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Introduction.

Let M be a Kaehler manifold of complex dimension n+p, p=0, and M be a
Riemannian manifold of real dimension n. Let J be the almost complex struc-
ture of M. We call M a totally real submanifold of M if M admits an isometric
immersion into M such that JT,(M)CT,(M)*- where T,(M) denotes the tangent
space of M at x and T,(M)* the normal space of M at x. When p=0, we see
that JT(M)=T(M)L, for which case many interesting properties of totally real
submanifolds have been studied by different authors (see [1], [2], [4], [5], [6],
[7],[9] and [12]). For the case »>0, one of the present authors proved in [10]
some theorems for totally real, totally umbilical submanifolds of a Kaehler mani-
fold. On the other hand, Ludden-Okumura-Yano [6] proved a pinching theorem
for a compact minimal totally real submanifold of a complex space form also
for the case p>0.

The purpose of the present paper is to generalize some of theorems proved
in [5], [6], [7], [10] and [12].

In §1 we derive some fundamental formulas for a totally real submanifold
M of a Kaehler manifold M. In §2 we study the f-structure in the normal
bundle of a totally real submanifold (see [6], [8], [10]). In §3 we consider an
n-dimensional compact totally real submanifold of a complex space form M(c)
of complex dimension n-+p and of constant holomorphic sectional curvature ¢
and give some integral formulas computing the Laplacian of the square of the
second fundamental form. As an application of these integral formulas we prove
a pinching theorem for compact totally real submanifolds which is a generali-
zation of theorems in [2] and [5]. In §4 and §5 we study generalizations of
results proved in [12]. The purpose of the last section is to give a characteri-
zation of an n-dimensional compact flat totally real submanifold S*(r;) X S*(7,) X
.-+ XSY(7,) in some C" in C™*?,

§1. Preliminaries.

Let M be a Kaehler manifold of complex dimension n+p. We denote by J

the almost complex structure of M. An n-dimensional Riemannian manifold
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M isometrically immersed in M is called a fotally real submanifold of M if
JT(M)1T, (M) for each x€M where T,(M) denotes the tangent space to
M at x& M. Here we have identified T,(M) with its image under the differential
of the immersion because our computation is local. If XeT (M), then JX is a
normal vector to M. Thus we see that p=0. Let g be the metric tensor field
of M and g be the induced metric tensor field on M. We denote by 7 (resp. V)
the operator of covariant differentiation with respect to Z (resp. g). Then the
Gauss-Weingarten formulas are respectively given by

ViY=FPxY+B(X,Y), FVyxN=—AyX+DxN

for any tangent vector fields X, Y and any normal vector field N on M, where
D is the operator of covariant differentiation with respect to the linear con-
nection induced in the normal bundle. Both A and B are called the second
fundamental form of M and satisfy

&(B(X,Y), N)=g(AxX, Y).

A normal vector field N in the normal bundle is said to be parallel if DyN=0

for any tangent vector field X on M. The mean curvature vector H is defined

as H=(1/n) Tr B, Tr B being defined by Tr B=> B(e, ¢,) for an orthonormal
1

frame {e;}. If H=0, then M is said to be minimal and if the second fundamental
form is of the form B(X, Y)=g(X, Y)H, then M is said to be totally umbilical.
If the second fundamental form of M vanishes identically, i.e., B=0, then M is
said to be totally geodesic.

