H. TAKAHASHI KODAI MATH. SEM. REP 28 (1976), 59-62

DEGREES OF MAPS AND HOMOTOPY TYPE

By Hideo Takahashi

§1. Let K be an oriented Poincaré complex and let μ_K be the oriented fundamental class of K. The degree of a map $f: K \to K$ is defined by the formula $f_*(\mu_K) = (\deg f)\mu_K$, $(\deg f \in \mathbb{Z})$. Let [K, K] be the set of homotopy classes of maps from K to K. Then we get a correspondence $D: [K, K] \to \mathbb{Z}$, which is defined by $D(\{f\}) = \det f$. We denote by D(K) the image of D. In the case where K is of the form $S^n \cup e^{n+k} \cup e^{2n+k}$, S. Sasao has got some results about relations between D(K) and the homotopy type of K ([7]). In this note we shall investigate the case where $K = S^n \cup e^{2n} \cup e^{3n}$ $(n \ge 3)$ and prove the following theorem :

THEOREM. Suppose $K = S^n \cup e^{2n} \cup e^{3n}$ $(n \ge 3)$ is a Poincaré complex. Then K is homotopy equivalent to $S^n \times S^{2n}$ if and only if D(K) contains 2 and EK is reducible.

§2. Let $K=S^n \cup e^{2n} \cup e^{3n}$ $(n \ge 3)$ be a complex and x_i (i=1, 2, 3) be the oriented generators of $H^{in}(K; \mathbb{Z})$. Then the cohomology ring structure of $H(K; \mathbb{Z})$ is completely determined by two integers a, b such that

$$x_1^2 = a x_2 \quad \text{and} \quad x_1 x_2 = b x_3.$$

If K is a Poincaré complex, we have $b=\pm 1$. Hence we can suppose b=1 without the loss of generality.

Let $\alpha \in \pi_{2n-1}(S^n)$ be the homotopy class of the attaching map of e^{2n} . Then the following lemma is well known ([8]).

LEMMA 1. The Hopf invariant $H(\alpha)$ of α is equal to $\pm a$.

Let $f: K \to K$ be a map such that $f^*(x_1) = kx_1$ $(k \in \mathbb{Z})$. Then we have

$$(f^*(x_1))^3 = k^3 x_1^3 = k^3 a x_1 x_2 = k^3 a x_3$$

and

$$(f^*(x_1))^3 = f^*(x_1^3) = f^*(ax_1x_2) = a(\deg f)x_3$$
.

Hence we obtain $a(k^3 - \deg f) = 0$. Thus if D(K) contains 2, we have a=0, i.e. $H(\alpha)=0$.

Received June 30, 1975.

HIDEO TAKAHASHI

LEMMA 2. Suppose K is a Poincare complex and D(K) contains 2. Then K is of the form $(S^n \vee S^{2n}) \cup e^{3n}$.

Proof. Let $f: K \to K$ be a map with deg f=2. And let $f^*(x_1)=ax_1$ and $f^*(x_2)=bx_2$. Then $f^*(x_3)=f^*(x_1x_2)=abx_3$, and so it follows that ab=2. On the other hand, let $S^n \cup e^{2n}$ be the 2n-skelton of K. Then we have the following commutative diagram

$$\pi_{2n}(S^n \cup e^{2n}, S^n) \xrightarrow{f_*} \pi_{2n}(S^n \cup e^{2n}, S^n)$$
$$\begin{array}{c} \partial \downarrow \\ \partial \downarrow \\ \pi_{2n-1}(S^n) \xrightarrow{f_*} \pi_{2n-1}(S^n) \end{array}$$

where $\pi_{2n}(S^n \cup e^{2n}, S^n)$ is free generated by σ and $\partial \sigma = \alpha$. Since $b\alpha = \partial(b\sigma) = \partial f_*\sigma = f_*\partial\sigma = f_*\alpha = a\iota_n \circ \alpha$ and α is a suspension element because of $H(\alpha) = 0$, we have $2\alpha = \alpha$, i. e. $\alpha = 0$. Thus the proof of lemma is completed.

Let $\beta \in \pi_{3n-1}(S^n \vee S^{2n})$ be the homotopy class of the attaching map for the cell e^{3n} of a Poinearé complex $K = (S^n \vee S^{2n}) \cup e^{3n}$. Since $\pi_{3n-1}(S^n \vee S^{2n})$ is isomorphic to the direct sum

$$\pi_{3n-1}(S^n) + \pi_{3n-1}(S^{2n}) + [\pi_n(S^n), \pi_{2n}(S^{2n})],$$

 β has an expression $\iota_n \circ \beta_1 + \iota_{2n} \circ \beta_2 + m[\iota_n, \iota_{2n}]$ where $\beta_1 \in \pi_{3n-1}(S^n)$, $\beta_2 \in \pi_{3n-1}(S^{2n})$, $m \in \mathbb{Z}$ and ι_n , ι_{2n} denote the homotopy classes of inclusions S^n , $S^{2n} \to S^n \vee S^{2n}$ respectively. Then we may suppose m=1 since K is a Poincaré complex ([5]).

