ON NON-PARAMETRIC SURFACES IN THREE DIMENSIONAL SPHERES

BY RYOSUKE ICHIDA

0. Introduction.

Let D be a bounded domain with boundary ∂D in the Euclidean 2-plane E^2 . We denote by $C^2(D)$ the set of real-valued functions of class C^2 on D. For a function $u \in C^2(D)$ we consider the non-parametric surface M in the Euclidean 3-space E^3 defined by

(0.1)
$$\tilde{u}(x) = (x_1, x_2, u(x)) \in E^3, \quad x = (x_1, x_2) \in D.$$

Now we take the unit normal vector field η on M as follows:

$$\eta = \frac{1}{\sqrt{1+|\nabla u|^2}}(-p, -q, 1),$$

where $p=\partial u/\partial x_1$, $q=\partial u/\partial x_2$ and $|\nabla u|^2=p^2+q^2$. Then the mean curvature H of M with respect to η is expressed as

$$H(x) = \frac{1}{2} \operatorname{div} W(x)$$
 at each point $x \in D$,

where $W = \frac{1}{\sqrt{1 + |\nabla u|^2}}(p, q)$. It can be rewritten as follows:

$$(0.2) (1+q^2)r - 2pqs + (1+p^2)t = 2H(1+|\nabla u|^2)^{3/2},$$

where $r = \partial^2 u / \partial x_1^2$, $s = \partial^2 u / \partial x_1 \partial x_2$, $t = \partial^2 u / \partial x_2^2$.

Conversely, let H be a given continuous real-valued function on D. If $u \in C^2(D)$ is a solution of the equation (0.2), then for this u the mean curvature of the surface in E^3 defined by (0.1) is equal to H.

Now, we assume that the boundary ∂D of D is smooth. Let \mathcal{A} and \mathcal{L} be the area of D and the length of ∂D respectively. The following theorem was proved by R. Finn [3].

Theorem. For a function $u \in C^2(D)$ and a positive constant H_0 suppose that the mean curvature H of the non-parametric surface in E^3 defined by (0.1) satisfies the inequality $|H(x)| \ge H_0$ for all $x \in D$. Then we have $\mathcal{A}/\mathcal{L} \le 1/2H_0$. In particular, if D is the disk of radius R, then $RH_0 \le 1$.

Received June 12, 1975.

It is interesting that H_0 is restricted by the geometrical quantity of D. From a viewpoint of the theory of differential equation the second assertion of the above theorem implies the following:

Let H_0 be a positive constant and H a continuous real-valued function on D. Assume that $H(x) \ge H_0$ for all $x \in D$. If the equation (0.2) has a solution, then D can not contain the disk of radius $1/H_0$.

The second assertion of the above theorem was also proved by E. Heinz [4]. S. S. Chern extended the results of E. Heinz to higher dimensional Euclidean spaces [1].

The purpose of this paper is to study non-parametric surfaces in $S^3(a)$ from the viewpoint stated above, where $S^3(a)$ denotes the Euclidean 3-sphere of radius a. In Section 1, we show that the mean curvature of a non-parametric surface in $S^3(a)$ can be expressed by the divergence form (1.9). From this we get the same result as that of R. Finn stated above.

Rewriting the equation (1.9), we have the quasi-linear elliptic partial differential equation of second order (2.3). It is complicated in comparison with the equation (0.2). In fact, let $u \in C^2(D)$ be any solution of the equation (0.2). Then, for example, we have the following:

- (1) For any constant c, u+c is also a solution of the equation (0.2).
- (2) For any solution v of the equation (0.2) which agrees with u on the boundary of D equals u throughout D.

But the above properties do not always hold for the equation (2.3) because its coefficients contain the unknown function u as a variable.

In Section 2, we study the partial differential inequality (2.5). It is obtained from some geometrical condition which is connected with the mean curvature of non-parametric surfaces in $S^3(a)$. We prove that the minimum principle holds for a solution of the inequality (2.5). From this result we can conclude that the position of non-parametric surfaces with boundary in $S^3(a)$ is restricted by its mean curvature and the position of its boundary. In Section 3 we study a smilar problem as in Section 2.

The author would like to express his profound gratitude to Professor T. Otsuki who gave him valuable suggestions in this paper.

1. The mean curvature of non-parametric surfaces in $S^{3}(a)$.

Let D be a bounded domain with boundary ∂D in the Euclidean 2-plane E^2 . We denote by \overline{D} the closure of D. $C^2(D)$ denotes the set of real-valued functions of class C^2 on D.

In the following, let a and k be positive constants satisfying

$$(1.1) a^2 > b^2 + k^2,$$

where $b=\max_{x\in\overline{D}}|x|$, $x=(x_1, x_2)\in E^2$ and $|x|^2=x_1^2+x_2^2$. Let $S^3(a)$ be the 3-dimensional sphere of radius a in the Euclidean 4-space E^4 .

