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DEGREES OF MAPS AND HOMOTOPY TYPE

BY HIDEO TAKAHASHI

§ 1. Let K be an oriented Poincare complex and let μκ be the oriented
fundamental class of K. The degree of a map / : K-^K is defined by the formula
f*(μκ)=(degf)μκ, (deg/eZ). Let [/ί, K~] be the set of homotopy classes of
maps from K to K. Then we get a correspondence D : [_K, K^-^Z, which is
defined by D({f} )=det/. We denote by D(K) the image of D. In the case
where K is of the form Sn^Jen+kUe2n+k, S. Sasao has got some results about
relations between D(K) and the homotopy type of K ([7]). In this note we
shall investigate the case where K=Sn\Je2n^JeBn (n^3) and prove the following
theorem :

THEOREM. Suppose K=SnUe2n\JeBn (n^3) is a Poincare complex. Then K
is homotopy equivalent to SnxS2n if and only if D(K) contains 2 and EK is re-
ducible.

§2. Let K=SnVe2nUe*n (n^3) be a complex and xl (z=l, 2, 3) be the
oriented generators of Hιn(K\Z\ Then the cohomology ring structure of
H(K\ Z} is completely determined by two integers α, b such that

x2—ax2 and xλx2=bxs.

If K is a Poincare complex, we have b=±L Hence we can suppose b=l with-
out the loss of generality.

Let tf^π 2π-ι(Sn) be the homotopy class of the attaching map of e2n. Then
the following lemma is well known ([8]).

LEMMA 1. The Hopf invariant H(ά) of a is equal to ±a.

Let /: K-+K be a map such that f*(xl}=kxl (feeZ). Then we have

(/*(*!))»= k*x*= k^ax.x^k^ax,
and

(/*(^ι))8=/*(^8)=/*(fl^ι^)=α(deg/)Λ,.

Hence we obtain α(^3— deg/)— 0. Thus if D(K) contains 2, we have α=0, i.e.
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LEMMA 2. Suppose K is a Pomcare complex and D(K) contains 2. Then K
is of the form (SnVS2n)Ue3n.

Proof. Let /: K-*K be a map with deg/=2. And let f*(xl)=axl and /*(*2)
= bx2. Then /*(Ar3)=/*(z1z2)=a^3, and so it follows that ab=2. On the other
hand, let Sn^Je2n be the 2n-skelton of K. Then we have the following commuta-
tive diagram

/*

/*
where π2n(Sn^Je2n, Sn) is free generated by σ and dσ=a. Since ba—d(bσ}—df^σ
=f^dσ=f^a—acnoa and α is a suspension element because of #(#)— 0, we have
2α— α, i. e. α=0. Thus the proof of lemma is completed.

Let β^π3n_1(Sn\/S2n) be the homotopy class of the attaching map for the
cell e3n of a Poineare complex K=(SnVS2n)Ve*n. Since ττ3 n_1(SnVS2 n) is isomor-
phic to the direct sum

^n-lCS^ + π.^^S^ + C^S"), 7Γ2n(S271)] ,

β has an expression fnoβ1+e2noβ2+mlente2n'] where /SjeTΓs^iCS71), j82e^8n-i(S2n),
m<=Z and ίre, ^2n denote the homotopy classes of inclusions Sn, S2n-+SnVS2n

respectively. Then we may suppose m=l since K is a Poineare complex ([5]).

LEMMA 3. // n^3, then the kernel of the suspension JE:τr8n_1(Sn)--»;r8n(Sn+1)
zs έ?<?ι/α/ ίo [̂ , ίn]oπ8n-1(S2n-1)=[^,π2n(Sn)].

By Theorem 1.2 and Corollary 1.10 of [4], we have £~1(0)=[rn, <τn]°
By Theorem 7.1 of [1], for any γ<Ξπ2n(Sn\

Then from H(γ}^π2n(S2n~l)^Z2 and 3[*n, [ίn, ^n]]=0, it follows that

On the other hand π2n+1(Sn+1) is generated by E(π2n(Sn}) and the Whitehead
product [ίn+lf rn+1], so that we obtain En~1(7r2n(Sn))=π3n_1(52n~1). Thus the proof
is completed.

§3. Proof of Theorem: Suppose K is homotopy equivalent to SnxS2n,
Then it is clear that D(K)=D(SnxS2n)=Z. Furthermore, the reducibility of
EK is homotopy invariant and so EK is reducible.