LEMMA 3. If $n \ge 3$, then the kernel of the suspension $E: \pi_{3n-1}(S^n) \rightarrow \pi_{3n}(S^{n+1})$ is equal to $[\iota_n, \iota_n] \circ \pi_{3n-1}(S^{2n-1}) = [\iota_n, \pi_{2n}(S^n)].$

Proof. By Theorem 1.2 and Corollary 1.10 of [4], we have $E^{-1}(0) = [\iota_n, \iota_n] \circ \pi_{3n-1}(S^{2n-1})$. By Theorem 7.1 of [1], for any $\gamma \in \pi_{2n}(S^n)$,

$$[\iota_n, \gamma] = [\iota_n, \iota_n] \circ E^{n-1}(\gamma) + (-1)^{n+1} [\iota_n, [\iota_n, \iota_n]] \circ E^{n-1}(H(\gamma)).$$

Then from $H(\gamma) \in \pi_{2n}(S^{2n-1}) \approx Z_2$ and $3[\iota_n, [\iota_n, \iota_n]] = 0$, it follows that

$$[\iota_n, \pi_{2n}(S^n)] = [\iota_n, \iota_n] \circ E^{n-1}(\pi_{2n}(S^n)).$$

On the other hand $\pi_{2n+1}(S^{n+1})$ is generated by $E(\pi_{2n}(S^n))$ and the Whitehead product $[\ell_{n+1}, \ell_{n+1}]$, so that we obtain $E^{n-1}(\pi_{2n}(S^n)) = \pi_{3n-1}(S^{2n-1})$. Thus the proof is completed.

§ 3. Proof of Theorem: Suppose K is homotopy equivalent to $S^n \times S^{2n}$. Then it is clear that $D(K)=D(S^n \times S^{2n})=Z$. Furthermore, the reducibility of EK is homotopy invariant and so EK is reducible.

Conversely suppose D(K) contains 2 and EK is reducible. By Lemma 2, K is homotopy equivalent to a complex $(S^n \vee S^{2n}) \cup e^{3n}$ and also $E(\beta)=0$ is equivalent to the reducibility of EK. Hence it follows that $E(\beta_1)=0$ and $E(\beta_2)=0$

60

in the expression as in §2. Thus we have $\beta_2=0$ since $E: \pi_{3n-1}(S^{2n}) \to \pi_{3n}(S^{2n+1})$ is an isomorphism. And moreover, by Lemma 3, we have $\beta_1=[\iota_n, \gamma]$ for some element $\gamma \in \pi_{2n}(S^n)$. Then let $f: S^n \vee S^{2n} \to S^n \vee S^{2n}$ be a map such that $\{f|S^n\} = \iota_n, \{f|S^{2n}\} = \gamma + \iota_{2n}$. Let τ be the generator of $\pi_{3n}(S^n \times S^{2n}, S^n \vee S^{2n})$ such that $\partial \tau = [\iota_n, \iota_{2n}]$. Then $f_*\partial \tau = f_*[\iota_n, \iota_{2n}] = [\iota_n, \gamma + \iota_{2n}]$, which is the homotopy class of the attaching map for e^{3n} of K. Clearly, an extension of $f, S^n \times S^{2n} \to K$ such that deg f=1 is a homotopy equivalence. Thus the proof is completed.

Remark. Typical examples of Poincaré complexes of the form $S^n \cup e^{2n} \cup e^{3n}$ are the total space of S^n -orthogonal bundles over S^{2n} . Let E be the total space of a S^n -orthogonal bundle over S^{2n} . Then, by Lemma 2 and some computations, we have

- (1) If D(E) contains 2, the bundle has a cross section.
- (2) If the bundle has two independent cross sections, then D(E)=Z.

§4. Addendum: If $M=S^n \cup e^{2n} \cup e^{3n}$ has the same homotopy type as $S^n \times S^{2n}$, it is clear that S^n is a retraction of M. In general the converse is not true. However, in some cases the converse is true. For example we have;

THEOREM. Let M be a smooth closed manifold up to homotopy. If $n \equiv 3, 5$, 6, 7 mod 8, M has the same homotopy type as $S^n \times S^{2n}$ if and only if S^n is a retract of M.

For the proof we need the following lemma. Let ν be the characteristic element of the normal bundle of an embedding of S^n into M such that $H_n(S^n) \rightarrow H_n(M)$ is an isomorphism, and $p: S^n \cup e^{2n} \rightarrow S^{2n}$ be the pinching map.

