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ON »-FOLD (4, 2)- AND f-PRODUCTS
By LIEVEN VANHECKE

In this paper we treat a generalization of the notion of an f-structure [8]
and a (4, +2)-structure [9] on a manifold. We obtain the so-called f- or (4, 2)-
products (or structures) with factor C? and this is done in the same way as A.
GRAY and R.B. BROWN have done [2] to obtain the 7-fold vector cross pro-
ducts (or structures) starting from an almost complex structure.

The greatest part of this paper is devoted to the algebraic viewpoint and
gives algebraic properties. In the second part we give some details concerning
such structures on a manifold, we obtain certain theorems in relation with in-
duced structures on submanifolds and relations with the curvature. Finally we
consider a certain generalization of the Nijenhuis tensor of a structure.

1. In [8] K. YANO has considered a structure on a manifold, called an
f-structure and defined as follows :

DEFINITION 1. Let M™ be a differentiable manifold of class C* and f#0 a
tensor field of type (1,1) and of class C>. f defines an f-structure if it satisfies

ey f+r=0

and is of constant rank.

K. YANO, C. HOUH and B. CHEN treated in [9] another structure contain-
ing the f-structure as a special case.

DEFINITION 2. Let M™ be an n-dimensional differentiable manifold of class
C= and let there be given a tensor field ¢+#0 of type (1, 1) and of class C*. ¢
is a (4, +2)-structure on M" if n=2m and if ¢ is such that

@ ' ¢'+¢*°=0, rank ¢=—%~rank ot+m.

It is easy to see that an almost complex structure on M™ is a special case
of an f.structure. These almost complex structures have been generalized by
A. GRAY and R.B. BROWN [2], [5]. They considered the so-called vector
cross product structures defined as follows:

DEFINITION 3. Let V denote an n-dimensional vector space over an
arbitrary field of characteristic not two and let ¢, >: VX V—F denote a symmetric
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ON 7-FOLD (4,2)- AND f-PRODUCTS 163

nondegenerate bilinear form. An 7-fold vector cross product on V is a multi-
linear map

X: VT-_)V: (al) Ay, oy ar)'-_)X(aly a2) ) aT) ’ 1§7’§n ’
such that
(3) (i> <X(a1y gy “* aT)’ a1,>=0, Vie {17 2, Ty 7’} 5
(4) (ID <X((11, ag, -, ar)y X(aly Qgy **+ a‘r)>:det (<au a1>) ’
l,jE{]., 2y "',7’} .

We mention that B. ECKMANN [3] and G. WHITEHEAD [7] have con-
sidered the vector cross products from the topological standpoint taking a

continuous instead of a multilinear map.
As we have done in [6] (see also [1]), such a vector cross product may

be generalized in the following sense.

DEFINITION 4. Let V denote an n-dimensional vector space over an
arbitrary field of characteristic not two and let {, ) : VX V—F denote a symmetric
nondegenerate bilinear form. An 7-fold wvector m-product with factor C* on V
is a multilinear map

X:V'=V:(ay, ay -, a,)—Xa,, a,, -+, a,),
1<7=<n, such that
5) (i) <X(ay, ay -+, a,),a,0=0, Vie{l,2, - 71};
(6) (ii) <X(ay, a,, -+, a,), X(ay, a,, -+, a,)>=C*det (a,, a,>),
i,7€{1,2, -, 7} and C*#0&F.

The case r=1, C*=—1 gives the almost product structures.
It is interesting for further considerations that we have shown [6] that
this definition is equivalent with the following.

DEFINITION 5. Let V denote an n-dimensional vector space over an arbitrary
field of characteristic not two and let ¢, >: VX V—F denote a symmetric non-
degenerate bilinear form. An 7-fold vector n-product with factor C* on V is a
multilinear map

X: VT_)V: (ah a27 Tty aT)’_)X<aly (12, Tty ar)7
1=<7=n, such that
(7) (1) <X<al’ iy Gy ey, a'r)v x>+<X(aly iy Xyt ar)y a1>:O ’
Vie{l,2, -, 7} and VxeV;
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(11) X(X(ah gy ==+, a,.), gy *°°, (1,.):
8 a, a, ar

@y, @y K@y ay) -+ {ay, a,»

(an @ {ana) — (@ a

with C*#0€F.

2. The purpose of this paper is to generalize the (4, =2)-structures, and
in a special case the f-structures, in the same way as is done for an almost
complex or product structure.

To do this we start with the following definition.

