue of the classical Schwarz-Ahlfors lemma. The domain Awas taken to be the unit open ball with the hyperbolic metric of constan negative curvature, and the image space was a negatively curved Riemannia: manifold with sectional curvature bounded away from zero. In this paper, i is shown that M may by taken to be any complete Riemannian manifold o nonpositive curvature provided its sectional curvatures are bounded below by a negative constant (see [5]). The technique employed also yields a distancdecreasing theorem when the map is volume preserving.

2. Harmonic mappings. Let M and N be C^{∞} oriented Riemannian manifold of the same dimension n with metrics ds_M^2 and ds_N^2 , respectively, and volume elements dv_M and dv_N . Let $f: M \rightarrow N$ be a C^{∞} mapping and $A=f^*dv_N/dv_M$ be the ratio of volume elements. We calculate the Laplacian Δ of $u=A^2$ as in [3] and so recall the necessary Riemannian geometry. Locally, then, $ds_M^2=\sum \omega_i$ and $ds_N^2=\sum \omega_a^{*2}$, where the ω_i and ω_a^* are linear differential forms in M and N, respectively. The structure equations in M are

$$d\omega_i = \sum_{j} \omega_j \wedge \omega_{ji}, \ d\omega_{ij} = \sum_{k} \omega_{ik} \wedge \omega_{kj} - \frac{1}{2} \sum_{k,l} R_{ijkl} \omega_k \wedge \omega_l.$$

The Ricci tensor is defined by $R_{ij} = \sum_{k} R_{ikjk}$, and the scalar curvature by $R = \sum_{i} R_{ii}$. (The corresponding quantities in N will be denoted with an asterisk.)

Let $f^*: \Lambda(N) \to \Lambda(M)$ be the pull-back map, and set $f^*\omega_a^* = \sum_i A_i^a \omega_i$. (Ir the sequel, we will drop f^* from such formulas when its presence is clear from the context.) The covariant differential of the tangent mapping f_* is defined by

Received Oct. 23, 1975.

This is a summary of a portion of a lecture given at the Tokyo Institute of Technology on August 15, 1975.

¹ This research was supported in part by the National Science Foundation.

SAMUEL I. GOLDBERG

$$dA_i^a + \sum_j A_j^a \omega_{ji} + \sum_b A_i^b \omega_{ba} * \equiv \sum_j A_{ij}^a \omega_j \qquad (\text{say})$$

where $A_{ij}{}^a = A_{ji}{}^a$. The mapping f is called harmonic if $\sum_i A_{ii}{}^a = 0$. The following formula for the Laplacian Δ of u was obtained in [3]:

$$\frac{1}{2} \Delta u = 2 \sum_{j} (A_j)^2 - C + A \sum_{a,i,j} B_a{}^i A^a{}_{jji} + u(R - \sum_{b,c,j} R_{bc} * A_j{}^b A_j{}^c)$$

where $(B_a{}^i)$ is the adjoint matrix of $(A_j{}^a)$, $C = \sum B_a{}^i B_b{}^k A_{kj}{}^a A_{ij}{}^b$ is a scalar invariant of the mapping, $dA = \sum A_j \omega_j$, and the $A^a{}_{ijk}$ are defined by

$$dA_{ij}^{a} + \sum_{\mathbf{b}} A_{ij}^{b} \omega_{ba}^{*} + \sum_{\mathbf{k}} A_{kj}^{a} \omega_{ki} + \sum_{\mathbf{k}} A_{ik}^{a} \omega_{kj} \equiv \sum_{\mathbf{k}} A^{a}_{ijk} \omega_{k}.$$

The mapping f is said to be *totally degenerate* if u vanishes everywhere.

3. Distortion theorem. We sketch the proof of the following.

THEOREM. Let M be a complete Riemannian manifold whose sectional curvatures are nonpositive and bounded below by a negative constant -A. Let $f: M \rightarrow N$ be a harmonic mapping of equidimensional spaces of dimension n satisfying the condition $C \leq 0$. If N is an Einstein space with scalar curvature $R^* \leq$ -n(n-1)A, or if its sectional curvatures are $\leq -A$, then f is volume decreasing. If f is volume preserving and either N is Einsteinian with $R^* \leq -n^2(n-1)A$, or if its sectional curvatures are $\leq -nA$, then it is distance decreasing.