For a function $u \in C^2(D)$ satisfying $|u(x)| \leq k$ for all $x \in D$, we consider the

non-parametric surface M in $S^3(a)$ defined by

$$\tilde{u}(x) = (x_1, x_2, u(x), U(x)) \in S^3(a), x = (x_1, x_2) \in D,$$

where $U(x) = \sqrt{a^2 - |x|^2 - u(x)^2}$. We put

$$(1.3) X_1 = (1, 0, p, U_1), X_2 = (0, 1, q, U_2),$$

where $p=\partial u/\partial x_1$, $q=\partial u/\partial x_2$ and $U_i=\partial U/\partial x_i$, i=1, 2. Then X_1 and X_2 are linearly independent tangent vector fields on M. We can take the unit normal vector field η on M in $S^3(a)$ as follows:

We put $\eta = (\eta_1, \eta_2, \eta_3, \eta_4)$. Then each component of η is given by

(1.4)
$$\begin{aligned} \eta_1 &= -\{a^2 p + (u - \overline{V} u \cdot x) x_1\} / a \sqrt{g}, \\ \eta_2 &= -\{a^2 q + (u - \overline{V} u \cdot x) x_2\} / a \sqrt{g}, \\ \eta_3 &= \{a^2 - (u - \overline{V} u \cdot x) u\} / a \sqrt{g}, \\ \eta_4 &= -(u - \overline{V} u \cdot x) U / a \sqrt{g}. \end{aligned}$$

where $g=a^2(1+|\nabla u|^2)-(u-\nabla u\cdot x)^2>0$, $\nabla u=(p,q)$ and $\nabla u\cdot x=px_1+qx_2$. Now, we put $N=-(1/a)\tilde{u}(x)$, $x\in D$. Then we have

(1.5)
$$N \cdot X_i = N \cdot \eta = \frac{\partial N}{\partial x_i} \cdot \eta = 0, \quad i = 1, 2,$$

where the dot denotes the inner product in E^4 . For a moment we denote by D the Riemannian connection on $S^3(a)$ defined by the standard Riemannian metric of $S^3(a)$. Then, at each point of M we have

$$-\frac{\partial \eta}{\partial x_i} = D_{X_i} \eta + h(X_i, \eta) N, \quad i=1, 2.$$

By (1.5) we have

$$h(X_i, \eta) = \frac{\partial \eta}{\partial x_i} \cdot N = -\eta \cdot \frac{\partial N}{\partial x_i} = 0$$
, $i=1, 2$.

Hence we have

$$\frac{\partial \eta}{\partial x_i} = D_{X_i} \eta$$
, $i=1, 2$.

By the Weingarten's formula $D_{x_1}\eta$ and $D_{x_2}\eta$ are expressed as

$$D_{X_i}\eta = a_{i1}X_1 + a_{i2}X_2, \quad i=1, 2,$$

where a_{ij} , i, j=1, 2, are continuous functions on D. By (1.3), (1.4), (1.6) and (1.7) we have

$$a_{11} = \frac{\partial \eta_1}{\partial x_1} , \qquad a_{22} = \frac{\partial \eta_2}{\partial x_2} .$$

Let H be the mean curvature of M with respect to the direction η . Then, by (1.4), (1.7) and (1.8) we have

(1.9)
$$H = -\frac{1}{2}(a_{11} + a_{22}) = -\frac{1}{2} \operatorname{div} W,$$

where

$$W = (\{a^2p + (u - \nabla u \cdot x)x_1\}/a\sqrt{g}, \{a^2q + (u - \nabla u \cdot x)x_2\}/a\sqrt{g}).$$

In what follows and in the following sections, we always understand that the mean curvature of non-parametric surfaces in $S^3(a)$ defined by (1.2) is derived from η given by (1.4).

We shall prove the following theorem.

Theorem 1.1. Let D be a bounded domain in E^2 with boundary ∂D which consists of finitely many non-intersecting closed Jordan curves of class C^2 . For a function $u \in C^2(D)$ satisfying $|u(x)| \leq k$ for all $x \in D$, let M be the non-parametric surface in $S^3(a)$ defined by (1.2) and H the mean curvature of M. For a positive constant H_0 , suppose that H satisfies the inequality $|H(x)| \geq H_0$ for all $x \in D$. Then we have

$$\mathcal{A}/\mathcal{L} \leq 1/2H_0$$
,

where \mathcal{A} and \mathcal{L} denote the area of D and the length of ∂D respectively.

Proof. For a positive number ε , we put $D_{\varepsilon} = \{x \in D : d(x, \partial D) > \varepsilon\}$ where $d(x, \partial D)$ denotes the distance from x to ∂D . Then, by taking a sufficiently small positive number δ , we can assume that the boundary ∂D_{ε} of D_{ε} is of class C^1 for any ε such that $0 < \varepsilon < \delta$. Therefore we may assume that $\mathcal{A}_{\varepsilon}$ and $\mathcal{L}_{\varepsilon}$ converge to \mathcal{A} and \mathcal{L} respectively as $\varepsilon \to 0$, where $\mathcal{A}_{\varepsilon}$ and $\mathcal{L}_{\varepsilon}$ denote the area of D_{ε} and the length of ∂D_{ε} respectively. Without loss of generality, we can assume that $H(x) \geq H_0$ for all $x \in D$. For a ε such that $0 < \varepsilon < \delta$, let n_{ε} be the outward unit normal vector field of ∂D_{ε} . By the divergence formula and (1.9), we have

$$\iint_{\mathcal{D}_{\bullet}} 2H \, dx_1 \wedge dx_2 = \iint_{\mathcal{D}_{\bullet}} \operatorname{div} W \, dx_1 \wedge dx_2 = \int_{\partial \mathcal{D}_{\bullet}} W \cdot n_{\epsilon} ds < \mathcal{L}_{\epsilon}.$$

On the other hand, we have

$$\iint_{D_{\varepsilon}} 2H \, dx_1 \wedge dx_2 \ge 2H_0 \mathcal{A}_{\varepsilon} ,$$

because $H(x) \ge H_0$ for all $x \in D$. From the above inequalities we have

$$2H_0\mathcal{A}_{\varepsilon} < \mathcal{L}_{\varepsilon}$$
.