DEFINITION 6. Let V denote a vector space of dimension 7 over an arbitrary
field F' of characteristic not two and {, >: VX V—F a symmetric, nondegenerate
bilinear from. An 7-fold (4, 2)-product with factor C®* on V is a multilinear map

X:V'=V:(ay, ay -, a,)—X(a,, a,, -, a,),
1=r=n such that
€)) (i) <(X(ay, a,, -+, a,),a>=0, Vie{l, 2, -, ,1};
(10) (i) <(X(X(ay, a,, -+, a,), as, -+, a,), X(X(ay, ay, -+, ), Gz, +++, Q)Y
—C?det Kay, a;>XX(ay, a,, -+, a,), X(a,, a,, -+, a,)>=0,
i,j7'€{2,3, -, 7} and C*+0F.

Sometimes it is easier to replace (10) by another expression. This can be
done by the following theorem.

THEOREM 1. Condition (ii) in the definition of an r-fold (4, 2)-product with
factor C* can be replaced by

(11) XHay(ay, -+, a,)'t +C* det (Cai, a;0) X*{ay(ay, -+, a,)*} =0
1.e.
(ll/) X(X(X(X(al, [T a,—), Ayy oty ar)y gy =*y ar)y Ay, oy ar)

+c2 det (<ai’7 aj’>)X(X(a11 gy oy ar)’ Ay =y a,):O,

Proof.
I. Suppose (9) and (10) are given. Linearizing (9) we obtain for YbeV

(12) <X(a17 a2v ) ar)) b>+<X(b) a2’ Tty ar)y a1>:0 .
Doing this also for (10) we get
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13) <X*{a,(a, -, a,)%}, X*{b(as, -, a,)"}>
—C?det Kay, a; D)X X(ay, a,, -+, a,), X(b, a,, -+, a,)>=0.
Employing (12) in (13) we obtain
(14) <X*{ay(as, -+, a,)}, X*{b(as, -+, a,)"})
+C?det Kay, a; D)X X*{ay(a,, -, a,)%, b>=0.
Substituting b by X(b, a,, ---, a,) in (12), it becomes

(15) <X(a1) aZy ) a'r)r X(by aZ’ Ty ar)>—l"<X2{b(a2y ) ar)z}y al>:0
and substituting in this relation a, by X?*{a,(a,, ---, a,)*} we get
(16) <X8{(al(a2, ) ar)s}y X(br aZ! R aT)>

+H(X*{b(ay, -+, a,)*}, X*{ay(ay, -+, )"} >=0.
(14) and (16) give together
an <X*{ay(as, -+, a,)}, X(b, a5, -, a,))
—C?det Kay, a;))XX*{a(a,, -, a,)?}, b>=0
and with the help of (12) we obtain finally
(X*{a,(ay, -, a,)'} +C*det Kay, a;0) X*{a\(a,, -+, a,)?}, b)=0.

¢, > being nondegenerate we may conclude that (11) is proved.

II. Suppose now that (9) and (11) are given. Then (12) is still valid and
substituting in this relation a, by X(a,, a,, -+, a,) and b by X?{a,(a,, -+, a.)?} we
get

(18)  (X*{a\a,, -, an)'}, ap—<X{ay(ay, -+, a,)*}, X*{ay(ay, -+, a,)"}=0.
On the other side, we have with the help of (12)
(19) <X*{ay(as, -+, )%}, ap+<X(ay, ay, -, a,), X(ay, @, -+, a,)>=0.
Multiplying (19) by C?det (a;, a;») and adding by (18), we get with (11)
(X*{ay(as, -+, a,), X*{a\(as, -+, a,)%}
—Ctdet ({ay, a; )X X(ay, ay, -, a,), X(ay, a5, -+, a,)>=0
which is the required relation (10).

3. We prove now some other interesting properties of an 7-fold (4, 2)-
product.

THEOREM 2. An r-fold (4, 2)-product is an antisymmetric multilinear map.

Proof. With the help of (12) we have for Vz
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(X(@y, oy X, e, Y, e, @), 2D=—LX(@yy -y 2, o, Yy e, G, XD

=Xy, -+, 2, e, Xy e, ), B
=l X(ay, o, Y, e, Xy e, ), 2D

The required result follows from the fact that {, > is nondegenerate.

THEOREM 3. A multilinear map such that
{(X(ay, a,, -+, a,), a,)=0, Viell, 2, -, 7}
satisfies also
(20) (X {a(a,, -, a,)?P}, a;>=0.

Proof. In this case (12) is valid and substituting a, by X%{a(a,, ---, a,)*}
we get

(X*{ayas, -+, @)%}, bY+L(X(b, a5, -+, a,), X*{a\(ay, -+, a,)}>=0.
Taking b=a, we arrive at
(21) (X*aa,, -+, a.)*}, a;>=0.
Linearizing (21) we get
(22) (X*aay, -, a)}, >+(Xb(ay, -, a,)*}, a,»=0.
In the same manner as for (12), (22) gives rise to
(23) (X%{aay, -, a,)%}, a;>=0.

