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1. It might seem surprising that anything remains to be said about the
Three-Circles Theorem especially since various treatments of the sharp form of
this result have been given by Teichmϋller [3], Heins [1] and Robinson [2].
We regard the problem in the form that for f(z) regular (single-valued) for
lS\z\^R and satisfying the bounds |/(z) |^ l for | z | = l , \f(z)\^M for \z\=R
the sharp bound of |/(r)|, \<r<R is to be determined. Heins' solution is indeed
quite implicit. Teichmϋller gave an explicit expression for the sharp bound and
a corresponding expression for the extremal function, further deducing from this
several rather evident properties of this function. The approach of Robinson
is in certain respects the most penetrating. We make slight changes in his
notation to conform to that used here. Taking R fixed he observed that for
KMSR the extremal function, further assumed normalized so that /(r)>0 and
denoted by φ(z, M), will be univalent with a simple geometric nature. He further
observed that for Rn<M^Rn+\ n an integer ^ 1 , the extremal function will be
given by znφ(z, MR~n). He also expressed these extremal functions in terms of
theta functions and deduced certain results from this representation. The final
statement of his paper suggests that he did not articulate the sharp bound in
the form given by Teichmϋller although it appears a certain reordering of his
considerations would have provided this.

None of the above procedures provides a complete description of the geome-
tric form of the extremal functions and it is with this that we will deal. Further
we will show that Teichmϋller's explicit bound is an immediate consequence of
the simplest properties of the extremal functions.

2. We recall first an important lemma which was the basis of Robinson's
method.

LEMMA 1. // f(z) is regular for l^\z\^R except perhaps for a simple pole
at -b, Kb<R, and if \f(z)\<,l for \z\=l and \z\=R then \Rz)\^l for
Kz<R. If the equality holds at any point of this segment, then f(z) is constant.
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We now proceed to describe geometrically a family of functions which will
prove to be the extremal functions for the Three-Circles Theorem. In this we
will take M fixed >1 and determine corresponding functions for all values of

Definition 1. Let St(M1/n) for n a positive integer denote the Riemann surface
covering K\w\<M which is the image of 1< \z\ <M1/n by the function f(z, M1/n)
= zn. We will denote points of this surface by the function value in a simple
shorthand notation. Let S(n, t), l^t<M, denote the Riemann surface obtained by
cross-joining <k(M1/n) to the disc \w\<M along the segment of points f(z, M1/n),
z real and negative, which satisfy t< \f(z, M1/n)\ <M. This is a doubly-connected
schlichtartig surface, the image of l<\z\ <R(n, t) by a function F(z, n, t) (which
extends to be regular on 1*1=1 with \F(z, n,t)\=l there) normalized to be real
and positive for z real and positive. Let <S(0, 1) denote the disc \w\<M. Let
3(n, θ), n a non-negative integer, 0<θ<π, denote the Riemann surf ace obtained
by slitting S(n, 1) along the arc covering the points w of modulus 1 with π—θ
^ a r g w^π-\-θ, n odd, —θ^aτg w^θ, n even. This is a doubly-connected schlich-
tartig surface the image of 1< \z\ <R\n, θ) by a function G(z, n, θ) (which ex-
tends to be regular on \z\=l with \G(z, n, 0 ) | = 1 there) normalized to be real
and positive for z real and positive.

LEMMA 2. As t decreases on the interval [1, M), R(jιf t) decreases strictly
over the interval [R(n, 1), M1/n) where R(n, 1)>M 1 / C n + 1 ). As θ increases on the
interval (0, π), R'(n, θ) decreases strictly over the interval (M 1 / ( n + 1 ), R(n, 1)) where
we set by convention ϋ?(0, l ) = + o o . Thus every value greater than 1 other than
M1/m, m a positive integer, is assumed exactly once by R(n, t), l^t<M, as n runs
through the positive integers, or R'(n, θ), 0<θ<π, as n runs through the non-
negative integers.