We choose a local field of orthonormal frames e;, =, e,; €piq, =+, Cpip; €=
Jes, =]ty ; iy =JCns1, ", Cnipyr=Jlnip in M in such a way that, restricted
to M, e, ---,e, are tangent to M. With respect to this frame field of M, let
W e, 0" O, 0™ @b e 0™ oYY 0P be the field of dual

frames. Unless otherwise stated, we use the conventions that the ranges of
indices are respectively :

A, B, C, D=1, -+, n+p, 1*, -, (n+p)*,

i, g kLt s=1, -, m,

a, b, ¢, d=n+1, -, ntp, 1%, -, (n+p)*,

a, B, y=n+1, -+, n+p,

,2, o, p:n_|_1, TN n.[.py (n+1)*, e, (n_|_p)*,

and that when an index appears twice in any term as a subscript and a super-
script, it is understood that this index is summed over its range. Then the
structure equations of M are given by

1.1 do*=—owiew®, witwi=0,

i J — i — —nJ
wit+w!=0, =k, oi=0l",
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(1.2) wf+ob =0, wf=o0f, of =0of,
oyt of=0, oh=0h, o =of,
(1.3) dop=—wto§+ 08,  O=—3KhopaNoP.
Restricting these forms to M, we have
(1.4) 0*=0,
(1.5 do'=—w; Aw*,
(1.6) doy=—o} Not+ 2%, Q4= % Ripzo* Aot
Since 0=dw®*=—wf{A®*, by Cartan’s lemma we have
%)) wf=h&w’,  hE=h%.
We see that g(A.e,, ¢,)=h{. The Gauss-equation is given by
(1.8) Ri=K -+ 3 (hishfi—hish) .
Moreover we have
(1.9) dw =—wd A\ wi+ 28, .Qg:%R%klw"/\w‘ ,
and the Ricci-equation is given by
(1.10) S =K+ S (hhli—hishly)
From (1.2) and (1.7) we have
(L1D) h=hh=h; .
We define the covariant derivative hf, of A% by setting
(1.12) h&rwt=dhg, —h o} —hel+hlof.

The Laplacian 4h¢, of h¢, is defined as

(1.13) Ahg‘j=%}hf‘j,¢k’

where we have put

(1.14) h¢uw'=dhg,— hiol— hgoh—hioh+ hlef .

The forms (w}) define the Riemannian connection of M and the forms (w$) define
the connection induced in the normal bundle. If A#;,=0 for all a, i, j and %, then

the second fundamental form of M is said to be parallel.
If a Kaehler manifold M is of constant holomorphic sectional curvature c,

then we have

(1.15) K%CD:%C(‘;AC(SBD_5AD630+]ACJBD —JanJee+2]asJep) .



388 KENTARO YANO AND MASAHIRO KON

We call such a manifold a complex space form and denote it by M(c). If a
Riemannian manifold M is of constant curvature k, then we have

(1.16) Ripy=k(0:40;,—04,01) .

We call such a manifold a real space form and denote it by M(k).

§2. f-structure in the normal bundle.

Let M be a totally real submanifold of real dimension n of a Kaehler mani-
fold M of complex dimension n-+p. We denote by T,(M) the tangent space of
M at xeM and by T, (M)* the normal space of M at xM. Then we see that
JT.(M)CT(M)*+. Let N, (M) be an orthogonal complement of JT,(M) in T,(M)*.
Then we have the decomposition :

T (MY-=]JT (M)YDN(M).
If NeN.,(M), we obtain INeN_ (M). If N is a vector field in the normal bundle
T(M)*, we put
2.1) JN=PN+fN,

where PN is the tangential part of /N and fN the normal part of /N. Then
P is a tangent bundle valued 1-form on the normal bundle and f is an endo-
morphism of the normal bundle. Then, putting N=JX in (2.1) and applying J
to (2.1), we find [6], [10]:

PfN=0, f*N=—N—JPN,
PjX=-X, f]jX=0,

where X is a tangent vector field to M and N is a vector field in the normal
bundle. Equations (2.2) imply that

1i+r=0.

Therefore, f being of constant rank, if  does not vanish, then it defines an f-
structure in the normal bundle [8]. From (2.1), using the Gauss-Weingarten
formulas, we have

(2.2)

(2.3) —JAyX+fDxN=B(X, PN)+Dx(fN),
from which
(2.4) (Dxf)N=—B(X, PN)—JAxX.