Continuing this we arrive finally at the desired result.
We prove now that the construction given above is indeed a generalization
of the r-fold vector m-product.

THEOREM 4. An r-fold vector m-product with factor C* is an r-fold (4, 2)-
product with the same factor.

Proof. It follows from (8) that
(24) Xg{al(am Tty ar)s} +c2 det (<a1l’y aj’>)X(al, Qgy *2* ar):()
and so

XHay(ay, -+, )} +C* det Kay, a;0) X*{a,(ay, -+, a,)"} =0.

4. In this section we shall give a relationship of an 7-fold (4, 2)-product
with the f-structures and therefore we mention that (24) is an interesting rela-
tion.

First we consider the case r=1. A 1-fold (4, 2)-product with factor C? is
thus a linear map such that



ON 7-FOLD (4,2)- AND f-PRODUCTS 167

(25) VaeV{Xa, a)=0, X+C*X*=0.

This is equivalent with

(26) VaeV{Xa, a)=0, (X%, X®a)—C¥Xa, Xa)=0.
We have

THEOREM 5. A 1-fold (4, 2)-product with factor C* is a linear map satisfying
(i) <Xa,a>=0  for YaeV;
(i) X*+C*X=0

if <, >.is positive definite. The converse 1s also true without restriction for {, .

@7)

Proof. The proof of the converse is trivial.
Starting from the second relation (26) and substituting a by (X*+C»a we

get

(28) Vae V<{Aa, Aa)=0
where

(29) A=X4+C*X.

Thus we have .
YacsV Aa=0

and then A=0.
_ Before proving an analogous result in the general case we give

DEFINITION 7. Let V denote a vector space of dimension 7 over an arbitrary
field F of characteristic not two and ¢ >: VXV—F a symmetric, nonde-
generate bilinear form. An r-fold f-product with factor C* on V is a multilinear
map ,
X: VT—)V': (aly Ay, *** y'ar)‘_)‘X‘(ali Qgy =°*y ar) )

1<r=n, such that
(30) (i) <X(aly a2y ) ar)’ at>:0 ’ Vle {17 21 Ty T’} )
(31) (il) Xs{al(a2y Tty ar)a} +CZ det (<a1."y aj'>)X(aly aZy ) ar):() ’

C*#+0esF and v, j'€{2, 3, ---, 7}.
Now we can prove

THEOREM 6. An'r-fold (4, 2)-product with factor C* 1s an r-fold f-produc‘t

with the same factor if <, > is positwe definite. The converse is true in the
general case.

Proof. The proof of the converse is trivial.
Substitute now a, by ’
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(32) X*{a,(a,, -+, a,) +C*det (ay, a;0)a,
in (10). We obtain
(X*{ay(ay, -, a,)°} +C* det ay, a;0) X(ay, as, -+, a,),
X*{ay(ay, -+, a,)*} +C*det Lag, a;»)X(ay, @y, -+, a,)>=0

and this gives the required result for the positive definite case.

(32)

Remark. We return to the case ¥=1 and remark that we have
(33) Va<{Aa, a)=0, A*=0.

In the positive definite case this has A=0 as a consequence but a simple coun-
terexample shows that this is not always true in the other cases. Indeed,
taking

0100 0 0 01

0000 0 0 -1 0
resp.

0001 0 —1 00

0 00O 1 0 00

as matrix for A resp. {, >, a simple calculation shows that (33) is satisfied.

5. We return now to the general case.

THEOREM 7. For an r-fold (4, 2)-product condition (il1) may be replaced by
(349) X*{a(a,, -, a,)*} =C*det {ay, a;))a

a, a, eee a,

@y, @) K@y ay) -+ £ay, )

(@n @ (an @) o (G @)

where
(35) X*{a(a,, -+, a)?}=0.
Proof. Indeed, we have from (34)
(36) X*{a,(a,, -+, a,)'}=C*det (a;, a; ) X*{a(a,, -, a,)?}

—C*det (Kay, a;0)X*{a\(as, -+ ,a,)°} .
Remark. Note that

det (Cay, a;0)=C8, A A *+ NGy, G AGN - NQLY.
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THEOREM 8. For an r-fold f-product condition (31) may be replaced by (34)

where

37 X(a, a,, -+, a,)=0.
From (34) we obtain further

(38) {X(a,, a,, -+, a,), a)=0

and consequently

(39) {X(a, a,, -+, a,), a;>=0.

It follows also immediately

(40) {X(a, a,, -+, a,), a;:>=0.

The same relation gives

(41) a, azy=0

and

(42) C* det Ka;, a;))a,, a)=C*det (a,, a,)

_<X(aly Qg *** ar), X(al: Agy “** ar)> .

