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ON CONTACT CONFORMAL CONNECTIONS
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By KENTARO YANO

§1. Introduction.

Let M be an n-dimensional Riemannian manifold with metric tensor gj;
(n=3). The change of metric

(1.1) gi=e€"g;:,

where p is a certain scalar function, does not change the angle between two
vectors at a point of M and is called a conformal change of metric.

Corresponding to the conformal change (1.1) of metric, we have a change
of Christoffel symbols, that is, a change of Riemannian connection

(12) «’;”_l}: { ! F+averas,—g,

where p; is the gradient of p and p"=p,g'" g‘* being contravariant components
of the metric tensor. If we denote by D, the operator of covariant differentia-

tion with respect to {jhi}’ we have of course

(1.3) D (e*?g;:)=0.

Computing the curvature tensor I?m" of :{j_hi}’ we find
(14) K=Ky 401p;0—00Pa+ P4 81i— D, 8
K,;;" being the curvature tensor of { ]hi}, where
(L5) D=V bbbt D8

and p,"=png"" V, denoting the operator of covariant differentiation with re-

h
spect to {]- i}'
If there exists in M a scalar function p such that the curvature tensor
K,;" vanishes, then the Riemannian manifold M with the metric tensor gj; is
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said to bz conformally flat. In this case, we have from (1.4)

(1.6) Kkah“‘aﬁp;i"a?pkz+thgji—l);hgki:0,
from which we have

(1~7) Pnzcji ,

where

(18) Cim——L K+ 1 Kg;s
. 7t n—2 7 2zen—1)(n—2) A

K;; and K denoting the Ricci tensor and the scalar curvature of M respectively.
Substituting (1.7) into (1.6), we find

(19) Cap=0,
where
(1.10) Clzjih:Kkah_}_&’I:Cji_a,']L Ck1+ckhgji ’“C;hgkz

is the Weyl conformal curvature tensor and C,"=C,g". Thus a necessary
condition for M to be conformally flat is that the Weyl conformal curvature

tensor of M vanishes.
In a previous paper [3], the present author studied a complex analogue of

the above and proved

THEOREM A. In a Kaehlerian manifold with Hermitian metric tensor g;; and
almost complex structure tensor F.", the affine connection D with components I,
which satisfies

Dk(en’gji)zoy Dk(eziji):o

and
F"jli_F:Lj:—ZFJiqhv

where p 15 a scalar function, ¢" a vector field and F;;=F g, 1s gwen by
(L11) ri={ ]hi}+57pl+5¢pj—g,-lp”+qul+Fﬁq,—Fﬁq",
where p; 1s the gradient of p and

P=p.g™", q=—pF', ¢"=qg".

We have called such an affine connection a complex conformal connection in
a Kaehlerian manifold.

THEOREM B. If, in a real n-dimensional Kaehlerian manifold (n=4), there
exists a scalar function p such that the complex conformal connection (1.11) s of
zero curvature, then the Bochner curvature tensor of the manifold
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(1.12) Bkjih:Kkjih_‘_g%Lji—aI;Lkz_"' Lkhgji_Ljhgkz
+FkhMji_FJhl‘4ki+MkhFji’_MJthl
—2My,F"+F ;M)

vamishes, where

Lji:_ 1

1
nra Kot g ymyay K
1\/11‘1:_thth , Mk"ZMk;g”‘ .

Lkh:LkLgth ’

K,

The main purpose of the present paper is to find a contact analogue of the
above.

In §2, we state some of fundamental formulas in Sasakian manifolds to fix
our notations and in §3 we study a curvature tensor of a Sasakian manifold
which corresponds to the Bochner curvature tensor in a Kaehlerian manifold,

In §4 we introduce what we call contact conformal connections and in §5
we study the condition for a Sasakian manifold to admit a contact conformal
connection whose curvature tensor vanishes.

§2. Sasakian manifolds.

