H. TAKAHASHI KODAI MATH. SEM. REP 28 (1976), 59—62

DEGREES OF MAPS AND HOMOTOPY TYPE

BY HIDEO TAKAHASHI

§ 1. Let *K* be an oriented Poincaré complex and let μ_K be the oriented fundamental class of *K*. The degree of a map $f : K \rightarrow K$ is defined by the formula $f_*(\mu_K) = (\deg f)\mu_K$, (deg $f \in \mathbb{Z}$). Let $[K, K]$ be the set of homotopy classes of maps from *K* to *K*. Then we get a correspondence $D : [K, K] \rightarrow Z$, which is defined by $D({f})=det f$. We denote by $D(K)$ the image of D. In the case where *K* is of the form $S^n \cup e^{n+k} \cup e^{2n+k}$, S. Sasao has got some results about relations between $D(K)$ and the homotopy type of K ([7]). In this note we shall investigate the case where $K = S^n \cup e^{2n} \cup e^{3n}$ ($n \ge 3$) and prove the following theorem :

THEOREM. Suppose $K = S^n \cup e^{2n} \cup e^{8n}$ ($n \ge 3$) is a Poincaré complex. Then K is homotopy equivalent to $Sⁿ \times S²ⁿ$ if and only if $D(K)$ contains 2 and EK is re*ducible.*

§2. Let $K = S^n \cup e^{2n} \cup e^{3n}$ ($n \ge 3$) be a complex and x_i ($i = 1, 2, 3$) be the oriented generators of $H^{in}(K;\mathbb{Z})$. Then the cohomology ring structure of $H(K; Z)$ is completely determined by two integers a, b such that

$$
x_1^2 = ax_2
$$
 and $x_1x_2 = bx_3$.

If K is a Poincaré complex, we have $b=\pm 1$. Hence we can suppose $b=1$ without the loss of generality.

Let $\alpha \in \pi_{2n-1}(S^n)$ be the homotopy class of the attaching map of e^{2n} . Then the following lemma is well known ([8]).

LEMMA 1. The Hopf invariant $H(\alpha)$ of α is equal to $\pm a$.

Let $f: K \rightarrow K$ be a map such that $f^*(x_1) = kx_1$ ($k \in \mathbb{Z}$). Then we have

$$
(f^*(x_1))^3 = k^3 x_1^3 = k^3 a x_1 x_2 = k^3 a x_3
$$

and

$$
(f^*(x_1))^3 = f^*(x_1^3) = f^*(ax_1x_2) = a(\deg f)x_3.
$$

Hence we obtain $a(k^3-\deg f)=0$. Thus if $D(K)$ contains 2, we have $a=0$, i.e. $H(\alpha)=0.$

Received June 30, 1975.

60 HIDEO TAKAHASHI

LEMMA 2. *Suppose K is a Pomcare complex and D(K) contains* 2. *Then K is of the form* $(S^n \vee S^{2n}) \cup e^{3n}$.

Proof. Let $f: K \rightarrow K$ be a map with deg $f=2$. And let $f^*(x_1) = ax_1$ and $f^*(x_2)$ $= bx_2$. Then $f^*(x_3) = f^*(x_1x_2) = abx_3$, and so it follows that $ab = 2$. On the other hand, let $S^n \cup e^{2n}$ be the 2*n*-skelton of *K*. Then we have the following commutative diagram

$$
\pi_{2n}(S^n \cup e^{2n}, S^n) \xrightarrow{f*} \pi_{2n}(S^n \cup e^{2n}, S^n)
$$
\n
$$
\frac{\partial \downarrow}{\partial x_{2n-1}(S^n)} \xrightarrow{f*} \frac{\partial \downarrow}{\partial x_{2n-1}(S^n)}
$$

where $\pi_{2n}(S^n \cup e^{2n}, S^n)$ is free generated by σ and $\partial \sigma = \alpha$. Since $b\alpha = \partial(b\sigma) = \partial f_*\sigma$ $=f_*\partial \sigma = f_*\alpha = a\iota_n \circ \alpha$ and α is a suspension element because of $H(\alpha) = 0$, we have $2\alpha = \alpha$, i.e. $\alpha = 0$. Thus the proof of lemma is completed.

Let $\beta \in \pi_{3n-1}(S^n \vee S^{2n})$ be the homotopy class of the attaching map for the cell e^{3n} of a Poinearé complex $K=(S^n\vee S^{2n})\cup e^{3n}$. Since $\pi_{3n-1}(S^n\vee S^{2n})$ is isomorphic to the direct sum

$$
\pi_{3n-1}(S^n) + \pi_{3n-1}(S^{2n}) + [\pi_n(S^n), \pi_{2n}(S^{2n})],
$$

β has an expression $\iota_n \circ \beta_1 + \iota_{2n} \circ \beta_2 + m[\iota_n, \iota_{2n}]$ where $\beta_1 \in \pi_{3n-1}(S^n)$, $\beta_2 \in \pi_{3n-1}(S^{2n})$, $m \in \mathbb{Z}$ and ι_n , ι_{2n} denote the homotopy classes of inclusions S^n , $S^{2n} \rightarrow S^n \vee S^{2n}$ respectively. Then we may suppose $m=1$ since K is a Poincaré complex ([5]).