Using (10) we obtain further

(43) <X(a17 aZy Tty ar)y X(ay az: Tty ar)>=0
and thus
(43/) <X2{a1(a2y Tty ar)z}r a>:0 .

This relation gives
a, a, a,

@y, @) £y, Gy) - £ay, A
: T =0,

(44) det (<ai’7 a]">)<a7 a>—<ay
@, ary {ay, @) -+ ayr, @)
Finally we get
(45) {a, ay={a, ay).
THEOREM 9. If X defines an r-fold (4, 2)-product with factor C* then

(46) Zay, @y, 0)=rgerarayy X 10— a))

defines also an r-fold (4, 2)-product with the same factor.
Proof. Using (34) and (35) we obtain
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(47) Z(al, gy -+ ar)z_X(alv Agy ***, ar)'—{—X(a, QAgy *+ ar)

and this shows that Z is a multilinear map since a depends linearly from a,.
An easy calculation shows further

(48) Z*{ay(ay -, a,)'} +C* det Kay,, a;0)Z{ay(as, -, a,)"}=0.

Finally

(49) <Z(aly Qgy (l,-), a1.>: C?det (<lai,, aj’>) Xs{al(ab ) ar)s}; al>:0

because of Theorem 3 and the simple remark
(50) (XP{ay(ay -, a)}, a;p=0, VI'E{2,3, -, r}.
COROLLARY.

(a)

1 3 3
(51) m—/\' {a,(as, -+, a,)%}

| 1 _
i det (<ai"y aju>) Xs{a2(a1! gy ** ar)s}—o,

i/y jle {2, 31 B 7’} ’ i,/y ].”E {17 3! Tty 1"} .

(b)
(52) Xa{al(am ety Qg vty Ggy t0ty, ar)s}_l_Xs{al(aZy ey Qg oty Gy 0ty ar)s}ZO-
This follows immediately from (49) in the same way as for Theorem 2.

Before formulating the following theorem we generalize the notion of an
almost tangent structure.

DEFINITION 8. Let V denote a vector space of dimension n over an arbitrary
field F of characteristic not two and let ¢, ): VXV—F denote a symmetric,
nondegenerate bilinear form. An r-fold tangent product on V is a multilinear
map

X:V'=V: (aly Qgy v ar)'_')X(aly gy o a’r) ’
1=r=n, such that
(i) <X(al; Qgy vy a‘r)’ a1,>:Oy Vie {1: 2, Tty 7} \
(ii) X? {al(aZr ) aT)Z} =0.J

In relation with the defined »-fold products we have now

(63)

THEOREM 10. An r-fold (4, 2)-product X defines always an r-fold tangent
product Y by

(54) Y(a,, a5, -, a,)= C? det (<la,;,, ajﬁ}) _X3{a1(a2,_ v :a,)3} +X(q,&a2, e a,).
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Proof. We have, with the help of (49) and (50)
(Y(a,, ay, -, a,), a,>=0, Vie{l,2, -, r}.
As a consequence of (46) and (47) we get
Y(ay, ay -+, a)y=X(a, a;, -+, a,)

which shows that Y is a multilinear map. A straightforward calculation shows

finally
Yz{al(a% Tty a'r)z} :0 -

6. For completeness we remark that Theorem 2 remains valid for an 7-
fold f-product and that we have also

THEOREM 11. An r-fold vector m-product with factor C*is an r-fold f-product
with the same factor.

This is proved by means of (24).

7. Let us now suppose that M" is an n-dimensional differentiable manifold
(i.e. C*) equipped with a pseudo-Riemannian metric <, ) and let X(M™) denote
the Lie algebra of vector fields on M™. Suppose further that M™ has a globally
defined r-fold vector #-, (4, 2)- or f-product X which is differentiable (i.e. C*).
Then X is a tensor field on M™ of type (1,7) and we say that X defines an 7-
fold vector =-, (4, 2)- or f-structure on M™".

From the definitions-and theorems given above it is evident that every such
a structure X determines global differential forms ¢ and ¢ of degree 741 by

the formulas .
(55) ¢(ah Qgy *++ ar+1):<X<a1y QAgy * ar); ar+1> s
(56) 9/’(41, a2y Tty a‘r+1):<Z(ab (12, Tty aT)’ aT+1>

Xa{a](aé; ) ar)a}y ar+1>

_ 1
— C*det (Kay, a;))

for ay, @y, -+, ar EX(M™).
If is easy to prove the following theorem :