Conversely suppose D(K) contains 2 and EK is reducible. By Lemma 2,
K is homotopy equivalent to a complex (SnVS2 n)We3 n and also E(β)=0 is equi-
valent to the reducibility of EK. Hence it follows that E(β1)=Q and E(β2)=Q



DEGREES OF MAPS AND HOMOTOPY TYPE 61

in the expression as in §2. Thus we have β2=Q since E: 7r37l_1(S2ri)^7r3n(S271+1)
is an isomorphism. And moreover, by Lemma 3, we have β^ [_cn, γ~\ for some
element γ^π2n(Sn). Then let /: SnvS2n^Sn\/S2n be a map such that { f \ S n } =
*n, {/|S2rι}=r + ̂ . Let τ be the generator of πBn(SnxS2n, SnVS2n) such that
dτ=[_cn, <r2n]. Then f*dτ— f*[_εn, ^πlNt/n, Γ+^/J, which is the homotopy class of
the attaching map for eBn of K. Clearly, an extension of /, SnxS2n-*K such
that deg/— 1 is a homotopy equivalence. Thus the proof is completed.

Remark. Typical examples of Poincare complexes of the form Sn\Je2n^JeBn

are the total space of Sn-orthogonal bundles over S2n. Let E be the total space
of a Sn-orthogonal bundle over S2n. Then, by Lemma 2 and some computations,
we have

(1) If D(E) contains 2, the bundle has a cross section.
(2) If the bundle has two independent cross sections, then Ώ(E~]—Z.

§ 4. Addendum: If M=SnUe2nUeBn has the same homotopy type as SnχS2n,
it is clear that Sn is a retraction of M. In general the converse is not true.
However, in some cases the converse is true. For example we have

THEOREM. Let M be a smooth closed manifold up to homotopy. If n = 3, 5,
6,7 modS, M has the same homotopy type as SnxS2n if and only if Sn is a
retract of M.

For the proof we need the following lemma. Let v be the characteristic
element of the normal bundle of an embedding of Sn into M such that Hn(Sn)

is an isomorphism, and p : SnU e2n-*S2n be the pinching map.

LEMMA. p*(τ)=±Jv where τ denotes the attaching map for e5n and J is the
J-homomorphism 7rn_1(SO(2n))^τr3rι_1(S2n).

Proof. Let Sv, Dv be the associated sphere bundle, disk bundle. Then Sv
is of the form (SnVS2n~1)W^37l~1 up to homotopy and the attaching map for
e*n is /£+[>„, fan-J where i*v=v, i* : πn.l(SO(2n— l))->τrn_1(SO(2n)) is an isomor-
phism induced by the canonical inclusion. The suspension of Sv, ESv is of the
form Sn+1V(S2nVeSn\ Dv=Sn^Tv=S2nUesn-^ESv=Sn+1V(S2nVe*n}->EDv=Sn+1

is a cofibration sequence where TV is the Thorn space of v. Then there is an
inclusion Sn+l~EDv-*ESu induced by a cross section. It is easily verified that
TV is homotopy equivalent to ESv/Sn+1=S2n^JeBn where the attaching map for
e*n is E(β+tεn,ε2n^=EJΪ=-Ji*ϊ=-Jv.

Let i: Sn-^M be the embedding and j : M-^Tv be projection. In the follow-
ing diagram it is verified that maps except j271 are isomorphisms, by Thorn iso-
morphism, Poincare duality. Hence j2n is also.
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We may consider j as qop where p : M—»M/Sn is the canonical projection and

q : M/Sn-*Tv is a map induced by j. From the above argument it follows that

q is a homotopy equivalence.

πsn(Tv

Let σ be the generator of π3w(M, SnU£2ri) such that dσ—τ. Then y*0 is a gen-

erator of πzn(Tv, S2n) and so p*(τ}=d(j*σ}=±Jv.
Now we proceed to the proof of the theorem. Let r : M->Sn be a retraction.

Obviously we may suppose that M has a form SnvS2n\Jesn, and τ—[_cn, <r2n] +

tn°βι+e2n°β2 Since P*(τ)=β2, we get /32=0 by the lemma and n^3, 5, 6, 7 mod 8.
Let 7 be the map r\S2n. Then we have (r\SnVS2n}*(τ)=[_cn, γ}+β^ Hence we
have [fn, ^]e[^n, π2n(Sπ)] and the proof is completed by Lemma 3 in § 2.
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