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ON CONTACT CONFORMAL CONNECTIONS

To Morio Obata on his fiftieth birthday

BY KENTARO YANO

§ 1. Introduction.

Let M be an n-dimensional Riemannian manifold with metric tensor gjt

^3). The change of metric

(1.1) SJt=e**gJi9

where p is a certain scalar function, does not change the angle between two
vectors at a point of M and is called a conformal change of metric.

Corresponding to the conformal change (1.1) of metric, we have a change
of Christoffel symbols, that is, a change of Riemannian connection

(1.2) ' " ' ' A

where pi is the gradient of p and ph—ptg
th

t gth being contravariant components
of the metric tensor. If we denote by Dk the operator of covariant differentia-

(1.3)

tion with respect to | Λ, we have of course

Computing the curvature tensor Kkji

h of | - |, we find

(1.4) KkJi

h=KkJi

h+δίpJi-δίp

Kkji

h being the curvature tensor of I |, where

(1-5) Pji=f7jPi—pjPi+'2'^t^t^^

and pk

h—Pktgthy V3 denoting the operator of covariant differentiation with re-

spect to I j.

If there exists in M a scalar function p such that the curvature tensor
Kkji

h vanishes, then the Riemannian manifold M with the metric tensor gμ is
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said to be conformally flat. In this case, we have from (1.4)

(1.6) Ktjf+δϊpji-δϊPto+pSgjt-pSgH^O ,

from which we have

(1.7) pjt=CJt ,

where

(L8) C3i=—=3i=—Έ=τji 2(n_ιχn_2) »<

Kμ and K denoting the Ricci tensor and the scalar curvature of M respectively.
Substituting (1.7) into (1.6), we find

(1.9) Ckji

h=0,

where

(1.10) C.j^K^+δίCjt-δίC^+C^gjt-C^

is the Weyl conformal curvature tensor and Ck

h—Cktg
th. Thus a necessary

condition for M to be conformally flat is that the Weyl conformal curvature
tensor of M vanishes.

In a previous paper [3], the present author studied a complex analogue of
the above and proved

THEOREM A. In a Kaehlenan manifold with Hermitian metric tensor gjt and
almost complex structure tensor Fτ

h, the affine connection D with components Γh

jt

which satisfies

Wfti)=0, WF,,)=0
and

n-Γ?,= -2FJi<?

ft,

where p is a scalar function, qh a vector field and Fίί=F/gtt, is given by

(1.11) Γ)l

where pt is the gradient of p and

We have called such an affine connection a complex conformal connection in
a Kaehlerian manifold.

THEOREM B. //, in a real n-dimensional Kaehlenan manifold (n^4), there
exists a scalar function p such that the complex conformal connection (1.11) is of
zero curvature, then the Bochner curvature tensor of the manifold
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(1.12) βWift=^Wt*+^<-3*I

vanishes, where

r l_K i 1 Kσ r h_

^ji~ n+4 3i^ 2(n+2)(n+4) gjί' k ~

The main purpose of the present paper is to find a contact analogue of the
above.

In § 2, we state some of fundamental formulas in Sasakian manifolds to fix
our notations and in § 3 we study a curvature tensor of a Sasakian manifold
which corresponds to the Bochner curvature tensor in a Kaehlerian manifold.

In § 4 we introduce what we call contact conformal connections and in § 5
we study the condition for a Sasakian manifold to admit a contact conformal
connection whose curvature tensor vanishes.

§ 2. Sasakian manifolds.

Let M be a (2m+l)-dimensional differentiate manifold of class C°° covered
by a system of coordinate neighborhoods {[/; xh} in which there are given a
tensor field φf of type (1, 1), a vector field ξh and a 1-form ηt satisfying

(2.1) ^V^-^+^, 9>«ft£l=0, 7iP/=0, ?<£'=1,

where here and in the sequel the indices /ι, ι,j, ••• run over the range {1, 2, •••,
2m+l}. Such a set of a tensor field <p of type (1, 1), a vector field ξ and a
1-form η is called an almost contact structure and a manifold with an almost
contact structure an almost contact manifold. (Sasaki [2]).

If the set (φ, ξ, η) satisfies

(2.2) Λ^+^-^rf-O,

where
N^φSdtφS-φSdtφS-OjφS-dtφflφf

is the Nijenhuis tensor formed with φf and dj—d/dx3, then the almost contact
structure is said to be normal and the manifold is called a normal almost con-
tact manifold.

If, in an almost contact manifold, there is given a Riemannian metric gjt

such that

(2.3) gtsψJtφis^gj^-ηtf^, ηi=gίhξh,
then the almost contact structure is said to be metric and the manifold is called
an almost contact metric manifold.
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Comparing the first equations of (2.1) and (2.3), we see that φji=φj

tgtί is
skew-symmetric.

Since, in an almost contact metric manifold, we have the second equation
of (2.3), we shall write ηh instead of ξh in the sequel.

If an almost contact metric manifold satisfies

(2.4) ^i=-J-(3^t-3i^) ,

then the almost contact metric structure is called a contact structure. A mani-
fold with a normal contact structure is called a Sasakian manifold.