THEOREM 12,
1. X defines an r-fold f-sttucture with factor C* 1f and only 1f

GY)) o+¢=0.
2. X defines an r-fold (4, 2)-structure with factor C* 1f ond only 1f
(58) ¢'(X(aly Qyy =, ar)y gy ar+1)+¢(X(a1y gy o2y (1,-), gy 2y ar+1):0

for ay, Qg ***, aT+IEX(Mn)'
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3. X defines an r-fold vector m-structure with factor C* if and only if

ey @41 £y, Qriy) -+ by, Qriy)
G Xy @y ) 0, @y o aprym—r| BB S (e
(ana) <@,a) - <ana)

f07’ ayy Aoy *** ar+IEX(Mn)-
4. X defines an r-fold f-structure if and only if

(60) ¢(ay QAgy -, ar+1):0

for Ya,,.,eX(M™).
5. X defines an r-fold (4, 2)-structure if and only 1f

(61) QS(X((I, Ay, ***, ar); Qgy -+, ar+1)=0

for Ya,,,.sX(M™).
6. For Va,, a,, -, @, €X(M™) we have

(62) a) P(ay, ay -, Gr)=@(a—ay, ay, -+, Q) ;
(63) b) ¢(a1’ Ay, +°, ar+1)
= Cfdet &;i,’ a;) &(X(ay, ag, -+, @), @3, -+, Ay, X(Aryy, G5, -+, ;) .

8. Let F denote a linear connection on M™ Then we have

7o)y @ -+, @) =5{$(0s, 0o, -, G )} =2 @y -, Paty o+, €ra),
and an easy calculation shows that
(64) VopXay, s, -, @ )=2{(X(ay, s, -+, a,), ar4)}
—VX(ay, @y, -, 0), Gr>—<X(ay, Gy, -+ a,), V20700

Doing the same for the (r41)-form ¢ we obtain, using (47),
(65) FP)ay, ay, -, ar)=x{{X(a—ay, a,, -, @,), Crs 1}

—V X(a—a,, @y, -+, @), @rep—X(a—ay, a5, -+, a,), V10r41)

HF X a—a,, ay, -+, a,), arsy) .
We may conclude:

THEOREM 13. If V is a linear connection on M™ which is also metric, then
we have

(66) (Vz¢)(al; Ay, -+ Q) =XV X )ay, a5, -+, a,), i),
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(67) WV P)ay, as, -+, ar)={F X a-—ay, a,, -+, a,), @i,
=Fp)a—ay, ay -+, ryy),

for x, a,, @y, -, AQro  EX(M™).

DzFINITIONS. If F is a linear metric connection on M", X an 7 fold v.ctor
n-, (4, 2)- or f-product and ¢ the associated (r+1)-form, then
(i) X is parallel if and only if for VxeX(M™)
(68) V. X=0;
(i) X is mearly parallel if and only if
(69) P o, X)ay, a,, -+, a,)=0

for Valy aZr Tty arex(Mn);

(iii) X is almost parallel if and only if dp=0;

(iv) X is semuparallel if and only if 0¢=0
We remark that it follows from (69) that

(70) (V.Z'X)<ali gy ==, ar)+(Va1X)(x; gy **y a'r):O .

Let @, NP, AP, SP be the classes of r-fold vector zn-, (4, 2)- or f-products
which are parallel, nearly parallel, almost parallel or semiparallel. We have
then if / denote the pseudo-Riemannian connection on M":

THEOREM 14. We have the following inclusions
(i) PSNPSSP;

(i) ecAP;

(iiiy f=IPNAL,
for M*".

Proof. We have
(71) (d¢)(alv gy -2, ar+2)::§:+:(_ l)Hl(Va.tqs)(an ey by e Grys),
(71/) (5¢)(alv Tty aT):'—; ||ei”—2(Vei¢)(eu ag, Ay *--, ar) .

If X is nearly parallel then
Vo, X)ay ag, -+, a)=0= o )@y, @y, -+, Griy)=0
and it follows
(P o @)@y -+, 8y vy Q) =(— 1) (P @)@y, -+, @y oo, o0y Gyrs)
Thus
(72) (dp)ay, ay, -+, Ari) = +2)( 0, 9)as =+, Qy, =+, Q)

Now
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(i) is trivial;
(ii) follows from (72);
(iii) by (72) we get
(Va1¢)(a21 Tty au Tty aT+2):0

and this gives us Vx J/,X=0.
A simple calculation proves further

THEOREM 15.
(73) d(P+¢)(ay, @y, -+, Qrr)=dd(a, ay, -+, Q)
(73) oP+o)ay, ay, -+, a)=04(a, ay, -+, @)
Using (42) we obtain without difficulties
THEOREM 16. ‘
T8 KT X)ay, @y -, 0), X(ay, @y, -, a)>+Cox{det (ap, a;5)ay, ad}=0.

COROLLARY (see [6]). If X defines an r-fold vector m-product with factor
C?, then ’ a

(75) (P X)ay, ay, -, d,), X(ay, @y, -, a,))=0

where IV 1s a linear metric connection.