Let M be a (2m+1)-dimensional differentiable manifold of class C* covered
by a system of coordinate neighborhoods {U; x"} in which there are given a
tensor field ¢;* of type (1, 1), a vector field & and a 1-form 7, satisfying

(2.1) 9011901"‘:_5? +77j5h1 0" =0, 790,'=0, =1,

where here and in the sequel the indices 4,1, j, --- run over the range {1, 2, -,
2m+1}. Such a set of a tensor field ¢ of type (1, 1), a vector field £ and a
l.form 7 is called an almost contact structure and a manifold with an almost
contact structure an almost contact manifold. (Sasaki [2]).

If the set (¢, &, ) satisfies

(2-2) Njih_l—(aﬂ?i—aiy]])Eh:O ’
where
N;ji"=0,'00p"—¢i'0,0,"—(0;0:! —0:0,")0,"

is the Nijenhuis tensor formed with ¢, and 0;=0/0x’, then the almost contact
structure is said to be normal and the manifold is called a normal almost con-
tact manifold.

If, in an almost contact manifold, there is given a Riemannian metric gj;
such that

(2.3) 8s0,' 0 =851, Mi=Zunk",

then the almost contact structure is said to be metric and the manifold is called
an almost contact metric manifold.
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Comparing the first equations of (2.1) and (2.3), we see that ¢,;;=¢,'g,, is
skew-symmetric.

Since, in an almost contact metric manifold, we have the second equation
of (2.3), we shall write 7" instead of £" in the sequel.

If an almost contact metric manifold satisfies

(24) 9o,~i=—%~(8,~771—8m]) :

then the almost contact metric structure is called a contact swructure. A mani-
fold with a normal contact structure is called a Sasakian manifold.
It is well known that in a Sasakian manifold, we have

(2.5) Vig*=p,"
and
(2.6) Vipl=—gm"+057,,

where F, denotes the operator of covariant differentiation with respect to gj;.
If we denote by £ the operator of Lie derivation with respect to the vector
field »", we have
Lg;:=V AV ,=¢,i+¢,
and consequently

(2.7) £8,=0,

which shows that the vector field %" is a Killing vector field. From (2.7) we
find, using formulas on Lie derivatives,

(28) f{jhi} =7 o+ Kyyihyt=0,

(2.9) LK, =0V K" =K'V o + K W it + K"V '+ Ky "V ot
-0,

(2.10) LK =0 K;;+ K.V '+ K;JV 9'=0

and

@.11) LK=7T k=0,

where {jhi}’ K,;i", K;; and K are Christoffel symbols, the curvature tensor,

the Ricci tensor and the scalar curvature of M respectively.
Now from equations (2.5), (2.6) and the Ricci identity

Vil "=V 7 a=K,;"np",
we find
(2.12) Kt n'=04m,—0kn,

or
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(2.13) K 1=1485i— 08k,
from which, by contraction,
(2.14) K;nt=2my,.
From equations (2.5), (2.6) and the Ricci identity
Vil 0=V Vot =Ko —Kiji' ol
we find
(2.15) Kisoit —Kaji' "= — 04"+ ¢, 81— 040+ 0 @,
from which, by contraction,
(2.16) K + Koy =—2m—1)¢;q,
where ¢*=g"¢,;*, g"* being contravariant components of the metric tensor. Since
Kijisp" =K"= — Ky o'
we have from (2.16)
(2.17) Kp: +Kup,'=0.
Since
chisﬁots:“%—(szis"Ks;iz)ﬁots

= ——%—K:mso“ ,
we also have from (2.16)
(2.18) Kis:0"=2K,0,'+22m—1)¢;; .
From (2.10) and (2.17), we find
(2.19) 7V K;;=0.

§3. Contact Bochner curvature tensor.

In previous papers [4, 5], we have defined the contact Bochner curvature
tensor by

(31) Bkﬁh:Kkjih"i’(a%_vk)?h)Lji—(5? -vjvh)Lki_"Lkh(gji—ﬂj"]z)
'—L;h(gki—‘ﬂkm)+90khMji—S0;thz+Mkh§0ji" i

"'Z(Mkj%h“”SijMzh)‘f’(Gokh%i_% hﬂé’m—zﬁok;%h) ,
where

(3.2) L= _—2011—1+§)_ [Kji"‘(L‘l‘B)gji_(L"‘ Dnin.J, L'=Lyg",

(3.3) Mji:'—Lj:SDit s M) =M, g™
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and consequently

(34) Mﬂ:W [K;0:"—(L+3)¢;:]
and
(3.5) L=g"L;.