If Dyf=0 for any tangent vector field X, then the f-structure in the normal
bundle is said to be parallel.

LEMMA 2.1. L_et M be a totally real submanifold of real dimension n of a
Kaehler manifold M of complex dimension n+p. If the f-structure in the normal
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bundle is parallel, then we have

(25) Ay=0  for NeNy (M).

Proof. 1f NeN,(M), then we have PN=0. Thus by the assumption and
(2.4) we have (2.5).

Remark. We can take a frame ey, -+, e, for JT,(M) and a frame e,4,, -+,
Cripy Cansnys ** » €nipy TOT Ny(M). Therefore if the f-structure in the normal
bundle is parallel, then we have

(26) A1=O N i e., h{‘,=0 .

§3. Integral formulas.

Let M(c) be a complex space form of complex dimension n-+p and of con-
stant holomorphic sectiogal curvature ¢ and let M be a totally real submanifold
of real dimension n of M(c).

_ LEMMaA 31 Let M be a totally real submanifold of a complex space form
M(c). Then we have

B S hdht= S ket S[ne Tr Al ——a(Tr Ao

—}—; [%c Tr A‘;’—~i—c(’l‘r A,)z]
+§ {Tr(A,Ay—AAl)*~[Tr(AA,) P —Tr A, Tr(A A AL)} -

where we have put A=A

Proof. First of all, by a straightforward computation, we have (see [3; p.
63]):

azf.‘:] h?jd h?j =a 52;4‘ % (h?jh%mj —K fjbh?jhzk +4K iz'kihlj’k h?y
— K fouhghly+ 2K hishd+-2K L i hh)
o 12, .l C(hghl— h3uh ) (hGhy — hGh) + R ht hl— hghihihe] .

a,

From this and (1.15) we have (3.1).
Using Lemma 2.1 and (3.1), we obtain the following

_ Lemma 32. Let M be a totally real submanifold of a complex space form
M(c). If the f-structure in the normal bundle is parallel, then we have
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32 S hydht= 5 Kbt S (ntDe Tr Al —-o(Tr 4]
a,,] a,, g,k t 4 4
+£2{Tr(AtAs"‘AsAt)z—[Tr(AtAs)]2+TrAsTr(AtAsAt)} .

In the sequel, we need the following lemma proved in [3].
~LemwMA 3.3 ([3]). Let A and B be symmetric (n, n)-matrices. Then
—Tr(AB—BA?®<2 Tr A® TrB?,

and the equality holds for non-zero matrices A and B if and only if A and B
can_be transformed by an orthogonal matrix simultaneously into scalar multiples
of A and B respectively, where

0 1 1 0
- 0 _
A=[1 0 , B=|0 -1

0 0 0 0

Moreover, if A, A, A; are three symmetric (n, n)-matrices such that
—Tr(AA,—A,A.)*=2 Tr A, Tr A}, 1=<a, b<3, a+b,
then at least one of the matrices A, must be zero.

We next put
Sab= E h?jh?j:Tr AaAb ’ SaZSaa y S=Esa )
1,7

a

so that S,; is a symmetric (n, n)-matrix and can be assumed to be diagonal for
a suitable frame. S is the square of the length of the second fundamental form.
When the f-structure in the normal bundle is parallel, using these notations, we
can rewrite (3.2) in the following form:

B3 D hdht= 3 hyte (14 DSBSt
+52 Tr (A,As—-AsAL)Z——%—c;(TrAt)z—I-tZ}Tr A, Tr(A,AA,) .
On the other hand, using Lemma 3.3, we have

(34) — 3 Tr(4,4,~ AsAt)2+§S%—%(n+1)cS
<23 S5+ D Si—k-(n+1)cS
tF£s t

=[(—)S—F(r+De]s—5(5.—S)"
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From (3.3) and (3.4) we find

(35) —a,;,y hta,]hg:jé W—a 5 kh%‘h%ku ’
where we have put

_ 1 1
(3.6) w=[(2——)S—(n+1)c]s

-I-%c;(’[‘r AP—STrATr(AAA).