9. We give now two theorems for (4, 2)- and f-products and which are
proved in [5] for r-fold vector cross products. (Remark that the proof in [5]
is independent of the factor C?. As in [5] we suppose that the »-fold product
varies continuously over the whole manifold.

THEOREM 17. Let X be an r-fold (4, 2)-product (vesp. f-product) with factor
C? with respect to a metric tensor {,> on a manifold M™ Let M * be a submam-
fold of M™ such that the restriction of <, > to the normal bundle (supposed to be
orientable) of M™* 1s nondegenerate and positwe definite. Then X induces an
(r—k)-fold (4, 2)-product (resp. f-product) X with the same factor C* on M™% in
a natural way.

Proof. Let ny, n,, ---, n, be k& normal vector fields defined on an open subset
of M™ *such that <{n,, n,>=0;,, 1, j=2, 3, -+ ; k, and n;An,A -+ An, is consistent
with the orientation of the normal bundle. Define then
(76) X(aly gy *+ ar-k)ZX(alr Ooy =v*y Qp_py Mgy Ny, ==- nk)

for a,, a,, -+, a,_,€X(M™®), It is not difficult to verify conditions (9) and (11)
(resp. (30) and (31)) defining the product. Note that (76) is independent of the
choice of n,, n,, -+, N4

THEOREM 18. Let S™ denote the umit sphere in R™?' and let {, ) denote the
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metric tensor of S” induced from the positive defimite one on R™, If S™ has a
globally defined r-fold (4, 2)- or f-product with factor C?, then in the vector space
sense there is an (r+1)-fold continuous (4, 2)- or f-product with the same factor
on R™1!,

Rroof. We use the construction of [5].
Let X,, denote the r-fold product on S™ at m. Define now

X=(Rr+)r+1_, g+l

as follows. Let a,, a,, **+, a,,;€R™* and write a,,,=b+e¢ where b is the com-
ponent of a,,; normal to a,, a, -, a,. If b=0 we set X(ay, a,, -**, @r..;)=0. If
b+0, let d=|b|"*b and set

X(aly a2; Tty a‘r+1):"b”Xd(a1y GZY ) (l.,.) .

Using the definition of the products one can verify at once that X satisfies the
required relations.
Note that X is linear in a,, a,, -+, a, but in general is only continuous in

Ari1e

10. Let M™* be a submanifold of a pseudo-Riemannian manifold M™ such
that the restriction of the metric tensor ¢, > of M™ to M™* is nondegenerate.
Let I(M™®H={X|M"* XeXx(M™}. Then we may write I(M™ *=X(M""*P
X(M™ ¥ where 2(* %) is the collection of vector fields normal to M™% The
configuration tensor T : X(M™ *)X I(M™*)—X(M™*) is defined by T,y=F,y—F .y
for x, yeX(M™*) and T,z=nV,z for x&€X(M"*), zeX(M™**. Hence V and V
are the Riemannian connections of M" % and M™ resp. and = is the projection
of Z(M™ %) onto X(M™ *). Then [4] for each xeX(M™ *), T, is a skew-symmetric
linear operator with. respect to ¢, > and T,y=T,x for x, yeX(M™ %),

THEOREM 19. Let M™* and M™ be pseudo-Riemannian manifolds which
satisfy the hypotheses of Theorem 17. Then for x, a,, a,, -, a,_,€X(M"™¥) we
have

(77) (V.Z’X)(a], Qg+, ar—k):ﬂ(ﬁz}(_)(ah vty Oy Nyy o0y nk)
Eo_
+i2 ﬂX(aly Tty a?‘—k! nly o Tznly Tty nk)
=1

where ny, n,, -, n, are the same as wn the proof of Theorem 17.

Note that T,n, may be replaced by F,n, since this is orthogonal to n,. (77)
follows immediately from the definition.

COROLLARY. If X 1s parallel and M™* totally geodesic in M™", then X is
parallel.

THEOREM 20. Let M"™* and M™ be pseudo-Riemannian manifolds which
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satisfy the hypotheses of Theorem 19. If X is nearly parallel and M™ * totally
umbilical in M™, then X 1s nearly parallel.

Proof. M™* is totally umbilical if and only if there exists for every unit
normal n a function x(n)e D(M" *) (depending on n) such that

T.n=k(n)x

for all xeX(M™*). Thus, using (77),

(78) (VIX)(al) gy -, aT—k):n(V.z‘X_v)(aly gy oy Ap_py Ny, Ny, v, nk)
3 -
'—lelct"y(aly gy =ty Qg Myy w00y Xy o0y nk) .

The required result follows now at once from the definition.

11. As before let M™ be a pseudo-Riemannian manifold with metric tensor
{,> and Riemannian connection /. X is a (4, 2)-, f- or vector m-product with
factor C* and ¢ the associated (r+1)-form defined by (55). The purpose of this
section is to see if the relations given by A. GRAY [5] are valid for the de-
fined structures. They introduce the curvature and relate them with the
structure.