LEMMA 3. If $n \ge 3$, then the kernel of the suspension $E: \pi_{3n-1}(S^n) \rightarrow \pi_{3n}(S^{n+1})$ is equal to $\lbrack t_n, t_n \rbrack \circ \pi_{3n-1}(S^{2n-1}) = \lbrack t_n, \pi_{2n}(S^n) \rbrack.$

By Theorem 1.2 and Corollary 1.10 of [4], we have $E^{-1}(0) = [t_n, t_n] \circ$ By Theorem 7.1 of [1], for any $\gamma \in \pi_{2n}(S^n)$,

$$
[\iota_n, \gamma] = [\iota_n, \iota_n] \circ E^{n-1}(\gamma) + (-1)^{n+1} [\iota_n, [\iota_n, \iota_n]] \circ E^{n-1}(H(\gamma)).
$$

Then from $H(\gamma) \in \pi_{2n}(S^{2n-1}) \approx Z_2$ and $3[\ell_n, [\ell_n, \ell_n]] = 0$, it follows that

$$
[\iota_n, \pi_{2n}(S^n)] = [\iota_n, \iota_n] \circ E^{n-1}(\pi_{2n}(S^n)).
$$

On the other hand $\pi_{2n+1}(S^{n+1})$ is generated by $E(\pi_{2n}(S^n))$ and the Whitehead product $[\iota_{n+1}, \iota_{n+1}]$, so that we obtain $E^{n-1}(\pi_{2n}(S^n)) = \pi_{3n-1}(S^{2n-1})$. Thus the proof is completed.

§ 3. Proof of Theorem: Suppose K is homotopy equivalent to $S^n \times S^{2n}$. Then it is clear that $D(K)=D(S^{n}\times S^{2n})=Z$. Furthermore, the reducibility of *EK* is homotopy invariant and so *EK* is reducible.

Conversely suppose $D(K)$ contains 2 and EK is reducible. By Lemma 2, *K* is homotopy equivalent to a complex $(S^n \vee S^{2n}) \cup e^{3n}$ and also $E(\beta)=0$ is equivalent to the reducibility of EK . Hence it follows that $E(\beta_1){=}0$ and $E(\beta_2){=}0$

in the expression as in §2. Thus we have $\beta_2 = 0$ since $E: \pi_{3n-1}(S^{2n}) \rightarrow \pi_{3n}(S^{2n+1})$ is an isomorphism. And moreover, by Lemma 3, we have $\beta_1 = [\ell_n, \gamma]$ for some element $\gamma \in \pi_{2n}(S^n)$. Then let $f: S^n \vee S^{2n} \rightarrow S^n \vee S^{2n}$ be a map such that $\{f|S^n\} =$ χ_{n} , $\{f|S^{2n}\}=\gamma + \chi_{2n}$. Let τ be the generator of $\pi_{3n}(S^{n}\times S^{2n}, S^{n}\vee S^{2n})$ such that $\partial \tau =$ [ι_n , ι_{2n}]. Then $f_*\partial \tau =$ f_* [ι_n , ι_{2n}]= [ι_n , $\tau + \iota_{2n}$], which is the homotopy class of the attaching map for e^{3n} of *K*. Clearly, an extension of *f*, $S^{n}\times S^{2n}\rightarrow K$ such that deg $f=1$ is a homotopy equivalence. Thus the proof is completed.

Remark. Typical examples of Poincaré complexes of the form $S^n \cup e^{2n} \cup e^{3n}$ are the total space of $Sⁿ$ -orthogonal bundles over $S²ⁿ$. Let E be the total space of a $Sⁿ$ -orthogonal bundle over $S²ⁿ$. Then, by Lemma 2 and some computations, we have

- (1) If *D(E)* contains 2, the bundle has a cross section.
- (2) If the bundle has two independent cross sections, then $D(E)=Z$.

 \S 4. Addendum: If $M = S^n \cup e^{2n} \cup e^{3n}$ has the same homotopy type as $S^n \times S^{2n}$, it is clear that $Sⁿ$ is a retraction of M . In general the converse is not true. However, in some cases the converse is true. For example we have;

THEOREM. Let M be a smooth closed manifold up to homotopy. If $n \equiv 3, 5$, 6,7 mod 8, *M* has the same homotopy type as $Sⁿ \times S²ⁿ$ if and only if $Sⁿ$ is a *retract of M.*

For the proof we need the following lemma. Let *v* be the characteristic element of the normal bundle of an embedding of $Sⁿ$ into M such that $H_n(Sⁿ)$ is an isomorphism, and $p: S^n \cup e^{2n} \rightarrow S^{2n}$ be the pinching map.