Now assume that M is compact and orientable, then we have the integral for-
mulas (cf. [5]):

[, .2 (rsi=—] = hedhgs,

Man,j,k M an,g

f heh ¥ 1= j D(TrAg)d(Tr Ag=1.
M az,y,k Ma

Inequality (3.5) and these integral formular imply the following

THEOREM 3.1. Let M be a compact orientable totally real submamjold of a
complex space form M(c). If the f-structure in the normal bundle 1s parallel,
then

@37 [ W —S(TrA)ATr A)I=[ 5 (he)+120.

a1,k

THEOREM 3.2. Let M be a czimpact orientable totally real minimal sub-
manifold of a complex space form M(c). If the f-structure in the normal bundle
is parallel, then

39 [ [G—F)s—pmrne]ssizf, 5 (has1z0.

COROLLARY 3.1. Let M be a compact orentable totally real minimal sub-
manifold of real dimension n of a complex space form M(c) of complex dimension
n+p. If the f-structure in the normal bundle is parallel and 1f S<n(n+1)c/42n—1),
then M is totally geodesic.

Let CP™? be a complex projective space of constant holomorphic sectional
curvature 4 and of complex dimension n+p. We would like to study a compact
orientable totally real submanifold M of real dimension n of CP™® such that
the f-structure in the normal bundle is parallel and satisfies

(3.9) j W —=S(TrA)A(Tr A)1+1=0.

In the following we assume that M is not totally geodesic. From (3.7) and (3.9)
the second fundamental form of M is parallel, i.e., 2%=0. Then (3.3), (3.4) and

(3.5) imply
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—S.)2—

(8.10) g;(st S3)*=0,

(3.11) —Tr(A;A,—AA,)*=2 Tr A} Tr A?

for any t#s. By Lemma 3.3 we may assume that A,=0 for ¢=3,---,n, which
means that S,=0 for {=3,:-,n. On the other hand, we have S;=S; for any
t, s by (3.10). Therefore, using Lemma 3.3, we can assume that

_ (0 1 _ /71 0
(3.12) a=1(] ), A=e(; _7).
Consequently M is minimally immersed in CP**?, Since h}=0, (1.7) implies that

From (1.12) we also have the following

(3.14) dhf=h§e’, +hEwl—hlwd .
From (3.14) we have h¥w}-=0, which implies that
(3.15) wh=0.

Setting a=1%, i=1 and j=2 in (3.14), we see that dA=dh};=0, which means that
2 is constant. Similarly, setting a=2* and 1=j=1, we see that y is also constant
and by (3.10) we get 2°>=p® Since M is not totally geodesic, 4#0. This shows
that

(3.16) of+0, t=1,2.
From (3.13), (3.15) and (3.16) we can consider a distribution L defined by
0*=0, w!?=0, wh=0.
Then it easily follows from the structure equations that
dw*=0, dw?=0, dwt=0.

Therefore the distribution L is a 4-dimensional completely integrable distribution.
We consider the maximal integral submanifold M(x) of L through x€M. Then
M(x) is of dimension 4 and by construction it is totally geodesic and is a complex
submanifold in CP**?, Moreover M is immersed in M(x). Thus we can consider
that M is minimally immersed in CP?. From these considerations, combined
with the theorems of [5], [7], we have the following

THEOREM 3.3. Let M be an n-dimensional compact orientable totally real
submanmifold of a complex projective space, CP™? (n>1) and suppose that M is
not totally geodesic but satisfies the condition (3.9). If the f-structure in the
normal bundle is parallel, then M is S*XS! in some CP? in CP%*P,

THEOREM 34. Let M be an n-dimensional compact orientable totally real
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minimal submanifold of a complex projective space CP™? (n>1) with S=
n(n+1)/@2n—1). If the f-structure in the normal bundle is parallel, then M is
SixS* in some CP® in CP?*?,

§4. Totally real submanifolds with commutative second fundamental
form.

