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RELATIVE EVANS POTENTIALS
Dedicated to Professor Yasaku Komatu on his 60th birthday

By MITSURU NAKAI

Consider a 2-form P=P(z)dxdy on an open Riemann surface R such that
coefficients P(z) are nonnegative Hoélder continuous functions of local parameters
z=x+1y on R. Let £ be the complement of the closure of a regular subregion
of R and U be a positive solution of the equation Au=Pu on £ continuous on
2. A function E on £ will be referred to as an FEwvans potential relatwe to
(P, U) on 2 if E is a solution of Au=Pu on £ with boundary values zero on 02
such that

1¢) lim E(2)/U(2)= +o0

where oo is the point at infinity of R. We are interested in finding the condition
on U assuring the existence of such an E. For this purpose we consider a
linear operator L§ from C(0£2) into the class of solutions of Au=Pu on £ given
as follows. Let {S} be a directed net of regular subregions of R such that
SDR—£, and let Linsp be the solution of Au=Pu on 2NS with boundary values
zero on 0S and ¢=C(052) on d£2. Then the limit

Lg S":gjg Lgnsep

is a bounded solution of Au=Pu on £ with boundary values ¢ on 92. We say
that U has the ideal boundary values zero if LHU=U. The main purpose of
this paper is to prove the following

THEOREM. An Evans potential E relative to (P, U) exists for any P on 2 1f
and only 1f U has the ideal boundary values zero.

Suppose the existence of £ and set V=U—L% U which is a nonnegative solu-
tion of Au=Pu on £ with boundary values zero on 02. In view of eE—V=
(eE/U—V/U)-U and V/UZ1, (1) implies that the inferior limit of ¢E—V as
z—oco or 08 is nonnegative for any positive number ¢ and therefore eE—V =0
on £ which in turn implies V=0, i.e. LHU=U. Thus the essential part of our
proof is to show the existence of E under the assumption L U=U. The proof
will be given in nos. 1-6. Before doing this we mention several direct con-
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sequences of our theorem, most of which are earlier published :

a) An FEvans-Selberg potential q(z, z,) on R is a harmonic function on R—{z,}
such that lim,-.q(z, z,)=-+c0 and ¢(z, z,)—log|z—z,|=0(1) as z—z, Kuramochi
[2, cf. also 3] proved that such ¢(z, z,) exists on R if and only if R is parabolic
(cf. [5]). Let 2,6 R—2 and D be a parametric disk about z, with DCR—Q.
Observe that L%1=1 if and only if R is parabolic. Therefore by our theorem an
Evans potential E relative to (0, 1) exists on £ if and only if R is paraholic. If
q(z, z,) exists, then ¢(-, z,)—L%q(+, z,) is an E. Conversely suppose F exists. Set

-1

R,=02U(D—{z}) and let s(z) be Zn(jm*dE) E(z) on £ and log|z—z,| on D. By

the Sario theorem [12], the equation L (¢—s)=¢—s has a harmonic solution ¢

on R—{z,} if and only if jag*dszo, which is actually the case for the present s,
0

and the solution ¢ is a required q(z, z,).

b) An Evans solution v of Au=Pu on R is a solution on R such that
lim,—..v(z)=4oco. Let w=L%H1. Since LHw=w, there exists an Evans potential
E relative to (P, w). The equation L (v—E)=v—E has a solution v which is a
solution of Au=Pu on R provided P%0 on R (Sario-Nakai [13]). Since |v—E]|
<(supyg|v—E|)-® on £, lim,—«v(z)/w(z)=-co. Therefore an Evans solution of
Au=Pu (P#0) exists on R if infow>0 (Nakai [6]).

¢) We denote by Oy the class of pairs (R, P) (P=£0 on R) such that the
only bounded solution of Au=Pu on R is zero. It has been conjectured that
(R, P)e0jg is characterized by the existence of an Evans solution of Au=Pu on
R (cf. [6; p. 92]). Recently the author ([9]) proved the existence of a singular
P on any R, i.e. a P such that any nonnegative solution of Au=Pu on R has
zero infimum, which completely negates the conjecture. However the conjecture
sounds so natural that we still feel that it must be ‘almost true’. The P-unit
eh on £ is given by sup u(z) where u runs over the class of solutions of Au=Pu
on £ with u<1. Then the conjecture is true if it is modified as follows:

The paw (R, P) belongs to Og if and only if there exists a solution v of
Au=Pu on R such that lim,-.v(z)/ef(z)=+oco for one and hence for every ad-
missible £2.

