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CONTROLLED GALTON-WATSON PROCESS AND

ITS ASYMPTOTIC BEHAVIOR

BY TETSUO FUJIMAGARI

1. In a stochastic population process described as a Galton-Watson process
each individual splits independently according to a given probability law and
new born particles constitute the following generation. In addition to the in-
dependence in splitting the law of splitting of each individual depends on neither
the generation to which an individual belongs nor the existence of the other
individuals of the same generation and is common to all individuals. We shall
consider a somewhat generalized Galton-Watson process in the sense that the
law of splitting of each individual depends on the total number of individuals
of the same generation and the other independence properties are reserved.
The object of this note is to study asymptotic behaviors of such processes,
although we can hardly obtain any complete results up to now except some
partial results. The difficulties in analysing the process will be due to the de-
pendence introduced above from which it no longer holds such as the iteration
property of a generating function which plays a fundamental role in Galton-
Watson processes.

We shall formulate the process under consideration as follows. Let Zn be
the size or the total number of individuals which belong to the n-th generation
and given a sequence of probability distributions £>(i)= \pr(i): rΞ>0}, z=0, 1,2, •••

oo

where pr(i)}^0, Σ Λ (O=1 for all fel and pr(O)=δrO. Then the process {Zn} may
r=0

be defined as a Markov chain {Zn, Px\ ίeS}, or briefly {Zn}, on the state space
S={0,1, 2, •••} with transition probabilities PtJ defined by

Pχj= Σ Pri(ϊ)Prz{ϊ) - pri(i), Poj=δo,

for all ι,7^0.
By the definition of {Zn} each individual belonging to the n-th generation

splits independently according to the probability law &(Zn) and contributes to
make the following (n-fl)-th generation. Since the process {Zn} is the ordinary
Galton-Watson process if 5>(1)=5>(2)= ••• and since the law of splitting of an
individual is arbitrarily given according to the size of the generation, i. e. &(i) is
arbitrary for each z'^1, we shall call the Markov chain {Zn,Pt; zeS} as a
controlled Galton-Watson process (CGWP). As seen from the definition the
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CGWP {Zn} is one of models which describe branching stochastic processes with
interactions between individuals.

Levina, Leontovich, and Pyatetskii-Shapiro [9], and recently Labkovskii [8]
considered the same process as a CGWP and obtained a limit theorem concern-
ing to the expectations of certain first exit times of a sequence of CGWP's.

The asymptotic properties of stochastic population processes with interac-
tions between individuals or of " nonlinear stochastic growth models " have been
studied by Daley [1], Kesten [3], [4], [5], and Kesten and Stigum [7] etc., and
we shall show below that some of results of Kesten and Stigum may be applied
to a CGWP under certain conditions.

We shall assume throughout the following condition:

(1) ίo(O+ίi(O<l for all i ^ l .

2. We shall state the following theorem analogous to that of Galton-Watson
processes.

THEOREM 1. For each z^O, we have

Pi(Zn—>0 or oo as n—>oo)—1.

Proof. It is sufficient to show that each iΞ l̂ is a transient state for {Zn},
i.e., Pi(Zn=i infinitely often)<l. First of all, if po(i)>O, then

Pi(Zn=ι for some n^ΐ)^l—(po(ι))ι<l

and hence i is a transient state. We next assume Po(ϊ)=O. If Po(j)—0 for all
7^1, then it is obvious from the assumption (1) that the state i is transient.
Thus we assume J—{j>i: Po(j)>0}φφ. By denoting the first hitting time to
the set J by σ,

Pt(Zn=i, i.o.)=Pi(Zn=i, i.o., σ<oo)+P ί(Z J I=i, i.o., σ=oo),

where we denote " infinitely often" by " i .o ." . Since <7=oo implies Zn-*oo a. s.,
the second term of the right-hand side is equal to zero. For the first term we
have from the strong Markov property

Pt(Zn=i, i.o., σ<oo)=J£:ί[ί7<oo; PZσ(Zn=i, i.o.)]

Therefore, Pi(Zn—i, i.o.)<l, i.e., the state i is transient. The proof is com-
pleted.

3. We shall now assume the existence of the first moments m{ι) of £P(i),
i.e.,
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for all z'Ξ>l. Then, it is easily seen from the definition of {Zn}

(2) E£Zn+1\ZQ, Zu -. , Z n ] = £ 1 [ Z n + 1 | Z n ] = m ( Z n ) Z n f

and hence if m(ι)^l for all i ^ l , {Zn} is a nonnegative supermartingale and
converges a. s. to an integrable random variable (see, e. g., Meyer [10]), from
which, together with Theorem 1, we have the following

THEOREM 2. // m(i)^l for all z^l, then

Pi(Zn-^0 as n->oo)=l /br α// z^

Theorem 2 is an analogous statement to the critical or subcritical case of
Galton-Watson processes. However even the case of m(ι)^p>l for all z^ l and
for some constant p does not imply q{i)—Pi{Zn-^^ as n->oo)<l for some z^l .
This is shown by the following example.