Let M be a real n-dimensional totally real submanifold of a complex (n-+p)-
dimensional Kaehler manifold M. If the second fundamental form of M satisfies
A A=A, A, for all a and b, then the second fundamental form of M is said to
be commutative, which is equivalent to that %}h%h?kzgh‘j‘kh?, for all g, b, 7 and k.

LEMMA 4.1 ([10]). Let M be a real n-dimensional totally real submanifold
of a complex (n+p)-dimensional Kaehler manifold M. If the f-structure in the
normal bundle is parallel, then M is flat if and only if the normal connection of
M 1is flat, i.e., R%,=0.

Proof. From Lemma 2.1, we get h};=0, which shows that ®}=0. Then
(1.2), (1.6) and (1.9) imply
28 =dwh + 0 Not=doi+toi Aot =07,
T=0, £4=0,
which show that R%.,;=R%, and R}y=R%,=R!,=0. Thus we have our asser-
tion.

LEMMA 4.2. Let M be a real n-dimensional totally real submanifold of a
complex (n+p)-dimensional Kaehler manifold M. If the second fundamental form
of M 1s commutatwe and if the f-structure in the normal bundle 1s parallel, then
we can choose an orthonormal frame for which A, 1s of the form

0

i.e., h{=0 and hf=0 unless t=1=}.

Proof. By the assumption we have h}=0. If A,A,=A,A,, we can choose
an orthonormal frame ey, --,e, for T,(M) in such a way that all A,’s are
simultaneously diagonal, i.e., h%=0 when i#j, that is, h;=0 when i#j. From
(1.11) we see that h{;=0 unless t=1=j.
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COROLLARY 4.1. Let M be a real n-dimensional totally real minimal sub-
manifold of a complex (n+p)-dimensional Kaehler manifold M with commutative
second fundamental form. If the f-structure in the normal bundle is parallel,
then M 1is totally geodesic.

Proof. From Lemma 4.2 we have 4;=0 for all :, by the fact that TrA;=0.
On the other hand, we have already A;=0. Thus M is totally geodesic.

COROLLARY 4.2. Let M be a real n-dimenswnal (n>1) totally real, totally
umbilical submanifold of a complex (n+p)-dimensional Kaehler manifold M. If
the f-structurve in the normal bundle is parallel, then M is totally geodesic.

Proof. Since M is umbilical, we have h%=0,;(Tr Ay)/n and A;=0 by Lemma
2.1. Therefore the second fundamental form of M is commutative. Thus Lemma
4.2 implies that A% =0 unless i=j==k. On the other hand, we have h¥, =21,0;;/n.
Setting i=)+k, we have 4,=0 and hence M is totally geodesic.

LEMMA 4.3. Let M be a real n-dimensional totally real submanifold of a
complex space form M™?(c) with parallel f-structure in the normal bundle. Then
M is a real space form of constant curvature (1/4)c if and only if the second
Sundamental form of M is commutative.

Proof. First of all, we have h{=0 by Lemma 2.1. Then (1.8), (1.11) and
(1.15) imply

R fm: K ,iikl_l" % (hgk G h; h‘;k)
= COud = dud )+ Sl —hiht)

which proves our assertion.

LEMMA 44. Let M be a real n-dimensional totally real submamfold of a
complex (n-+p)-dimensional Kaehler manifold M. Then we have

1) S Tr AIA=3(Tr A,A)*.

Proof. Since hf;=hi,, we have

STrAlAl= 3 hhGAGH

yU Ty
= 3 AERERGRE=(Tr A A" .

t,8,2,7,k,

LEMMA 4.5. Let M be a real n-dimensional totally real submamifold with
constant curvature k of a complex space form M™?(c). If the f-structure in the
normal bundle is parallel, then we have

42) (e k) SLTr A —(Tr AP 1= Tr A41—Tr (4,47,
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Proof. From (1.8), (1.15) and (1.16) we have
43) (o) @usdsn—0ud )= (hihs— b5
where we have used the fact that 4%,=0 as is seen from Lemma 2.1. Multiplying

the both sides of (4.3) by X h%h%, and summing up with respect to 4, j, 2 and [
$
we have (4.2) by using (4.1).