It follows by applying the equality statement of Lemma 1 to the quotients
of any two functions among the F(z, n, t), G(z, n, θ) that no two values among
the R(n, t), R'(n, θ) can be equal. Suppose now we have proved Lemma 2 for
all values n<N. Let t1} t2 be values in (1, M) with t{>t2. Magnifying S(N, t2)
in the ratio tjt2 with centre the origin we obtain a surface S'(N, t2) which can
be regarded as lying with S(N, tj in a common Riemann covering surface. It
is then clear that S(N, ίx), S'(N, t2) can be related by a quasiconformal mapping
whose dilation tends to 1 as t2 tends to tλ (or vice versa). Thus R(N, t) is
continuous for t on (1, M). It is readily seen that lim R(N, t)=M1/N, lim R(N, t)

—R{N, 1). Since R(N, t) cannot take any value greater than MVN or any value
less than MVN more than once, it must decrease strictly as t decreases on [1, M).
Further each surface £Γ(AΓ, θ\ 0<θ<π, can be regarded as imbedded in S(N, 1)
and for 0<^ 1 <^ 2 <π, 2(N, θ2) can be regarded as imbedded in £Γ(iV, θ±). It
is readily seen that i?7(AT, θ) varies continuously with θ on (0, π) and that
lim R'(N, Θ)=R(N, 1), lim R'(N, Θ)=M1/(N+1\ Thus R'(N, θ) decreases strictly on
θ0 6
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the interval (MmN+ί\ R(N, 1)) as θ increases on (0, π). In particular R(N, 1)
>M1/(N+1\ The result of Lemma 2 follows by induction.

Definition 2. For every value of R greater than 1 and distinct from M1/m,
m a positive integer, we denote the function among F(z, n, t), G(z, n, θ) for which
R(n, t)=R or R'(n, Θ)=R by f(z, R). This combines with the notation introduced
in Definition 1 to define f(z, R) for all R>1. If we wish to make explicit the
role of M we denote the function in question by f(z, R, M).

It is immediate that f(z, R, M) extends to be regular on l^\z\^R with
\f(z,R, M ) | = l on | z | = l , I/O, R, M)\=M on \z\=R.

3. THEOREM 1. Given positive numbers R>1, M>1 let f(z) be regular for
l<^\z\S-R and satisfy I/O) 1^1 for M = l , \f(z)\^M for \z\=R. Then for
K\z\<R

\f(z)\^f(\z\,R,M)

with equality for z=reiθ, Kr<R, θ real, only if

f(z)=e^f(e-iθz,R,M),

φ real.

We apply Lemma 1 to the function f(eiθz)/f(z, R, M) at the point z—r, the
conditions for that result being clearly satisfied. Then

\f{reiθ)\^f{r,R,M)

and equality occurs only for f(zeiθ)=eιφf(z, R, M) that is

f(z)=e^f(e-i&zf R, M).

COROLLARY 1. For Rm'1<M<Rm

1 m a positive integer f(z, Ry M) has in
l^\z\^R a unique simple zero at the point —Rm/M. Thus

log |/(*, R, M) I =ω(z) log M-g(z, -Rm/M)

where ω(z) denotes the harmonic measure at z of \z\=R with respect to 1< \z\ <R
and g(z, —Rm/M) denotes the Green1 s function of 1< \z\ <R with pole at —Rm/M.

Explicitly, for f{z) satisfying the conditions of Theorem 1,

log\f(z)\mogM)(\og\z\)/logR-g(\z\,-Rm/M)

with equality (occurring for z positive) only if

log I/O) I =ω(z) log M-g(z, -Rm/M).

The final statement is Teichmϋller's result.
Evidently ω(z)=\og \z\/\ogR. It is clear from the construction of f(z, R, M)

that it has a unique simple zero at a point p with — R<p<— 1. We denote
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\z\ =R by Cu \z\ =1 by C2 and a small simple closed curve on which \f(z, R,M)\
is constant containing p by γ. Let D be the domain bounded by Clf C2, γ and
let these curves be sensed positively on the boundary of D. Let u(z)=
log\f(z, R, M)\. We denote the differential conjugate to the differential η by
*2?. Then

0= If (dω*du—du*dω)= \\ d(ω*du—u*dω)

and by Stokes' Theorem

+ί +!
i J C2 Jτ

Now
I ω*du—2πm, I ω*du—§, ω*du=—2πω(p),

J Cl J (72 JT

Γ Γ Γ
u*dω=(logM)(2π/\ogR), u*dω=0, \

J Ci * Cz J ΐ

Thus

2πω(p)=2πm-2π log M/log J?

or

log lί I =m log i?—log M

and \p\=Rm/M. The other statements follow at once.

4. It is worth observing that, while the construction of Lemma 2 requires
some form of uniformization theorem, we can obtain a quite elementary proof
of Teichmϋller's result as follows. We need only construct f(z, R, M) for R>M
and utilize Robinson's remark that for Rm<M<Rm+\ f(zf R, M)=zmf(z, R, MR~m).
This is enough to obtain the properties of f(z, R, M) utilized in the proof of
Corollary 1.
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