If is a p-form on M" and a, b, a,, -+, a,€X(M™) we shall need the follow-
ing formulas:

(79) (Va)(av ay, ==, ap):(Vaa)(au Tty ap)

D
:a{ﬁ(aly Tt ap)}—‘z_la(aly Tty Vaaﬂ Tty al)) ’

(80) ([720)((1; b) alr Tty ap>:(Va(V0))(by aly Tty ap),
(81) (Ruf)(ay. -, ap>=—é B(ay, -+, Rasty, -, - 1 ),

(82) (AO)(al’ R ap):é é (_ 1)1+l“ek”_2(Ra.iekﬁ)(ek; al7 Tty du Tty ap)

—kg lewl~2(P%0) ey ; ex; ay, -+, ap),
where {e,, --*, ¢;} is an orthogonal frame field on an open subset of M". [J#@

and %@ are the first and second covariant derivatives of 6, Ry =V iq,01—[V ¢, V]
and 4=ddé-+dd is the Laplacian.

THEOREM 21. Let a, b, a,, ---, a,€X(M™); then
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(8v) (F*¢)a;b; ay -, ar, X(ay, -+, a,))
:_<(VaX>(a1y M) ar)y (VDX)(G']: Tty aT)>

+-5- (7 ab—ab) {det Kav, a;))Xa, b} +Ala, b)

where A(a, b) is given by

(83) Ala, (y=-5-b 5 (Xay, -, 47 aa,, -, @)
—Aay, -, ay, -, a,)
—Aay, -, Vaa, -, a)}

and

(837) Aay, -+, a,)=det Kay, a;>)Xa,, a).

Proof. This formula is a straightforward calculation from the definition
(80) of F*¢ where we use formula (74) of Theorem 16. Remark that with (42)

S b—ab)ldet Cay, a;5)Ka, @)

:_CZZ—(Vab_ab){det (<a1,7 a’j>)—<X(a17 Tty ar)r X(aly Tty ar)>} .

COROLLARY 1. Let a, b, a,, -+, a,€X(M™); then
(84) (V2¢>(a’ br ah Tty ar: X(aly Tty ar)):(72¢)(b; a; aly Tty a'ry X(aly Tty ar))
if A is symmetric in a and b.

COROLLARY 2. Suppose now that we have a vector w-structure with factor
C? and let <, ) be positwe definite. If V2¢p=0, it follows from (83) with a=b that

(VaX)(aly Tty aT):O
and hence with (66)
VFé¢=0.

We have thus.

If X is an r-fold vector m-structure with factor C* with respect to a positive
definite {, » and if ¢ is the associated (r+1)-form, then

Vp=0>FV¢=0

and X is parallel.

If R,, denotes the curvature operator of ¢, >, then the Ricci-curvature k is
defined by

(85) k(a, b)=§ lea) "¢ Rae b, €,

for a, beX(M™), where {e,, -, ¢,} is any orthogonal frame field on an open
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subset of M™.
As in [5] we define now the Chern form y of the (4, 2)-, f- or vector 7-

product X.

DEFINITION. The Chern form y of the (4, 2)-, f- or vector m-product with
factor C? is the (r+1)-fold differential form 7 defined by

(86) (1’—!—1)7((1,, a2’ ttty ar+1)
zi 2 (_1)r+l+j”ek”_2<Raiajek, X(eky aly Ty d‘u R d,}y Tty ar+1)>

k=11<j

for a,, -+, a,,;€X(M™) and any orthogonal frame field {e,, ---, e,}.
We have then

THEOREM 22. Let ay, -+, a, ., €X(M™) and let {e,, ---,e,} be an orthogonal
frame field on an open subset of M™. Then

(87) (46)(ay, =, ar)==3} lesl (P G)ers €1 @z, re)

—z (—1)*7k(a,, X(a,, -+, 8y, -, Qpy))

_(T+1)T(aly ey Grgy)

Proof. This follows from a calculation of the Laplacian (82) using (81) and
the definition of the Chern form 7.