Thus, letting $\varepsilon \rightarrow 0$ in the last inequality, we obtain $\mathcal{A}/\mathcal{L} \leq 1/2H_0$.

COROLLARY 1.1. In Theorem 1.1, suppose that D is the disk of radius R. Then we have $RH_0 \leq 1$.

COROLLARY 1.2. Under the same condition as in Corollary 1.1, suppose that the Gaussian curvature K of M satisfies the inequality $K \ge K_0$ for a positive constant K_0 such that $K_0 > a^{-2}$. Then we have

$$R \cdot \sqrt{K_0 - a^{-2}} \leq 1$$
.

Proof. By the equation of Gauss, we have

$$K(x)=a^{-2}+\lambda_1\cdot\lambda_2$$
,

where λ_1 and λ_2 are eigenvalues of the second fundamental form of M in $S^3(a)$ at a point $\tilde{u}(x) \in M$, $x \in D$. Since $\lambda_1 \cdot \lambda_2 \leq ((\lambda_1 + \lambda_2)/2)^2 = H(x)^2$ and $K(x) - a^{-2} \geq K_0 - a^{-2} > 0$, we have

$$|H(x)| \ge \sqrt{K_0 - a^{-2}}$$
 for all $x \in D$.

Therefore, from Corollary 1.1 we obtain $R \cdot \sqrt{K_0 - a^{-2}} \le 1$.

2. Non-parametric surfaces with boundary and the minimum principle.

Throughout this section, let D be a bounded domain with boundary ∂D in the Euclidean 2-plane E^2 and $C^{0,2}(\overline{D},D)$ the set of continuous real-valued functions on \overline{D} which are of class C^2 in D, where $\overline{D}=D\cup\partial D$. Moreover, in the following, let a and k be positive constants such that

$$(2.1) a^2 > b^2 + k^2$$

where $b = \max_{x \in \overline{D}} |x|$, $x = (x_1, x_2) \in E^2$ and $|x|^2 = x_1^2 + x_2^2$.

For a function $u \in C^{0,2}(\overline{D}, D)$ satisfying $|u(x)| \leq k$ for all $x \in \overline{D}$, we consider the non-parametric surface M with boundary in $S^3(a)$ defined by

(2.2)
$$\tilde{u}(x) = (x_1, x_2, u(x), \sqrt{a^2 - |x|^2 - u(x)^2}) \in S^3(a), \quad x \in \overline{D},$$

where $S^3(a)$ denotes the 3-dimensional sphere of radius a in the Euclidean 4-space E^4 . Let η be the unit normal vector field on M in $S^3(a)$ which is given by (1.4). Then, by (1.9), the mean curvature H of M is expressed as

$$H(x) = \frac{1}{2} \left\{ \frac{\partial}{\partial x_1} \left(\frac{a^2 p + (u - \overline{V} u \cdot x) x_1}{a \sqrt{g}} \right) + \frac{\partial}{\partial x_2} \left(\frac{a^2 q + (u - \overline{V} u \cdot x) x_2}{a \sqrt{g}} \right) \right\}.$$

We can rewrite it as

(2.3)
$$\sum_{i=1}^{2} A_{ij}(x, u, \nabla u) u_{ij} = A(x, u, \nabla u, H),$$

where $u \in C^{0,2}(\overline{D}, D)$, $|u(x)| \leq k$ for all $x \in \overline{D}$, $u_{ij} = \partial^2 u / \partial x_i \partial x_j$, i, j = 1, 2, and

$$A_{11}\!\left(x,\,u,\, \nabla u\right)\!=\!a^{2}\!\left(1\!+\!q^{2}\right)\!-\!|x|^{2}q^{2}\!-\!x_{1}^{\;2}\!-\!u^{2}\!+\!2qux_{2}\,,$$

$$A_{12}(x, u, \nabla u) = -\{a^2pq - |x|^2pq + x_1x_2 + u(px_2 + qx_1)\},$$

$$A_{21}(x, u, \nabla u) = A_{12}(x, u, \nabla u)$$
,

$$(2.4) \hspace{3.1em} A_{22}(x,\,u,\, \overline{V}\, u) \! = \! a^2 (1 \! + \! p^2) \! - \! |x|^2 p^2 \! - \! x_2^2 \! - \! u^2 \! + \! 2pu x_1 \, ,$$

$$A(x, u, \nabla u, H) = \frac{2}{a^2} g\{aH\sqrt{g} - (u - \nabla u \cdot x)\},$$

$$g=a^2(1+|\nabla u|^2)-(u-\nabla u\cdot x)^2$$
, $|x|^2=x_1^2+x_2^2$,

$$\nabla u = \left(-\frac{\partial u}{\partial x_1}, \frac{\partial u}{\partial x_2}\right) = (p, q), \quad \nabla u \cdot x = px_1 + qx_2.$$

Conversely, let H be a given continuous real-valued function on D. If $u \in C^{0,2}(\overline{D}, D)$ is a solution of the equation (2.3), then for this u the mean curvature of the surface in $S^3(a)$ defined by (2.2) equals H.