The definition (3.2) of L;; shows that L;; is symmetric and (2.17) and (3.4)
show that M;; is skew-symmetric. From (3.2) and (3.5), we find

(36) =—SAEEED)
Transvecting (3.2) with »* and using (2.14), we find
3.7 Lyp'=—n,.
From the first equation of (3.3), we find
(38) Myi=0
and

M;pit=—L;p "

=—L;(—0+n:7",
from which, using (3.7),

(3.9) szSDit:Lji+77]771-

Now, from the definition (3.1) of the contact Bochner curvature tensor, we
easily see that

(3.10) By;"=—B;u",

(311) Byji"+Bji"+Bix,"=0,

(3.12) Bi;i'=0,

(3.13) Bijw=—Bjrn,  Brju=—Buijn,
(3.14) Bijin=Bins,

where Byjin=DB;i'Gm,

(3.15) Bis'1.=0,

(3.16) By it —Byi'e,*=0.

(3.17) Bayest=0.

We also can verify by a straightforward computation that the contact
Bochner curvature tensor satisfies
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(3.18) V Bysit=—2m| V L=V ;Luu 7 Myi+¢;:)
=Myt @) —2(My, + 04,7,
"m (Sﬁkt%i_%t%i—2$0kjS0it)(VcL)].

(See Matsumoto and Chiiman [1], Yano [5]).

§4. Contact conformal connections.

We consider an affine connection D in a Sasakian manifold M and denote
by I the components of the affine connection and by D, the operator of
covariant differentiation with respect to I%.

We assume that the affine connection D satisfies

4.1) D\ (e*g;:)=2e" P17,
and the torsion tensor of D satisfies
4.2) ;Li—’rgj:—“zgojiuhr

where p is a certain scalar function, p;—0d;p and u" is a certain vector field.
From (4.1) we have

4.3) Zezppkgji‘i‘ezpakgji—rijewgti— iiengjzzzewﬁkﬂﬂ]w
We can solve (4.2) and (4.3) with respect to I'% and obtain

(4.4) ri={ j",-}+<5;l—mh>pi+<5f—mh)jaj—(gﬁ—n,»mph

+o, Ao~ ut
where
pr=p.g™,  u=ug".

Using (4.4) we compute the covariant derivative D;o,* of ¢,* with respect
to I'% and obtain

(4.5) Do =(0" — "), —q,+9,)—(g;i—nn)(u"—q"+7")

+¢1h(ut¢it_pi)+¢ji(fpthut +p",
where
¢=—p0t,  ¢"=q.g8".

We now assume that the affine connection D also satisfies
(4.6) ngoihzo .

Then we have
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(% =™~ 1) — (85— n,m) W —q"+7")
@, (Ui — D)+, ut+p")=0,

from which by contraction with respect to 4 and j

4.7 2m(u;—q;+9)+2uy—g;—nmu’)=0,

from which, by transvection with *

2m(u;n*+1)=0
and consequently substituting #,7’=—1 into (4.7) we find

2(m—1)(u;—q;+2,)=0
and consequently
(48) Ui=q;—7,.
Thus (4.4) takes the form

(4.9) ?‘z{jhi} (0% _“77177h)pi+(5?‘—77i77h)17j_(gji"77j771)ph

+0,Mqi—1)+0:a;—1,)—¢;(a"—n").

Using (4.9) we now compute the covariant derivative D;n" of 7" with respect
to the affine connection D and find

Dmt=(8} —nm"pan*,
from which we see that

(4.10) D=0,

if and only if p,7=0, that is, if and only if

(4.11) Lp=0.
Computing D;7,, we find

(4.12) D0 =(8j:—nm)b*n:,

from which we see that D;»;=0 if and only if (4.11) is satisfied.
Thus we have

PROPOSIOION 4.1. In a Sasakian manifold with structure tensors (", 1., &;:),
the affine connection D which satisfies
Dy(eg;)=2e""pyn;m:,  D;p*=0, D=0
and whose torsion tensor satisfies
W= It=—2p;u",

where p is a scalar function and u™ a vector field, is given by
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r?i={]hi}+(5? — "D+ (0 —1:0")p;—(g5—n;7)0"

+0,"(q:—0)+0Ma;—n,)—¢:(a"—1"),
where
p.=0:p, pr=p.g"", g =—p0:", "=q,8"

and p satisfies
Lp=0.