It is well known that in a Sasakian manifold, we have

(2.5) Fi?Λ=P,Λ

and

(2.6) fW=-ft*7 f t+d?7,,

where V 3 denotes the operator of covariant differentiation with respect to gjt.
If we denote by X the operator of Lie derivation with respect to the vector

field 27 Λ, we have

and consequently

(2.7) -^=0,

which shows that the vector field ηκ is a Killing vector field. From (2.7) we
find, using formulas on Lie derivatives,

(2.8) .r y . =F/,ί?»+/Cyι V=0 ,

(2.9) J:K^=η

=0,

(2.10)

and

(2.11)

where | . .}, Kkjί

h, KJt and K are Christoffel symbols, the curvature tensor,

the Ricci tensor and the scalar curvature of M respectively.
Now from equations (2.5), (2.6) and the Ricci identity

we find

(2.12)

or
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(2.13) K

from which, by contraction,

(2.14)

From equations (2.5), (2.6) and the Ricci identity

we find

(2.15) K^φ^K^φ^-φ^gj^φ^g^δ^φj.+δ^φ,^

from which, by contraction,

(2.16) Kjtφt'+Ktiilφ"=-(2m-l)φJt ,

where φts=gtlφt

s, gtl being contravariant components of the metric tensor. Since

Ktjίsφ
ts=KslJtφ

ts=-KtlJsφ
ts ,

we have from (2.16)

(2.17) KJtφi'+Kitφ}<=0.

Since

Ktitff"=-2-(Ktiit-K,JUW

= — 2-/W,

we also have from (2.16)

(2.18) Ktsjiφ
t*=2Kitψί

t+2(2m-l)φji .

From (2.10) and (2.17), we find

(2.19) ηψtKit=Q.

§ 3. Contact Bochner curvature tensor.

In previous papers [4, 5], we have defined the contact Bochner curvature
tensor by

(3.1) 5Wi*=JrW

where

(3.2) Llt=- 2(

(3.3) MJt=-Litφt',
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and consequently

(3.4) MJt= 2(J-+2) IKj&S-d+VφjΛ

and

(3.5) L=g>iLJi .

The definition (3.2) of Ljt shows that Ljt is symmetric and (2.17) and (3.4)
show that Mji is skew-symmetric. From (3.2) and (3.5), we find

r /f+2(3m+2)
L= -- 4(m+l)

Transvecting (3.2) with rf and using (2.14), we find

(3.7) L,tf=-η,.
From the first equation of (3.3), we find

(3.8) M^l=0

and

from which, using (3.7),

(3.9)

Now, from the definition (3.1) of the contact Bochner curvature tensor, we
easily see that

(3.10) BkJi

h=-BJkt

h,

(3.11) BkJt

h+BJik

h+Bik*=Q,

(3.12) ^^=0,

(3.13) Bkjίh=~~Bjkίh ι Bkjlh=—Bkjhl ,

(3.14) Bkjίh=Bίhkj ,

where Bkjίh=Bkjί

tgth,

(3.15) BkJSηt=Q,

(3.16) £*jeV-£*jiV=0.

(3.17) S*yt^
ίf=0.

We also can verify by a straightforward computation that the contact
Bochner curvature tensor satisfies
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(3.18) !7tBkJi

t=~2

— 2(m+2) k j i - J k ί

(See Matsumoto and Chΰman [1], Yano [5]).

§ 4. Contact conf ormal connections.

We consider an affine connection D in a Sasakian manifold M and denote
by Γh

β the components of the affine connection and by D3 the operator of
covariant differentiation with respect to Γβ.

We assume that the affine connection D satisfies

(4.1) Dk(e^gji)=2e^pk^l

and the torsion tensor of D satisfies

(4.2) /V/V=-2pX,

where p is a certain scalar function, Pi=dip and uh is a certain vector field.
From (4.1) we have

(4.3) 2^^+^9^-Γ^^

We can solve (4.2) and (4.3) with respect to Γ^ and obtain

(4.4) ^

where
Ph=Ptgth, uh=utg

th.

Using (4.4) we compute the covariant derivative O f f * of φf with respect
to Γhji and obtain

(4.5)

where

qi=-Pt<pt', qh=qtg
th.

We" now assume that the affine connection D also satisfies

(4.6)

Then we have
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from which by contraction with respect to h and j

(4.7) 2m(ui-qi+

from which, by transvection with rf

and consequently substituting utη
t= — l into (4.7) we find

and consequently

(4.8)

Thus (4.4) takes the form

(4.9) A

Using (4.9) we now compute the covariant derivative Djrf of ηh with respect
to the affine connection D and find

from which we see that

(4.10)

if and only if Pirf^Q, that is, if and only if

(4.11) -Cp=0.

Computing Djηl, we find

(4.12)

from which we see that Djηi=^ if and only if (4.11) is satisfied.
Thus we have

PROPOSIOION 4.1. In a Sasakian manifold with structure tensors (φ^, ηt, gμ\
the affine connection D which satisfies

and whose torsion tensor satisfies

Γ h _ ΠΛ — _ o,Λ -.ft.
ji L ij— AψjiU t

where p is a scalar function and uh a vector field, is given by
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where

P^=^iP , Ph=Ptgth , 1t= -PtΨi , <Jh=q*g'h

and p satisfies
Λp=Q.