Now, we set

$$Q_m^k = \{(x_1, x_2, x_3, x_4) \in S^3(a); m \le x_3 \le k, x_4 > 0\}$$

for a constant m such that 0 < m < k.

THEOREM 2.1. Let H_0 be a constant such that $0 < H_0 < k/a \sqrt{a^2 - k^2}$. For a function $u \in C^{0,2}(\overline{D}, D)$ satisfying the inequality

$$m_0:=a^2H_0/\sqrt{a^2H_0^2+1} \leq u(x) \leq k$$
 for all $x \in \overline{D}$,

let M be the surface with boundary in $S^3(a)$ defined by (2.2) and H the mean curvature of M in $S^3(a)$. Suppose that H satisfies the inequality $H(x) \subseteq H_0$ for all $x \in D$. Let m_1 be a constant such that $m_0 < m_1 < k$. If $\tilde{u}(\partial D) \subset Q_{m_1}^k$, then $\tilde{u}(\overline{D}) \subset Q_{m_1}^k$.

Remark. We note that $k/a\sqrt{a^2-k^2}$ equals the mean curvature of the small 2-sphere in $S^3(a)$ which is the intersection of $S^3(a)$ and the hyperplane in E^4 defined by $x_3=k$.

Now, let H' be a given continuous function on D. For this H', we define the operator $L_{H'}$ on $C^{0,2}(\overline{D},D)$ by

$$L_{H'}(v) = \sum_{i=1}^{2} A_{ij}(x, v, \nabla v) v_{ij} - A(x, v, \nabla v, H'),$$

where $v \in C^{0,2}(\overline{D}, D)$, $|v(x)| \leq k$ for all $x \in \overline{D}$, $v_{ij} = \partial^2 v / \partial x_i \partial x_j$, i, j = 1, 2, and $A_{ij}(x, v, \nabla v)$, i, j = 1, 2, and $A(x, v, \nabla v, H')$ are given in (2.4).

Under the hypotheses of Theorem 2.1, we have $L_H(u)=0$ and

$$L_{H_0}(u) = L_{H_0}(u) - L_H(u) = \frac{2}{a} g \sqrt{g} (H - H_0) \leq 0$$
.

In what follows, we shall consider the following partial differential inequality on \bar{D} :

(2.5)
$$\sum_{i,j=1}^{2} A_{ij}(x, v, \nabla v) v_{ij} \leq A(x, v, \nabla v, H_0),$$

where $v \in C^{0,2}(\overline{D}, D)$, $|v(x)| \leq k$ for all $x \in \overline{D}$ and H_0 is a constant such that $0 < H_0 < k/a \sqrt{a^2 - k^2}$ and $A_{ij}(x, v, \overline{V}v)$, i, j = 1, 2, and $A(x, v, \overline{V}v, H_0)$ are given in (2.4).

Theorem 2.1 follows immediately from the following theorem.

THEOREM 2.2. Suppose that $u \in C^{0,2}(\overline{D}, D)$ is a solution of the inequality (2.5)

satisfying

$$(2.6) m_0 \leq u(x) \leq k for all x \in \overline{D},$$

where $m_0 = a^2 H_0 / \sqrt{a^2 H_2^0 + 1}$. Let m_1 be a constant such that $m_0 < m_1 < k$. If $u \ge m_1$ on ∂D , then $u \ge m_1$ in D.

We first prove some lemmas. From (2.4) we have

(2.7)
$$A_{11}(x, u, 0) = a^{2} - x_{1}^{2} - u^{2}, \quad A_{12}(x, u, 0) = -x_{1}x_{2} = A_{21}(x, u, 0), A_{22}(x, u, 0) = a^{2} - x_{2}^{2} - u^{2}, \quad A(x, u, 0, H_{0}) = \frac{2}{a^{2}} (a^{2} - u^{2})(aH_{0}\sqrt{a^{2} - u^{2}} - u).$$

By (2.1) and (2.7), we have

LEMMA 2.1. For all $x \in D$, the 2×2 matrix $\widetilde{A}(x) := (A_{ij}(x, u(x), 0))$ is positive definite.

LEMMA 2.2. For all $x \in D$, we have

- (1) $|A_{11}(x, u, \nabla u) A_{11}(x, u, 0)| \le a^2(|q|^2 + 2|q|),$
- (2) $|A_{12}(x, u, \nabla u) A_{12}(x, u, 0)| \le a^2(|p||q| + |p| + |q|),$
- $(3) \qquad |A_{22}(x, u, \nabla u) A_{22}(x, u, 0)| \leq a^2 (|p|^2 + 2|p|).$

Proof. We note that |x| and $|u| := \sup_{x \in D} |u(x)|$ are smaller than a.