LEMMA. $p_*(\tau) = \pm J\nu$ where τ denotes the attaching map for e^{3n} and J is the J-homomorphism $\cdot \pi_{n-1}(SO(2n)) \rightarrow \pi_{3n-1}(S^{2n})$.

Proof. Let $S\nu$, $D\nu$ be the associated sphere bundle, disk bundle. Then $S\nu$ is of the form $(S^n \vee S^{2n-1}) \cup e^{3n-1}$ up to homotopy and the attaching map for e^{3n} is $J\bar{\nu} + [\iota_n, \iota_{2n-1}]$ where $i_*\bar{\nu} = \nu$, $i_*: \pi_{n-1}(SO(2n-1)) \to \pi_{n-1}(SO(2n))$ is an isomorphism induced by the canonical inclusion. The suspension of $S\nu$, $ES\nu$ is of the form $S^{n+1} \vee (S^{2n} \cup e^{3n})$. $D\nu = S^n \to T\nu = S^{2n} \cup e^{3n} \to ES\nu = S^{n+1} \vee (S^{2n} \cup e^{3n}) \to ED\nu = S^{n+1}$ is a cofibration sequence where $T\nu$ is the Thom space of ν . Then there is an inclusion $S^{n+1} = ED\nu \to ES\nu$ induced by a cross section. It is easily verified that $T\nu$ is homotopy equivalent to $ES\nu/S^{n+1} = S^{2n} \cup e^{3n}$ where the attaching map for e^{3n} is $E(J\bar{\nu} + [\iota_n, \iota_{2n-1}]) = EJ\bar{\nu} = -J\iota$.

Let $i: S^n \rightarrow M$ be the embedding and $j: M \rightarrow T\nu$ be projection. In the following diagram it is verified that maps except j^{2n} are isomorphisms, by Thom isomorphism, Poincare duality. Hence j^{2n} is also.

$$\begin{array}{c} H^n(S^n) \otimes H^{2n}(T\nu) \longrightarrow H^{3n}(T\nu) \\ \uparrow i^n \qquad \qquad \downarrow j^{2n} \qquad \qquad \downarrow j^{3n} \\ H^n(M) \otimes H^{2n}(M) \longrightarrow H^{3n}(M) \,. \end{array}$$

We may consider j as $q \circ p$ where $p: M \rightarrow M/S^n$ is the canonical projection and $q: M/S^n \rightarrow T\nu$ is a map induced by j. From the above argument it follows that q is a homotopy equivalence.

Let σ be the generator of $\pi_{3n}(M, S^n \cup e^{2n})$ such that $\partial \sigma = \tau$. Then $j_*\sigma$ is a generator of $\pi_{3n}(T\nu, S^{2n})$ and so $p_*(\tau) = \partial(j_*\sigma) = \pm J\nu$.

Now we proceed to the proof of the theorem. Let $r: M \to S^n$ be a retraction. Obviously we may suppose that M has a form $S^n \vee S^{2n} \cup e^{3n}$, and $\tau = [\iota_n, \iota_{2n}] + \iota_n \circ \beta_1 + \iota_{2n} \circ \beta_2$. Since $p_*(\tau) = \beta_2$, we get $\beta_2 = 0$ by the lemma and $n \equiv 3, 5, 6, 7 \mod 8$. Let γ be the map $r | S^{2n}$. Then we have $(r | S^n \vee S^{2n})_*(\tau) = [\iota_n, \gamma] + \beta_1$. Hence we have $[\iota_n, \gamma] \in [\iota_n, \pi_{2n}(S^n)]$ and the proof is completed by Lemma 3 in § 2.

References

- [1] W.D. BARCUS AND M.G. BARATT, On the homotopy classification of extensions of a fixed map. Trans. Amer. Math. Soc. 88 (1958), 57-74.
- [2] P.J. HILTON, On the homotopy groups of the union of spaces. J. London Math. Soc., 30 (1955), 154-171.
- [3] I.M. JAMES, On the suspension triad. Ann. of Math. (2) 63 (1956), 191-247.
- [4] I.M. JAMES, The suspension triad of a sphere. Ann. of Math. (3) 63 (1956), 409-429.
- [5] I.M. JAMES, Note on cup product. Proc. Amer. Math. Soc., 8 (1957), 374-383.
- [6] S. SASAO, On a certain cup product. J. Math. Soc. Japan, 11 (1959), 112-115.
- [7] S. SASAO, On degrees of mapping. J. London Math. Soc. (3) 8 (1974), 385-392.
- [8] N.E. STEENROD, Cohomology invariant of mappings. Ann. of Math. (2) 50 (1949), 954-988.
- [9] H. TODA, Note on cohomology ring of a certain spaces. Proc. Amer. Math. Soc., (1963), 89-95.

DEPARTMENT OF MATHEMATICS, TOKYO INSTITUTE OF TECHNOLOGY