LEMMA 4.6. Let M be a real n-dimensionq.l totally real submanifold with
constant curvature k of a complex space from M"*?(c). If the f-structure in the
normal bundle is parallel, then we have

4.4) (n—l)(%c—k)zcl Tr A%:tZ[Tr A3A—Tr A, Tr(4,4:4,)].
Proof. From Lemma 2.1 and (4.3) we have
45) (n—1) (=R )3, =3 (R — RS
t,1

Multiplying the both sides of (4.5) by Zs}hffk %, and summing up with respect to
1, k and [ we obtain (4.4).

§5. Totally real submanifolds of constant curvature.

PROPOSITION 5.1.  Let M be a real n-dimensional totally real submanifold of
a complex space form M™P(c) with parallel mean curvature vector. If M is of
constant curvature k and i1f the f-structure in the normal bundle is parallel, then

(5.1) . lZJ‘, k(h;‘jk)zz—k ;[(n—i—l) TrA}—2(Tr A,)%].
Proof. By the assumption we see that >} Tr A2 is constant. Thus we have
a

Shdhi= - ASTe A= S (== T ().

a k

Therefore (3.2) becomes

(62) ¥ (hr=—3[-(r+De TrAl——4«(Tr A)]

a,2,3,k

— 2 A{Tr(A4A,—A,A)* —[Tr(A,A) P+ Tr A, Tr (A, A, A0} .

Substituting (4.2) and (4.4) into (5.2) and using (4.1) we have (5.1).

PROPOSITION 5.2. Let M be a real n-dimensional totally real submanifold of
a complex space form M™P(c) (n>1) and M be with parallel mean curvature

vector and of constant curvature k. If %cgk and if the f-structure in the
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normal bundle is parallel, then E<0 or M is totally geodesic (—Lll—c=k).
Proof. From (45) we have

(%c—k) n(n— 1)=‘LZ [TrA3—(TrA)4].
Since —7}-62 k, we have
(5.3) ZL) Tr A}= ; (TrA,):.

If >0, (5.1) implies that
0=§{(n—1)TrA%+2[TrA%—(TrA,)2]} ,

which implies that > Tr A?=0 and hence that M is totally geodesic. Except for
this possibility we have 2=0.

ProposITION 5.3. Let M be a real n-dimensional totally real submanifold of
a complex space form M™P(c) (n>1) and M be with parallel second fundamental

form and of constant curvature k. If —i—cgk and if the f-structure in the normal

bundle is parallel, then either M 1s totally geodesic (—i—c:k) or flat (k=0).

COROLLARY 5.1. Let M be a real n-dimensional totally real minimal sub-
manifold with constant curvature k of a complex space form M™?(c). If the f-
structure in the normal bundle is parallel, then either k<0 or M is totally geodesic.

COROLLARY 5.2. Let M be a real n-dimensional totally real minimal sub-
manifold of a complex space form M™P?(c) and M be with constant curvature k
and parallel second fundamental form. If the f-structure in the normal bundle
is parallel, then either M is totally geodesic or flat.

PROPOSITION 5.4. Let M be a real n-dimensional totally real submanifold
with parallel mean curvature vector of a complex space form M™P(c). If the
second fundamental form of M is commutative and if the f-structure in the
normal bundle is parallel, then we have

(5. 3 (W= ——cln—D) X Tr A
a,2,5,k B

Proof. Using Lemma 4.2 and Lemma 4.3, we can transform (5.1) into (5.4).