(1):
$$|A_{11}(x, u, \nabla u) - A_{11}(x, u, 0)|$$

$$= |(a^2 - |x|^2)q^2 + 2qux_2| \le a^2|q|^2 + 2|q||u||x_2|$$

$$\le a^2(|q|^2 + 2|q|).$$

(2):
$$|A_{12}(x, u, \nabla u) - A_{12}(x, u, 0)|$$

$$= |(a^2 - |x|^2)pq + u(px_2 + qx_1)| \le a^2|p||q| + |u|(|p||x_2| + |q||x_1|)$$

$$\le a^2(|p||q| + |p| + |q|).$$

By the same way as in (1), we can prove (3).

LEMMA 2.3. For all $x \in D$, we have

$$|A(x, u, \nabla u, H_0) - A(x, u, 0, H_0)|$$

$$\leq 4a(a^4GH_0 + 1)(|p| + |q|) + \frac{2}{a^2}(aGH_0P_1 + P_2),$$

where $G = \{g\sqrt{g} + (a^2 - u^2)\sqrt{a^2 - u^2}\}^{-1}$ and P_1 , P_2 are polynomials of |p| and |q| such that the degree of each term is greater than 1 and the coefficient of each term is a function of a.

Proof.

$$\begin{split} |A(x, u, \nabla u, H_0) - A(x, u, 0, H_0)| \\ &= \frac{2}{a^2} - |aH_0\{g\sqrt{g} - (a^2 - u^2)\sqrt{a^2 - u^2}\} + (a^2 - u^2)u - g(u - \nabla u \cdot x)| \\ &\leq \frac{2}{a} H_0|g\sqrt{g} - (a^2 - u^2)\sqrt{a^2 - u^2}| + \frac{2}{a^2}|g(u - \nabla u \cdot x) - (a^2 - u^2)u| \\ &= \frac{2}{a} H_0|g^3 - (a^2 - u^2)^3|G + \frac{2}{a^2}|g(u - \nabla u \cdot x) - (a^2 - u^2)u|, \end{split}$$

where $G = \{g\sqrt{g} + (a^2 - u^2)\sqrt{a^2 - u^2}\}^{-1}$. By a direct calculation, we have

$$g^3 - (a^2 - u^2)^3 = 6(a^4u - 2a^2u^3 + u^5)(\nabla u \cdot x) + P$$

where P is a polynomial of p and q such that the degree of each term is greater than 1 and the coefficient of each term is a function of a and u. Now, we have

$$0 < 6(a^4u - 2a^2u^3 + u^5) \le \frac{96}{25\sqrt{5}}a^5 < 2a^5$$

and

$$|\nabla u \cdot x| = |px_1 + qx_2| \le a(|p| + |q|).$$

Thus, from the above inequalities, we obtain

$$(2.9) |g^3 - (a^2 - u^2)^3| \le 2a^6(|p| + |q|) + P_1,$$

where P_1 is a polynomial of |p| and |q| such that the degree of each term is greater than 1 and the coefficient of each term is a function of a. On the other hand,

$$\begin{split} |g(u-\overline{V}u\cdot x)-(a^2-u^2)u| \\ &= |\{a^2(1+|\overline{V}u|^2)-(u-\overline{V}u\cdot x)^2\}(u-\overline{V}u\cdot x)-(a^2-u^2)u| \\ &= |(3u^2-a^2)(\overline{V}u\cdot x)+a^2u|\overline{V}u|^2-a^2|\overline{V}u|^2(\overline{V}u\cdot x)-3u(\overline{V}u\cdot x)^2+(\overline{V}u\cdot x)^3| \\ &\leq |3u^2-a^2||\overline{V}u\cdot x|+|a^2u|\overline{V}u|^2-a^2|\overline{V}u|^2(\overline{V}u\cdot x)-3u(\overline{V}u\cdot x)^2+(\overline{V}u\cdot x)^3|. \end{split}$$

Since $|3u^2-a^2| < 2a^2$ and $|\nabla u \cdot x| \leq a(|p|+|q|)$, we have

$$(2.10) |g(u-\nabla u \cdot x)-(a^2-u^2)u| \leq 2a^3(|p|+|q|)+P_2,$$

where P_2 is a polynomial of |p| and |q| such that the degree of each term is greater than 1 and the coefficient of each term is a function of a. Hence, from (2.8), (2.9) and (2.10) we have

$$\begin{split} |A(x, u, \nabla u, H_0) - A(x, u, 0, H_0)| \\ & \leq \frac{2}{a} H_0 \{ 2a^6 (|p| + |q|) + P_1 \} G + \frac{2}{a^2} \{ 2a^8 (|p| + |q|) + P_2 \} \\ & = 4a(a^4 H_0 G + 1)(|p| + |q|) + \frac{2}{a^2} - (aH_0 G P_1 + P_2) \; . \end{split}$$

Now, we shall prove Theorem 2.2.