We call such an affine connection a contact conformal connection. Since a con-

tact conformal connection satisfies

Dk(engji):292ppk7]j7/i and Dk77j=0 ,
we have
D {e®?(g;:—;m)} =D (e g;:)—(De*)n,m,

=0.
Thus we have

PROPOSITION 4.2. A contact conformal connection in a Sasakian manifold
satisfies

(4.13) D {e*®(g;i—n;m)}=0.

§5. Curvature tensor of a contact conformal connection.

We consider a contact conformal connection

(5.1 Fg’:{]hl}+(5? =" +(0—1:9"p;—(&5:—71m.)P"
+0,"(q—1)+0:Ma;—9,)—s(a"—7"),

where

(5.2) pi=0:p, P'=pg"™, a=—bp, ¢"=¢.8",

p being a scalar function such that

(5.3) Lp=p,n*=0

in a Sasakian manifold with structure tensors (¢;", 7., g;:).
From (5.2) and (5.3) we see that

(54) ppt=—a., @el!=p., @l p'=q", ol¢'=—p",
(55) piy'=0,  qn'=0,  pig'=0

and

(5.6) PP =a.q"

We now compute the curvature tensor of I™%:
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(5.7) Ry;i*=0,1"%—0, AT} I — T T, .
By a straightforward computation, we find
(5.8) R i =Ky — (0= 0™ i+ (0} —1;0™"br—04™(&5:—1,7.)
0, (&= 0D =" 0+, 0 — 04"+ 4, Pn
+(7 49,V ;900" +204(q:p"—Diq")
P 05—, P —202;0:")

where

(5.9) PjiszPi“Pjpi“}‘(qj—7];)(41_77:)‘1"%—77417‘(&1_7717]1) ,

(5.10) jS:Vth_p;(qt_ﬂt)-pi(QJ_7]J)+—%_ptpt§0ji .
Since p;=0;p, we have from (5.9)

(5.11) Di=Di,.

Transvecting (5.9) with 7’ and noting that
ﬂjVjpiZ"]thpj:—(Viﬁj)p;

- —goszj:[h y
we have
(5.12) D=7, .
Also we compute p;,¢," using (5.9) and find
(5.13) 9;:=—;:0:"
and consequently
(5.14) 77](1”20 y qjiﬁlzo .

We compute g,,¢;° using (5.10) and find

4,50 =D;i—00, ,
that is,

(5.15) Dy= i +157,
from which, p;; being symmetric,

09— qup,'=0,
from which we have, using (5.14),

(5.16) Q5P 0’ =—0q,, .

We now assume that the curvature tensor of the contact conformal connec-
tion vanishes:
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(5-17) Rkjihzo .
Then from (5.8), we have
(5.18) K" =(0k— 00" i~ (0% =0 0" b+ 04(&55—1,7:)

‘p;h(gln_77k77;)+€0khf1ji'—901h‘1kz+Qkhﬁoji'%h(/’m

+aki€0ih+(/’kjﬂih_(§0kh¢ji‘SDJhSDk:_ZSijSDih) ,
where we have put

(5.19) a;=—WV1,—V;q0),
(5.20) B"=2(p:q"—q.p")
and consequently, for B8;,=p:'g.», we have
(.21 Bin=2(p:s0rn—a.n) -
We see that a,, and B;, are both skew-symmetric and satisfy
(5.22) =0
and
(5.23) 7'Bin=0
respectively.
We also compute a=¢p*a,, and f=¢B;, and obtain
(5.24) a=pra=—20p
and
(5.25) B=¢"Bun=A4p.p*
respectively, from which
(5.26) a—B=—2(Fp"+2p.p").