EXAMPLE. Let ε be a constant such as 0 < ε < l and assume ί o(i)=(l—ε) 1 7 ί

for all z^l . Moreover we may assume the existence of all the moments of £P(z),
ί ^ l and m(i)^jθ>l, z^ l for some constant p. Then, q(ι)=l for all feO. For

= ε m — > 0 as m->oo .

4. We shall seek for conditions relating to the almost sure extinction of
the process {Zn} by means of a comparison method.

Let hi(s) be the generating function of the probability distribution ^(i), i. e.,

hi(s)=jtpr(i)sr, O^s^l . Moreover, set
r=0

A(s)=inf hi(s), A(s)=suρ h^s)

and define hw(s) and /icn)(s) for n ^ l by the n-fold iteration of h(s) and A(s),
respectively. If we put / n ( i ; s)=Ei(sZn), then we have

LEMMA 1. For all n ^ l and f^l,

(3) (Acn)(s))*^/n(i

Proof. Since /i(z s)=(Aί(s))\ the inequality (3) is obvious for n = l . Moreover,
since / n ( ϊ ; s)=E ί[(/ιZ 7 ϊ_1(s))^-1], we have
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and hence

i A(s)).

Therefore, if we assume

then

(A^s))1^'""1^)))1

s)^/»-i(i A(s))

and hence the inequality (3) holds for all n ^ l by induction.

LEMMA 2. TAέ? /zmzίs 2=lim /ιcn)(0) and 5=limA°°(0) exzsί and ίAe^ satisfy

the inequality

(4) (2

Proof. Since all A*(s), z^ l are increasing functions in 5, A(s) and h(s) are
non-decreasing functions and hence A(n)(s) and Acn:)(s) are also non-decreasing for
all n ^ l . Thus, Acn)(0)=ACn"1)(A(0))^Acn-1)(0) and Acn)(0)=Acn"1>(A(0))^Acn-1)(0),
from which the limits g=lim A(n)(0) and q—lim AC7l)(0) exist. Since

2(i)=P«(2;-0)=lim Λ(2»=0)

we have from Lemma 1 the inequality (4).

LEMMA 3. q is a minimal solution of the equation s=h{s) such that Orgs^l.

Proof. By the convexity of all functions A*(s), A(s) is also a convex function
and hence continuous for 0 < s < l . Moreover, the continuity of A(s) at s=0 and
s=l is easily shown by the definition. Thus, from the relation Acn)(0)=A(Acn-υ(0)),
q satisfies the equation s=A(s), Ofgsfgl. If s0 is such that so=h(so), O^so<^l,
then Acn)(0)^50 for all n ^ l and hence q^sQ. This means that q is a minimal
solution of s=h{s), O^s^l .

From Lemma 2 and Lemma 3, we have immediately the following theorem.

THEOREM 3. // the equation s=A(s) has a solution such that 0 ^ s < l ,
q(i)<l for all z

REMARK. Since A(s) is the infimum of increasing and convex functions Ai(s),
it is shown that A(s) is continuous for 0 ^ s < l . Thus, as in the case of q, q is
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a minimal solution of the equation s—h(s) such that O^s^l . Therefore the
sufficient condition g = l for #(i)=l for all z ^ l obtained from Lemma 2 is equi-
valent to that h(s)>s for 0 ^ s < l . However, since the condition h(s)>s for
0 ^ s < l implies m(z)^l for all z'i>l, we cannot obtain by this method better
sufficient conditions for q(i)=l for all z ^ l than Theorem 2.

From Theorem 3, we have immediately the following corollaries.

COROLLARY 1. // there exist a finite number of generating functions φx{s),
••• 9 <Pk(s) f°r which each Ai(s) is equal to one of them, and if ^?j(l)>l for all
7=1, — , ft, then q(i)<l for all fel.

For a cell population process (see Levina, Leontovich, and Pyatetskii-Shapiro
[9]), we may assume P0(i)+p2(ϋ=^ for all z^ l and in this case we have:

COROLLARY 2. // Po(i)+p2(ϋ==ί for a^ z ^ l and ιf there exists a constant p
such that m(i)^ρ>l for all i^>l, then q(i)<l for all z^ l .

5. In the case where the laws of splitting £B(i) are the same when the size
i is sufficiently large it will be shown that asymptotic behaviors of a CGWP {Zn}
are like those of an ordinary Galton-Watson process.