Proof of Theorem 2.2. Suppose for contradiction that there exists a point $x \in D$ such that $u(x) < m_1$. Since u has the minimum value on \overline{D} , there exists a point $x_0 \in D$ such that $u(x_0) \le u(x)$ for all $x \in D$. Then, of course $u(x_0) < m_1$. We put

$$(2.11) m_2 = -\frac{1}{2} - (u(x_0) + m_1).$$

Put $D' = \{x \in D ; u(x) < m_2\}$, and let D_0 be the connected component of D' containing x_0 . Then, $\overline{D}_0 \subset D$ and $u(x) = m_2$ for all $x \in \partial D_0 := \overline{D}_0 - D_0$. We put

(2.12)
$$K = \sup_{x \in \mathcal{D}_0} \{ |u_{ij}(x)| \; ; \; i, j = 1, 2 \} \; .$$

By (2.1) and (2.6) there exists a positive constant d such that

(2.13)
$$a^2 - |x|^2 - u(x)^2 \ge d^2$$
 for all $x \in \overline{D}_0$.

From Lemma 2.1, we see that there exists a positive constant λ such that

(2.14)
$$\sum_{i,j=1}^{2} A_{ij}(x, u(x), 0) X_i X_j \ge \lambda (X_1^2 + X_2^2)$$

for any non-zero vector $X=(X_1, X_2)$ and all $x \in \overline{D}_0$. We put

(2.15)
$$\xi(x) = \exp\left(C(x_1 + x_2)\right), \quad x \in \overline{D},$$

where C is a constant such that

(2.16)
$$C > \frac{4a}{\lambda} \left\{ aK + (a^4H_0/2d^3 + 1) \right\}.$$

For a positive ε , we consider the function w_{ε} on \bar{D} defined by

(2.17)
$$w_{\varepsilon}(x) = u(x) - \varepsilon \cdot \xi(x), \quad x \in \overline{D}.$$

Lemma 2.4. For any positive δ , we can take a number ε with the following properties:

- (1) $0 < \varepsilon < \delta$;
- (2) w_{ε} takes its minimum value on \overline{D}_{0} at a point of D_{0} .

In fact, suppose that for some $\delta > 0$ the assertion of the above lemma is not true. Then, for any ε such that $0 < \varepsilon < \delta$, w_{ε} takes its minimum value on \overline{D}_0 at a point of $\partial D_0 := \overline{D}_0 - D_0$. Therefore, we have

(2.18)
$$w_{\epsilon}(x) > w_{\epsilon}(y_{\epsilon})$$
 for all $x \in D_0$.

where $y_{\epsilon} \in \partial D_0$ and $w_{\epsilon}(y_{\epsilon}) = \min(w_{\epsilon}|\overline{D}_0)$. Put $\xi_0 = \max(\xi|\overline{D}_0)$. Then, we have

(2.19)
$$w_{\varepsilon}(y_{\varepsilon}) = u(y_{\varepsilon}) - \varepsilon \cdot \xi(y_{\varepsilon}) \geq m_2 - \varepsilon \cdot \xi_0.$$

From (2.18) and (2.19), at $x_0 \in D_0$ we have

$$w_{\varepsilon}(x_0) = u(x_0) - \varepsilon \cdot \xi(x_0) > m_2 - \varepsilon \cdot \xi_0$$
.

Hence, we obtain

$$u(x_0) - m_2 > \varepsilon(\xi(x_0) - \xi_0)$$
.

Since the above inequality holds for any ε such that $0 < \varepsilon < \delta$, we get $u(x_0) \ge m_2$, which contradicts (2.11). Thus the assertion of Lemma 2.4 holds.

By virtue of Lemma 2.4, we can conclude the following:

LEMMA 2.5. There exists a monotone decreasing sequence $\{\varepsilon_n\}$, $n=1, 2, \cdots$, with the following properties:

- (1) $\varepsilon_n > 0$, $n=1, 2, \dots, \lim_{n \to \infty} \varepsilon_n = 0$;
- (2) For each ε_n , the function w_{ε_n} defined by (2.17) takes its minimum value on \overline{D}_0 at a point of D_0 .

In what follows, let $\{\varepsilon_n\}$, $n=1, 2, \cdots$, be a sequence with properties (1), (2) stated in Lemma 2.5. For simplicity we put $w_{\varepsilon_n}=w_n$. Let x_n be a point of D_0 which gives the minimum value of w_n on \overline{D}_0 . By taking a subsequence if necessary, we may assume that $\{x_n\}$, $n=1, 2, \cdots$, converges to a point $y \in \overline{D}_0$.

Now, we rewrite the inequality (2.5) as

(2.20)
$$\sum_{i,j=1}^{2} (A_{ij}(x, u, \nabla u) - A_{ij}(x, u, 0)) u_{ij} + \sum_{i,j=1}^{2} A_{ij}(x, u, 0) u_{ij}$$

$$\leq A(x, u, \nabla u, H_0).$$

Then, by Lemma 2.2 and (2.12), on $\overline{D}_{\rm 0}$ we have

(2.21)
$$\sum_{i,j=1}^{2} (A_{ij}(x, u, \nabla u) - A_{ij}(x, u, 0)) u_{ij}$$

$$\geq -K(\sum_{i,j=1}^{2} |A_{ij}(x, u, \nabla u) - A_{ij}(x, u, 0)|)$$

$$\geq -a^{2}K(|p|^{2} + |q|^{2} + 2|p| \cdot |q| + 4(|p| + |q|))$$

$$= -a^{2}K(|p| + |q|)(|p| + |q| + 4).$$

Since $u(x)=w_n(x)+\varepsilon_n\cdot\xi(x)$ for each $x\in\overline{D}$, by (2.20) and (2.21), on \overline{D}_0 we have

(2.22)
$$\sum_{i,j=1}^{2} A_{ij}(x, u, 0)(w_{nij} + \varepsilon_n \cdot \xi_{ij}) - a^2 K(|p| + |q|)(|p| + |q| + 4)$$

$$\leq A(x, u, \nabla u, H_0),$$

where $w_{nij} = \partial^2 w_n / \partial x_i \partial x_j$, $\xi_{ij} = \partial^2 \xi / \partial x_i \partial x_j$.