The technique employed is to distort the metric of the domain M conformally in such a way that the ratio of volume elements attains its maximum on M. Let $d\tilde{s}^2$ be a Riemannian metric of M conformally related to ds^2 . Then, there is a function p>0 on M such that $d\tilde{s}^2=p^2ds^2$. In the sequel, we distinguish the elements of M referred to $d\tilde{s}^2$ with a tilda. Put $d\log p=\sum p_i\omega_i$. Then, if f is harmonic

$$\begin{split} &\frac{1}{2} - \widetilde{\Delta} \widetilde{u} = 2 \sum_{j} (\widetilde{A}_{j})^{2} - \widetilde{C} + (n-2)q^{2n+2} [A \sum_{a,i,j} B_{a}{}^{i}A_{ij}{}^{a}p_{j} + u \Delta \log p \\ &- 2u \sum_{j} (p_{j})^{2}] + \widetilde{u} (\widetilde{R} - \sum_{b,c,j} \widetilde{A}_{j}{}^{b}A_{j}{}^{c}R_{bc}{}^{*}), \qquad q = 1/p \,. \end{split}$$

LEMMA 1. If f is a harmonic mapping, then

$$\widetilde{C} = q^{2n+2} [C - (n-2)u \sum_{j} (p_{j})^{2}].$$

Thus, if C is nonpossitive, so is \tilde{C} . If \tilde{u} attains its maximum at $x \in M$, then at x,

$$A \sum_{a,i,j} B_a^i A_{ji}^a p_j + u \operatorname{\Delta} \log p - 2u \sum_j (p_j)^2 = u [(n-2) \sum_j (p_j)^2 + \operatorname{\Delta} \log p].$$

LEMMA 2. Let f be harmonic with respect to (ds_M^2, ds_N^2) with the property $C \leq 0$, and let \tilde{u} attain its maximum at $x \in M$. If n=2, or if the function

212

 $P = (n-2) \sum_{j} (p_{j})^{2} + \Delta \log p \text{ is nonnegative everywhere on } M, \text{ then either } f \text{ is totally degenerate, or else } -\sum_{b,c,j} R_{bc} * \tilde{A}_{j}{}^{b} \tilde{A}_{j}{}^{c} \leq -\tilde{R} \text{ at } x.$

The remainder of the proof is due to Har'El [5] except for the method used to establish the boundedness of $\Delta \tau$. Let y be a point of M and denote by d(x, y) the distance-from-y function. Then, $t(x)=(d(x, y))^2$, $x \in M$, is C^{∞} and convex on M (see [2]). (If M is not simply connected, consider its simply connected covering.) The function $\tau(x)=d(x, y)$ is also convex, but it is only continuous on M. The convex open submanifolds $M_{\rho} = \{x \in M | t(x) < \rho\}$ of M exhaust M, that is, $M = \bigcup_{\rho < \infty} M_{\rho}$.

Consider the metric $d\tilde{s}^2 = (\rho/\rho - t)^2 ds^2$ on M_{ρ} . Then $\tilde{u} = (\rho - t/\rho)^{2n}u$ is nonnegative and continuous on the closure \bar{M}_{ρ} of M_{ρ} and vanishes on ∂M_{ρ} . Since \bar{M}_{ρ} is compact, \tilde{u} has a maximum in M_{ρ} . Since t(x) is convex, the function P is positive, so we obtain the conclusion of Lemma 2.

Relating the scalar curvatures \widetilde{R} of M_{ρ} and R of M, we obtain

$$\widetilde{R} = \frac{(\rho - t)^2}{\rho^2} R - 2(n - 1) \frac{\rho - t}{\rho} \frac{\Delta t}{\rho} - 4n(n - 1) \frac{t}{\rho^2}, \qquad t < \rho.$$

LEMMA 3. For each ρ , there exists a positive constant $\varepsilon(\rho)$ such that the inequality

$$\widetilde{R} \geq -n(n-1)A - \varepsilon(\rho)$$

holds om $M(\rho)$. Moreover $\varepsilon(\rho) \rightarrow 0$ as $\rho \rightarrow \infty$.

To see that $\Delta \tau$ is bounded as $\tau \to \infty$, observe that the level hypersurfaces of τ are spheres S with y as center. The hessian of τ can be identified with the second fundamental form h of those spheres, extended to be 0 in the normal direction. It follows that $\Delta \tau =$ trace h=(n-1)· mean relative curvature of S. If the curvature $K \ge a^2$, then from [1; pp. 247-255], $\Delta \tau \le (n-1)a \cot a\tau$. If we put $a^2 = -\alpha^2$, then $\Delta \tau \le (n-1)\alpha \coth \alpha\tau$.

The theorem is now a consequence of Lemmas 1-3.

BIBLIOGRAPHY

- [1] R.L. BISHOP AND R.J. CRITTENDEN, "Geometry of Manifolds", Academic Press Inc., New York, 1964.
- [2] R.L. BISHOP AND B. O'NEILL, Manifolds of negative curvature, Trans. Amer. Math. Soc. 145 (1969), 1-49.
- [3] S.-S. CHERN AND S. I. GOLDBERG, On the volume-decreasing property of a class of real harmonic mappings, Amer. J. Math., 97 (1975), 133-147.
- [4] S.I. GOLDBERG, On the distance-decreasing property of a class of real harmonic mappings, Geometriae Dedicata, 4 (1975), 61-69.
- [5] Z. HAR'EL, Harmonic mappings and distortion theorems, thesis, Technion, Israel Inst. of Tech., Haifa, 1975.

UNIVERSITY OF ILLINOIS URBANA, ILLINOIS 61801