PROPOSITION 5.5. Let M be a real n-dimensional totally real submanifold of
a complex space form M"™P(c) (n>1) and M be with parallel mean curvature
vector and with commutative second fundamental form. If the f-structure in the
normal bundle is parallel, then either M 1s totally geodesic or ¢<0.

PROPOSITION 5.6. Let M be a real n-dimensional totally real submanifold of
a complex space form M™?(c) (n>1) and M be with parallel and commutative
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second fundamental form. If the f.structure in the normal bundle is parallel,
then M is either totally geodesic or flat.

Proof. By the assumption and Lemma 4.3, M is of constant curvature %c.

On the other hand, by (5.4), M is totally geodesic or ¢=0 in which case M is
flat.

PROPOSITION 5.7. Let M be a real n-dimensional flat totally real submanifold
with parallel mean curvature vector of a complex (n-+p)-dimensional flat Kaehler
manifold M. If the f-structure in the normal bundle is parallel, then the second
fundamental form of M is parallel.

Proof. From Lemma 4.3 and (5.4) we have our assertion.

§6. Flat totally real submanifolds.

A simply connected complete Kaehler manifold of constant holomorphic
sectional curvature ¢ and of complex dimension n can be identified with the
complex projective space CP", the open unit ball D" in C™ or C® according as
¢>0, ¢<0 or ¢=0. In [12] we gave an example of a flat totally real submanifold
of C™ that is, we showed that S'(7,)XS!(ry)X -+ XS'(r,) is a flat totally real
submanifold in C*, where we put S'(r,)={z;€C: |z,|*=r2}, i=1,---,n. Moreover
an n-dimensional plane R" is a totally real, totally geodesic submanifold in C”
and a pythagorean product S'(r;) X - XS'(r,) X R*"? ig also a flat totally real
submanifold of C® where R"? denotes an (n—p)-dimensional (p=1) plane.

THEOREM 6.1. Let M be a real n-dimensional complete totally real sub-
manifold of C™P (n>1) and M be with parallel mean curvature vector and com-
mutative second fundamental form. If the f-structure in the normal bundle is
parallel, then M 1s an n-dimensional plane R™ in some C" in C™P, a pythagorean
product of the form

S (r) XS (7)) X -+ X SYr,) 1n some C" in C"*P,
or a pythagorean product of the form
S (r) XS (ry) X -+ XS rp) X R*™ 1n some C™ in C**P
where R™ ™ is an (n—m)-dimensional plane and n>m, m=1.
Proof. By the assumption and Lemma 4.3, M is flat. Thus Proposition 5.7
shows that the second fundamental form of M is parallel. Moreover, by using
Lemma 4.1, we see that the normal connection of M is flat. From Lemma 2.9

of Yano-Ishihara [11], M is immersed in some C” in C"**?. Then Theorem 3.1
in [117] proves our statement.

THEOREM 6.2. Let M be a real n-dimensional complete totally real sub-
manifold of a sumply connected complete complex space form M™P(c) (n>1) and
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M be with parallel and commutative second fundamental form. If M is not totally
geodesic and if the f-structure in the normal bundle is parallel, then M is a
pythagorean product of the form

SHr) XS (ry) X --» XS¥(r,) in some C™ in C™*P,
or a pythagorean product of the form

SYr) X SY 1) X -+ XS rp) X R*™™ in some C™ in C™P
where n>m and m=1.

Proof. By the assumption and Proposition 5.6, we have ¢=0. In this case
we may consider that the ambient space M is C"*?. Then Theorem 6.2 follows
from Theorem 6.1.

COROLLARY 6.1. Under the same assumption as in Theorem 6.1, if M 1is
compact, then M is a pythagorean product of the form

S (r) XS (7)) X - XS (r,) 1n some C™ in C™?,

COROLLARY 6.2. Under the same situation as in Theorvem 6.2, if M is com-
pact, then M 15 a pythagorean product of the form

S (r) XS (ry) X +-+ XSYr,) in some C™ in C™*?,
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