In the following, we shall estimate the inequality (2.22) at x_n . We put $\xi(x_n) = \xi_n$ and $u(x_n) = u_n$. Then from (2.15) we have

(2.23)
$$\frac{\partial \xi}{\partial x_1}(x_n) = \frac{\partial \xi}{\partial x_2}(x_n) = C \cdot \xi_n \text{ and } \xi_{ij}(x_n) = C^2 \cdot \xi_n, \quad i, j = 1, 2.$$

Since w_n takes its minimum value on \overline{D}_0 at $x_n \in D_0$, $(\partial \omega_n/\partial x_1)(x_n) = (\partial \omega_n/\partial x_2)(x_n)$

=0. Thus, from (2.17) we have

$$p(x_n) = q(x_n) = \varepsilon_n \cdot C \cdot \xi_n.$$

Furthermore, we see that the 2×2 matrix $W_n:=(w_{nij}(x_n))$ is positive semi-definite at x_n , $n=1, 2, \cdots$. Therefore, from this fact and Lemma 2.1, we see

(2.25)
$$\sum_{i,j=1}^{2} A_{ij}(x_n, u_n, 0) w_{nij}(x_n) \ge 0.$$

By (2.14) and (2.23), we have

(2.26)
$$\sum_{i,j=1}^{2} A_{ij}(x_n, u_n, 0) \varepsilon_n \cdot \xi_{ij}(x_n) \ge 2C^2 \lambda \cdot \varepsilon_n \cdot \xi_n.$$

Thus, by (2.24), (2.25) and (2.26), at x_n we have

$$\geq 2C^2\lambda \cdot \varepsilon_n \cdot \xi_n - 4a^2K \cdot \varepsilon_n \cdot C \cdot \xi_n(\varepsilon_n \cdot C \cdot \xi_n + 2)$$
.

On the other hand, from Lemma 2.3 and (2.24), at x_n we have

$$(2.28)$$
 the right-hand side of (2.22)

$$\leq A(x_n, u_n, 0, H_0) + 8a(a^4H_0G(x_n) + 1)(\varepsilon_n \cdot C \cdot \xi_n)$$

$$+ \frac{2}{a^2} (aH_0G(x_n)\bar{P}_1 + \bar{P}_2)(\varepsilon_n \cdot C \cdot \xi_n),$$

where \bar{P}_1 and \bar{P}_2 are polynomials of $\varepsilon_n \cdot C \cdot \xi_n$ which have no constant terms, and the coefficient of each term is a function of a. From (2.6) and (2.7), we see

$$(2.29) A(x_n, u_n, 0, H_0) \leq 0.$$

Thus, by (2.27), (2.28) and (2.29), at x_n we have

$$2\varepsilon_n \cdot C \cdot \xi_n(C\lambda - 2a^2K(\varepsilon_n \cdot C \cdot \xi_n + 2))$$

$$\leq 8a(a^4H_0G(x_n)+1)\cdot \varepsilon_n\cdot C\cdot \xi_n + \frac{2}{a^2}\cdot (aH_0G(x_n)\bar{P}_1 + \bar{P}_2)\cdot \varepsilon_n\cdot C\cdot \xi_n.$$

Since $\varepsilon_n \cdot C \cdot \xi_n > 0$, at x_n we have

(2.30)
$$C\lambda - 2a^{2}K(\varepsilon_{n} \cdot C \cdot \xi_{n} + 2) \\ \leq 4a(a^{4}H_{0}G(x_{n}) + 1) + \frac{1}{a^{2}} (aH_{0}G(x_{n})\bar{P}_{1} + \bar{P}_{2}).$$

Since ξ is bounded on \overline{D}_0 , by (1) of Lemma 2.5 we have $\lim_{n\to\infty} \overline{P}_i = 0$, i, j=1, 2. Moreover, from (2.4) we have

$$\lim_{n \to \infty} G(x_n) = \lim_{n \to \infty} (g(x_n)^{3/2} + (a^2 - u_n^2)^{3/2})^{-1} = \frac{1}{2} (a^2 - u(y)^2)^{-3/2}$$

because $\lim_{n\to\infty} x_n = y \in \overline{D}_0$. By (2.13), we have $a^2 - u(y)^2 \ge d^2 > 0$. Now, by letting

 $n\rightarrow\infty$ in the inequality (2.30), we obtain

$$C\lambda - 4a^2K \leq 4a(a^4H_0/2d^3+1)$$
,

which contradicts (2.16). This contradiction is due to our hypothesis that there exists a point $x \in D$ such that $u(x) < m_1$. Thus we complete the proof of Theorem 2.2.