Let £>={pr:r^0} be a probability distribution which satisfies Λ>+Λ<1
Assume that there exists an integer N^l such that £B=££(ϊ) for all i*zN. For
£B(i), i<N, it may be taken arbitrarily. Moreover, let {Zn, Pt; ieS} be a Galton-

Watson process with 9? as its splitting law and put p=ΎΣrpr and q=P1(Zn-^Q).
r l

LEMMA 4. // ^ 1 , then q(i)=l for all z^O.

Proof

Pi(Zn-*oo)=:\im Pi(Zn^cχ>, Zn^N for all n^

=lim EilZ^N; PZm(Zn^N for all n^l , 2»-oo)]

m-+oo

by the Markov property. For Zm^N,

PZm(Zn^N for all n^l, Zn-*co)

=PZm(Zn>N for all n>l, Zn-*ao)

= 0 ,

for p£l implies qi^=Pi(Zn^0)=l for all feO. Therefore,

l - ? ( t ) = P , ( 2 » - o o ) = 0 ,

which completes the proof.

LEMMA 5. If p>l, then q(i)<l for all z^l .
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Proof. First, q=P1(Zn-^0)<l when p>l (see, e.g., Harris [2]). For i^N,

Pi(Zn^i for all n^l, Zn-*oo)

=Pi(Zn^i for all n^l, Zn-»oo)

which implies q(i)—l—Pί(Zn->oo)<l for z^A7". Moreover, from the assumption
(1), there exist a finite number of integers klf k2, ~-,km for l^ί<N such that

and

PIZ^K - , Z m = £ m , Z n ^ £ m for all

Therefore, tf(i)<l for
oo

LEMMA 6. If p>l and, in addition, ^Σ(rlogr)pr<oof then, for each z^l,
r=2

lim—^-=TF /or some W>0 holds a. s. (Λ) on {Zn->oo}.
0̂

/. Let i^ l .

lim-%-=TF for some W>0, Zn^N for all n ^

V; Pz(zn^N for all n^l , lim-%=f^ for some

For Zm^Λf,

n^N for all n^l , l i m - % = ί ^ for some W>θ)

n^N for all n^l , \im^$-=W for some
ft—»oo j θ

and since p > l and ΣC^log r)pr<oo imply
r=2

\]m-^g-=W for some T7>0 a.s. on {Zn-*oo}
n->o° P

(see, Kesten and Stigum [6]), we have

=Pzm(Zn^N for all n^l)

=PzJZn^N for all n ^ l ) .

Therefore,

Δ^=W for some PF>0, Zn^A^ for all n^

PZm(Zn^N for all n ^

=Pi(Zn^N for all n^m).
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By letting m—>oo, we have

lim^£-=W for some W>0 a.s. (Λ) on \J{Zn^N for all n^m}

and since {Zn-*oo} c.\J{Zn^N for all n^m}, we have the lemma.
m

By Lemmas 4, 5, and 6 above we have immediately the following

THEOREM 4. // there exists an integer N such that £=&(N)=&(N+Ϊ)= •••,

then, by putting p—^rpr for ^—{pr: r^O},
r = l

(i) |θgl zra£/zί?s q(i)=Pi(Zn-^0)=l for all z>0 and

(ii) p>l implies P ^ Z ^ O X l /or α// z^l αnJ fAβ existence of W=\im—^-
oo

a.s. (Pt) for all z^O, and moreover, if Σ(^logr)p r<oo Λo/rf s as well as p>l we

have Pi(W=0)=Pi(Zn-^0) for all z^O. ^

The statements of Theorem 4 are well-known properties for ordinary Galton-
Watson processes.

REMARK. From the proofs of Lemmas 4, 5 and 6 for Theorem 4 we can
see that the asymptotic behavior of a CGWP {Zn} does not depend on whatever
be the law of splitting when the size of the population is not too large.

6. Finally we state a result obtained by applying the results of Kesten and
Stigum (see, Kesten [4] for the results and Kesten and Stigum [7] and Kesten
[5] for the proofs) to a CGWP {Zn}. It can be shown that the conditions of
the theorem of Kesten and Stigum (Kesten [4], Theorem 1 and the following
paragraphs) are satisfied for a CGWP {Zn} if there exist constants K1<oot

K2<oo, 0<p<oo, and β>0 such that it holds

(5) \m(i)-p\^K1i-P for all i ^ l

and

(6) σ2(ι)=Σ,(r-m(i))2pr(ι)^K2 for all z ^ l .

Thus we have the following

THEOREM 5. // the conditions (5) and (6) are satisfied for some constants
K1<oof K2<oo, 0<io<oo, and β>0, then we have for feO

(i) Pι(liτn-^i-=W for some W>0 or Zn->θ)=l

if ρ>l, and
(ii)

if p<l.
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We remark that the conditions for the second statement (ii) of Theorem 5
may be improved by Theorem 2 and the remark following Theorem 4.
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