Now equation (5.18) can be written in the covariant form

(5.27) Kkjih:(gkh—7]k77n)]9jr‘(gjh—7717)n)pki +pkh(gji—77j771)
—Pjn(gkz“ﬂkm) F 0= PindmtnPii—AinPra
40t PuiBin—(PunPii—PinPri—201Pn) -

Substituting this into
Kkjih—Kihkj:Oy
we find
(5.28) €0kh(f1ji’+‘qu)“‘$0jn(‘1ki+Qik)+(%h+4hk)§0ji

—‘(qjh‘HIn;){DIn‘Ha’kj"‘.Bk;)%n—(okj(a'ih—ﬂih)zo ’
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from which, transvecting with ¢**, we find
(2m—2)(g;i+4.,)=0.

Thus if 2m-+1>3, we have
(5.29) 4,+4.,=0,
which shows that ¢;; is skew-symmetric, and consequently we have from (5.16)
(5.30) 9us,' 04" =G -

From (5.28) and (5.29) we find

(@h;=Br)Pin—Pri(@in—Pin)=0,

from which, transvecting with ¢*/,

Ain—Bin= 21’1 (a—B)¢in
and consequently using (5.26),
(5.31) i Bu=—— (7 0+ 2000

On the other hand, from the definition (5.10) of ¢;; and the skew-symmetry
of ¢;;, we find

2q;=V ;q0:—V ;q,+p:0'¢js .
Thus from the definition (5.19) of «;;, we have
(5.32) aji=—2q; D¢
Equations (5.31) and (5.32) give

(5.33) Byi= =20, 17+ (m+2p 0D
Since we have from (5.9)

(5.34) b=V . p'+mpp+1,

we can write (5.33) in the form

(5.35) ﬁji:_ZQJ'i“F%(th‘l_ZPLpL—l)S‘DN .
Now substituting (5.27) into

Kyjint K+ Kipjn=0,
we find
(5.36) A1t ndint@indr,+qm®it din@istqnes,)
(@ Pint @i Pant @irPn) H(PrsBunt@iBintixBin)=0.

Substituting (5.32) and (5.35) into this equation, we find
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(¢kj¢ih+ SDjiSth"‘¢ik¢jh)[ﬁnt+(m+2)17cpt— 1]=0,

from which

(5.37) Pt H(m+2)p,pt—1=0.
Thus equation (5.35) can be written as

(5.38) Bi=—245—D:0'Pj: .

Now, from (5.18), contracting with respect to £ and %, and using
503" =2D;i— 200, —De D (83— 1,7.)
obtained from (5.32) and
Bespi' =2 =201, P 0" (855—757.)
obtained from (5.38), we find

(5.39) K;i=2(m+2)p;i+(p.'—3)8;:—(p'+ 1)1,
from which, transvecting with g7?,
(5.40) K=4(m~+1)p,'—6m—4 ,
and consequently
b= K+2(3m+2)

LT 4(m+1)
that is,
(5.41) pf=—1L.

Substituting (5.41) into (5.39), we find
K;;=2(m~+2)p;;—(L+3)gji+(L—1)p;7,,

from which
b=z LKt (L+3)g,—(L=Dr7.],
that is,
(5.42) pji=—Lji,
from which
(5.43) gji=—M;;.

On the other hand, from (5.37) and (5.41), we have

—L+(m+2)p,p'—1=0,
from which

(5.44) 5 p*:—n?}ﬁ (L+1).

Substituting (5.42) and (5.43) into (5.32) and (5.38), we find
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L+1
(5.45) L
and
L+1
(5.46) ﬁji=2Mji—m—+2 SDji
respectively.
Substituting (5.42), (5.43), (5.45) and (5.46) into (5.18), we find
(5.47) B,;i"=0.

Thus we have

THEOREM b5.1. If, in a (2m-+1)-dimensional Sasakian manifold (2m-+1>3),
there exists a scalar function p such that the contact conformal connection

F?iz{jhz}‘F(B? —77177h)pi+(5’z}—77i77h)p;_(gji_ﬁj"/z)ph

+¢,Mq,—7)+e:"q,—n,)—e;(a"—7"),

where p;=0;p, p"=p, g™, ¢.=—0:0:", ¢"=q,g"™, 1s of zero curvature, then the con-
tact Bochner curvature tensor of the manifold vanishes.
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