In Theorem 2.1, if M is a minimal surface in $S^{3}(a)$, then we can put $H_{0}=0$. As a corollary of Theorem 2.1 we have

COROLLARY 2.1. In Theorem 2.1, suppose that M is a minimal surface in $S^3(a)$. Let m_1 be a constant such that $0 < m_1 < k$. If $\tilde{u}(\partial D) \subset Q_m^k$, then $\tilde{u}(\bar{D}) \subset Q_m^k$,

Our proof in Theorem 2.2 was inspired from the results of R. Redheffer [5].

3. Non-parametric surfaces with boundary and the maximum principle.

In this section, as in Section 2, let D be a bounded domain with boundary ∂D in E^2 and $C^{0,2}(\overline{D},D)$ the set of continuous real-valued functions on \overline{D} which are of class C^2 on D, where $\overline{D}=D\cup\partial D$.

In the following, let a and k be positive constants such that

$$(3.1) a^2 > b^2 + k^2,$$

where $b = \max_{x \in \overline{D}} |x|$, $x = (x_1, x_2) \in E^2$ and $|x|^2 = x_1^2 + x_2^2$.

We put

(3.2)
$$H_1 = \frac{m_1}{a} (a^2 - m_1^2)^{-1/2}$$

where m_1 is a constant such that $k \leq m_1 < a$.

Now, we consider the following partial differential inequality on \overline{D} :

(3.3)
$$\sum_{i,j=1}^{2} A_{ij}(x, u, \nabla u) u_{ij} \ge A(x, u, \nabla u, H_1),$$

where $u \in C^{0,2}(\overline{D}, D)$, $|u(x)| \leq k$ for all $x \in \overline{D}$ and $A_{ij}(x, u, \overline{V}u)$, i, j=1, 2, and $A(x, u, \overline{V}u, H_1)$ are given in (2.4).

We note that Lemma 2.3 also holds for H_1 . We can prove the following theorem by a similar argument as in proof of Theorem 2.2.

THEOREM 3.1. Suppose that $u \in C^{0,2}(\overline{D}, D)$ is a solution of the inequality (3.3) satisfying $0 \le u(x) \le k$ for all $x \in \overline{D}$. Let m be a constant such that 0 < m < k. If $u \le m$ on ∂D , then $u \le m$ in D.

For a constant m such that 0 < m < a, we set

$$Q_0^m = \{(x_1, x_2, x_3, x_4) \in S^3(a); 0 \le x_3 \le m, x_4 > 0\}$$
.

THEOREM 3.2. For a function $u \in C^{0,2}(\overline{D}, D)$ satisfying $0 \le u(x) \le k$ for all $x \in \overline{D}$, let M be the surface with boundary in $S^3(a)$ defined by (2.2) and H the mean curvature of M in $S^3(a)$. Suppose that H satisfies the inequality $H(x) \ge H_1$ for all $x \in D$, where H_1 is defined by (3.2). Let m be a constant such that 0 < m < k. If $\widetilde{u}(\partial D) \subset Q_0^m$, then $\widetilde{u}(\overline{D}) \subset Q_0^m$.

Proof. For a continuous function H' on D, we define the operator $L_{H'}$ on $C^{0,2}(\overline{D},D)$ by

$$L_{H'}(v) = \sum_{i,j=1}^{2} A_{ij}(x, v, \nabla v) v_{ij} - A(x, v, \nabla v, H'),$$

where $v \in C^{0,2}(\overline{D}, D)$, $|v(x)| \leq k$ for all $x \in \overline{D}$ and $A_{ij}(x, v, \overline{V}v)$, i, j=1, 2, and $A(x, v, \overline{V}v, H')$ are given in (2.4). Then, from the hypotheses of Theorem 3.2, we have $L_H(u)=0$ and

$$L_{H_1}(u) = L_{H_1}(u) - L_H(u) = \frac{2}{a} g \sqrt{g} (H - H_1) \ge 0$$
.

Since the inequality $L_{H_1}(u) \ge 0$ is equivalent to (3.3), then we can apply Theorem 3.1 to it. Therefore, Theorem 3.2 is an immediate consequence of Theorem 3.1.

REFERENCES

- [1] S.S. CHERN, On the curvatures of a piece of hypersurface in euclidean space, Abh. Math. Sem. Univ. Hamburg, 29 (1965), 77-91.
- [2] R. COURANT AND D. HILBERT, Methods of Mathematical Physics, Vol. II, Intersciences, New York, 1962.
- [3] R. Finn, Remarks relevant to minimal surfaces, and to surfaces of prescribed mean curvature, J. d'Analyse Math., 14 (1965), 139-160.
- [4] E. Heinz, Uber Flächen mit eineindeutiger Projection auf eine Ebene, deren Krümmungen durch Ungleichungen eingeschränkt sind, Math. Ann., 129 (1955), 451-454.
- [5] R. Redheffer, An extension of certain maximum principles, Monatsch. f. Math., 66 (1962), 32-42.

DEPARAMENT OF MATHEMATICS YOKOHAMA CITY UNIVERSITY.