THEOREM 23. Let ay, -, a,€X(M™ and let {e,, -, e,} be an orthogonal
frame field on an open subset of M™ Then

(88)  (dgXay, -+, ar, X(ay, -, ar))=k2211||ekll'2II(VekX)(al, e A

2 n
S BT Kan = Aay aun - Aaxa, ard)
—(7’-!—1)7(611, cery Ay, X<a1, “tty ar))

+k(X(ay, -, a,), X(a, -+, a»)—ki_:l legl -2 ACes, €4)

_Cztél <al/\ b AﬁtA s NGy QN ot /\dt/\ /\(1,->k((11, al)

+C BT (1A <+ AN -+ Ny @A Ny A - Aadk(,, 0)
1=1 =

where the a, are defined by (following (34))
(89) X%*(aiay, ay, -+, 8y -+, @) )=CHa A o NG =+ Ny QN - NN -+ Napa,
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—‘CZET(—]-)H]<01/\ e NG s NGy, @ N s NN e Naa,

j=1

Proof. We start from formula (87) and use (83) and (89). The formula
(89) follows immediately from (34). This can be written as follows

(90) X*ay(ay -+, @,y =CHA NN - NAr, GINGNA -+ NODQ,
FC 2 (= 1)K AGA =+ Ay, A = AB,A - A, .
J7=1
12. THEOREM 24. acX(M™) is an infinitesimal automorphism of the (4, 2)-,
f- or vector m-structure if and only if for Vb, .-, b,eX(M™)
1) a, X(by by -+, b)I=3 X(by, -+, bic, [0, b, buas, -+, b7).
1=
Proof. a is an infinitesimal automorphism iff for Vb, ---, b,
(92) ('CG.X)(bly va ) br):() .
This is equivalent to

(93) Lo X(by, by, -+, b)=3 X(by, -+, by-y, Labi, bissy -+, by) .
i=1

Formula (91) follows now easily.

THEOREM 25. Let X and Y be two (1, r)-tensor fields on M™", then the follow-
ing formula defines a (1, 2r)-tensor field S: for all ay, a, -, a,, by, by, -+, b€
XM™ we have

(94) S(aly az; Tty aT; bly be Ty br)
=|:'X(a1v az: Tty ar)y Y(bly bz, Tty br)]+[y(a17 a27 Tty a‘r)y X(blv bZ’ Tty br)j

_é X(ay, -+, @y_y, [ay, Yiby, by, -, b1, Gussy = @)

._?;1 Y(ay, -+, @y, [y, X(by, by, -+, b)], Gusys =+ @)

_é X(by, ) by_yy [Y(ay, @y, -+, @), bi], bissy -+, by)

_ff‘"l Y(by, -, biy, [X(ay, @o, -+, @), biJ, byssy -+, b,)

+ 3 X(@y -+, @y, Yby, -, bicy, [, b0, by, -+, b), @y -, 02)

1,5=1

+ 21 Y(aly ey Gy X<b19 ) bi—-ly [a]y bi]y bi+1y ) br)y Ay1y "y a'r) -

b=
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The proof of this theorem is immediate.
It is easy to see that in the case r=1 the tensor S defined by (94) is the
Nijenhuis tensor. Therefore we define

DEFINITION. The tensor S defined by (94) is the Nijenhuis tensor of the
two (1, 7)-tensors X and Y.

The tensor S defined by (94), where X=Y is a (4, 2)-, f- or vector w-structure,
is called the Nijenhuis tensor of the structure.

We obtain then as a generalization of a known theorem (see KOBAYASHI
and NOMIZU II, p. 128):

THEOREM 26. Let ay, a,, -+, a,€X(M™) be infinitesimal automorphisms of the
structure defined by X. Then X(a,, a,, ---, a,) is an infinitesimal automorphism of
X if and only if

(95) Vbl, bar "ty brEX(Mn): S(aly Qgy =+ y Oy bly b2’ Ty bT>=0 [}
where S is the Nijenhuis tensor of this structure.
Proof. a, is an infinitesimal automorphism if and only if for Vb, -, b,
2M™)
(96) [a]v X(bly be ) br):':'%X(bl’ Tty bi—lr [a]y bt:|7 bi+l; ) b'r) .
X(a,, a,, -+, a,) is also an infinitesimal automorphism if and only if for Vb, -,
b.exX(M™)
(97) [X(aly “tty ar), X(bly ttty b'r)]

-
ZEX(blv Sty bi—ly I:X(ah ttty ar)y bi], bi+1y “tty br) .
The Nijenhuis tensor of the structure is defined by (94) and we find so
(98) Sy, @y o, @y by by o, BY=[X(as, @y o, 0,), Xy, by o, 5,)]
_§_1 X(aly “tty at—ly [au X(bb b27 R br)l at+17 Tty aT)

—2 X(by, -+ , by_y, [X(ay, Gz, -+, @), b5, bugsy -+, by)

+ ZIX(al’ ety Gy, X(bly ) bi—ly [(1], bl:ly bi+1y Tty br)y (TSR ar) .

%=

It follows now from (96)

(99) 2 X(ay, -+ @y, [y X(byy byy -, )]y Gy -+ G2)
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= E X(dl, Oy, X(bly ) b}-h I:aly b]l b]+ly ) br)s Aty **y ar) .

1,y=1

With the help of (97), (98) and (99) the proof is now immediate.
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