LEMMA. $p_*(\tau) = \pm J\nu$ where τ denotes the attaching map for e^{3n} and J is the *J*-homomorphism $\cdot \pi_{n-1}(SO(2n)) \rightarrow \pi_{3n-1}(S^{2n}).$

Proof. Let *Sv, Dv* be the associated sphere bundle, disk bundle. Then *Sv* is of the form $(S^n \vee S^{2n-1}) \vee e^{3n-1}$ up to homotopy and the attaching map for *e*^{3*n*} is $J\bar{\nu} + [\ell_n, \ell_{2n-1}]$ where $i_*\bar{\nu} = \nu$, $i_* : \pi_{n-1}(SO(2n-1)) \to \pi_{n-1}(SO(2n))$ is an isomorphism induced by the canonical inclusion. The suspension of *Sv, ESv* is of the ${\rm form} \;\; S^{n+1} \vee (S^{2n} \cup e^{sn}).\;\; D\nu\!=\!S^n \!\!\rightarrow\! T\nu\!=\!S^{2n} \cup e^{sn} \!\!\rightarrow\! E S\nu\!=\! S^{n+1} \vee (S^{2n} \cup e^{sn}) \!\!\rightarrow\! E D\nu\!=\! S^{n+1}$ is a cofibration sequence where $T\nu$ is the Thom space of ν . Then there is an inclusion $S^{n+1} = EDv \rightarrow ESv$ induced by a cross section. It is easily verified that *Tv* is homotopy equivalent to $ES\nu/S^{n+1}=S^{2n}\cup e^{3n}$ where the attaching map for e^{3n} is $E(J\bar{\nu} + [\ell_n, \ell_{2n-1}]) = EJ\bar{\nu} = -Ji_*\bar{\nu} = -J\nu$.

Let $i: S^n \rightarrow M$ be the embedding and $j: M \rightarrow T\nu$ be projection. In the following diagram it is verified that maps except j^{2n} are isomorphisms, by Thom isomorphism, Poincare duality. Hence *j2n* is also.

$$
H^n(S^n) \otimes H^{2n}(T\nu) \longrightarrow H^{3n}(T\nu)
$$

$$
\uparrow i^n \qquad \qquad j^{2n} \qquad \qquad \downarrow j^{3n}
$$

$$
H^n(M) \otimes H^{2n}(M) \longrightarrow H^{3n}(M).
$$

We may consider *j* as $q \circ p$ where $p : M \rightarrow M/S^n$ is the canonical projection and $q: M/S^n \rightarrow TV$ is a map induced by *j*. From the above argument it follows that *q* is a homotopy equivalence.

Let *σ* be the generator of $\pi_{3n}(M, S^n \cup e^{2n})$ such that $\partial \sigma = \tau$. Then $j_*\sigma$ is a generator of $\pi_{3n}(T_{\nu}, S^{2n})$ and so $p_*(\tau)=\partial(j_*\sigma)=\pm J_{\nu}$.

Now we proceed to the proof of the theorem. Let $r: M \rightarrow S^n$ be a retraction. Obviously we may suppose that M has a form $S^n \vee S^{2n} \cup e^{3n}$, and $\tau = [c_n, c_{2n}] +$ *t*_n^o β_1 +*t*_{2n}^o β_2 . Since $p_*(\tau) = \beta_2$, we get $\beta_2 = 0$ by the lemma and $n \equiv 3, 5, 6, 7 \mod 8$. Let γ be the map $r\vert S^{2n}$. Then we have $(r\vert S^{n}\vee S^{2n})_{*}(\tau)=$ $[\iota_{n}, \gamma]+ \beta_{1}$. Hence we have $[\iota_n, \gamma]{\in}[\iota_n, \pi_{2n}(S^n)]$ and the proof is completed by Lemma 3 in § 2.

REFERENCES

- [1] W. D. BARCUS AND M. G. BARATT, On the homotopy classification of extensions of a fixed map. Trans. Amer. Math. Soc. 88 (1958), 57-74.
- [2] P. J. HILTON, On the homotopy groups of the union of spaces. J. London Math. Soc., 30 (1955), 154-171.
- [3] I.M. JAMES, On the suspension triad. Ann. of Math. (2) 63 (1956), 191-247.
- $\lceil 4 \rceil$ I.M. JAMES, The suspension triad of a sphere. Ann. of Math. (3) 63 (1956), 409-429.
- [5] I.M. JAMES, Note on cup product. Proc. Amer. Math. Soc., 8 (1957), 374-383.
- [6] S. SASAO, On a certain cup product. J. Math. Soc. Japan, 11 (1959), 112-115.
- [7] S. Sasao, On degrees of mapping. J. London Math. Soc. (3) 8 (1974), 385-392.
- [8] N. E. STEENROD, Cohomology invariant of mappings. Ann. of Math. (2) 50 (1949), 954-988.
- [9] H. TODA, Note on cohomology ring of a certain spaces. Proc. Amer. Math. Soc., (1963), 89-95.

DEPARTMENT OF MATHEMATICS, TOKYO INSTITUTE OF TECHNOLOGY