We call such an affine connection a contact conformal connection. Since a con-
tact conformal connection satisfies

Dk(eΛpgji)=2e^pkΊjJηi and
we have

Thus we have

PROPOSITION 4.2. ^4 contact conformal connection in a Sasakian manifold
satisfies

(4.13) DtWgji-wJ}^.

§ 5. Curvature tensor of a contact conformal connection.

We consider a contact conformal connection

(5.D ^

where

(5.2) />t=3iί, Ph=Ptgth, Qi=-Ptψi, qn=

p being a scalar function such that

(5.3) -Cp=ptf=Q

in a Sasakian manifold with structure tensors (<pΛ ητ, gjt}.
From (5.2) and (5.3) we see that

(5.4) Ptφit=-q^, qt<Pil=Pi, <PthP*=Qh , ψM

(5.5) M l=0. ^9t=0, Λ^=0

and

(5.6) PtP^QtQ*.

We now compute the curvature tensor of Γjt :
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(5.7) ΛViΛ= W- W+Πί/V^Λ .

By a straightforward computation, we find

(5.8) V=tfuiM«-?Λji+W^

where

(5.9) Pji

(5.10)

Since Pi=dtp, we have from (5.9)

(5.11) ίji=ίi, -

Transvecting (5.9) with rf and noting that

we have

(5.12) η'Pίi=ηι.

Also we compute pjtψi using (5.9) and find

(5.13) q^-Pitψi

and consequently

(5.14) ?7^=0, (7^l=0

We compute ^β^
s using (5.10) and find

that is,

(5.15) Pji

from which, ^-j being symmetric,

from which we have, using (5.14),

(5.16) (itsφΐφi^-^j.

We now assume that the curvature tensor of the contact conformal connec-
tion vanishes :
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(5.17) **,«*=<>.

Then from (5.8), we have

(5.18) ^ift=(3i-7^Λ)^t-(*?-^ft)ί*»

+akjφi

h+φkjβi

h-(φk

hψji-φj

hφkl-2φkjφi

h),

where we have put

(5.19) α«

(5.20) βi

h

and consequently, for βih=βitgth, we have

(5.21) βih=2(piqh-qtph).

We see that akj and βih are both skew-symmetric and satisfy

(5.22) αw?'=0

and

(5.23) 7lftA=0

respectively.
We also compute a=φkjakj and β=φίhβih and obtain

(5.24)

and

(5.25)

respectively, from which

(5.26)

Now equation (5.18) can be written in the co variant form

(5.27) Kkji^gkh-

Substituting this into

we find

(5.28)



ON CONTACT CONFORMAL CONNECTIONS 101

from which, transvecting with φkh, we find

(2771-2X^+0=0-

Thus if 2m+l>3, we have

(5.29) ^ + ̂ ,=0,

which shows that qjt is skew-symmetric, and consequently we have from (5.16)

(5.30) Qtsφj'φi'^qji-

From (5.28) and (5.29) we find

from which, transvecting with φkj,

<Xih-βih=-^-

and consequently using (5.26),

(5.31) «,*-&»=— ̂ -(P«

On the other hand, from the definition (5.10) of q^ and the skew-symmetry

of Qji, we find

Thus from the definition (5.19) of ajit we have

(5.32) aji=-2qji+ptp
tφj

Equations (5.31) and (5.32) give

(5.33) βji=-2qji+

Since we have from (5.9)

(5.34) Pt

we can write (5.33) in the form

(5.35) βji=-2qj

Now substituting (5.27) into

Kkji
we find

(5.36) 2(φ

Substituting (5.32) and (5.35) into this equation, we find
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from which

(5.37) Ptt+(

Thus equation (5.35) can be written as

(5.38) βji=-2qjί-ptp
tφjί.

Now, from (5.18), contracting with respect to h and k and using

obtained from (5.32) and

obtained from (5.38), we find

(R W) K —2(\\j.o,jj ί^ji — "\

from which, transvecting with gjl,

(5.40) K=4(m

and consequently

Pt'=

that is,

(5.41) Pt=-L

Substituting (5.41) into (5.39), we find

from which
1

w- 2(m+2) L"
that is,

(5.42) PJt=-Lji,

from which

(5.43) qjt=-MJt.

On the other hand, from (5.37) and (5.41), we have

from which

(5.44) ^

Substituting (5.42) and (5.43) into (5.32) and (5.38), we find
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(5.45) α^=2Λ^1

and

(5.46) Λi=2M,,

respectively.

Substituting (5.42), (5.43), (5.45) and (5.46) into (5.18), we find

(5.47) Bkji

h=0.

Thus we have

THEOREM 5.1. //, in a (2m -^^-dimensional Sasakian manifold (2m+l>3),
there exists a scalar function p such that the contact conformal connection

-̂ ^

where Pi—d^p, ph—ptgth, Qi——pt9i\ Qh—QtSth, ιs of zero curvature, then the con-
tact Bochner curvature tensor of the manifold vanishes.
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