An Evans potential E relative to (P, ¢}) exists on £ if and only if LLeh=
ey, which is, by Ozawa [10]-Royden [11], equivalent to (R, P)0p. From this
E we can construct a required v by the entirely same method as in b.

d) Let R be a hyperbolic Riemann surface and G%z, {) be the harmonic
Green’s function on R. An Evans harmonic function h on R is a positive har-
monic function on R such that lim,.i.h(z,)=-+co for every sequence {z,} of
points in R converging to the point at infinity of R with lim inf,—+=G"(2,, {)>0
for one and hence for every {&R. The existence of such an 7 was shown in
Nakai [7]. This is also a direct consequence of our theorem. Let {eR—4£2.
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Since LLG(-, )=G"(-, {), an Evans potential E relative to (0, G(-, {)) exists on
2. The hyperbolicity of R assures the existence of a harmonic solution & of
@(h—E)=h—E on R (cf. [8]), which is the required h.

e) Assume that P=£0 on R. Then the Green’s function G(z, {) of the equa-
tion Au=Pu always exists on R (Myrberg [4]). As a counter part of the result
in d, Kawai [17 proved that there exists a positive solution # of Au=Pu on R
such that lim,-+.u(z,)==+0c0 for every sequence {z,} converging to the point at
infinity of R with lim inf,.+.G(2,, {)>0 for one and hence for every {R. By
the entirely same observation as in d we can derive this result from our theorem.

1. We proceed to the existence proof of an Evans potential E relative to
(P, U) on £ under the assumption L U=U on £. Throughout our proof we
fix a regular exhaustion {R,} (n=1,2, ---) of R such that R, D2, with 2,=R— Q
and set 2,=R,N%2. Then {£,} (n=1,2, ---) is an ‘exhaustion’ of 2. We also
set ﬁ«r*ag 02, and B,=0R,, ie. 02,=p,JB,. Let R* be the Cech compacti-
fication of R, f=R*—R the Cech ideal boundary of R, and 2*=R*—(R—2)=
R*—Q,, i.e. 2*=p,U2UB. Then any [—oo, +oo]-valued continuous function
on B,\U2 can be uniquely extended to a [—oo, +o0]-valued continuous function
on £*. We denote by U,, (n<m) the solution of Au=Pu on £,—2, with
boundary values U on §, and zero on fB,. Since LHU=U, lim,U,,=U. In
view of Uy n=U, .<U, we also have
(2) hm U,,,,n—U (n=0,1, ---).

For our purpose it is convenient to consider the elliptic equation

3) Av(2)+2Y log U(2)-Vu(z)=0

instead of Au=Pu, where V¢ is the gradient vector field (dp/dx, 0p/dy). 1t is
easily verified that the operator v—Tv=U-v is a bijective correspondence be-

tween the class of solutions of (3) and that of Au=Pu. The merit of consider-
ing (3) is the validity of the following

Minimum principle. Let v be a [0, +ooJ-valued continuous function on
R—0, such that v is a solution of (3) on 2—Q,. Then v takes its minimum

on B,

Set ¢c=min {v(2); z&8,}. Since Tv—cU,,, is a solution of Au=Pu on Q,.,—2,
with boundary values U'v—cUn,mz(v—c)_- U=0 on B, and U-v—cU,,=U-v=0
on B, we see that Tv=cU,, on 2,—2,. By (2) we deduce that Tv=cU, i.e.
v=c on 2—2,.

2. Modifying the Green’s function G(z, {) (G.(z, &), resp.) of Au=Pu on Q2
(2, resp.) we consider a new kernel K(z, £) on £2 defined by

4 K(z, =U(2)"'G(z, QU™
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which is also a positive symmetric kernel on £ and TK(-, )=G(-, O)U)™'. Need-
less to say K(z, {) is not the Green’s function of (3) unless P=0 and U=1. First
we give an analytic proof of the existence of the K-capacitary measure p, on B,
characterized by the identity

3) J, K Odp©=1

for every z€8,. Fix a point z£8,. Apply the Green formula to functions
G(z,-) and U—U,, for the region £, less the small d-disk about z. Then on
letting 6—0 we obtain

©  2rU@— V(@)= G(a 0 dUQ~UpnO)+ [, UGz 0.

Still fixing the same point z& 2, we again apply the Green formula to functions
Gn(z, +) and U, , for the region 2,—%2, to obtain

0=—{_ Gulz, O*dUs Q)+, UGz 0.

In view of the limit property (2), on letting m—-+oo, we conclude that
0=—{ GG DU+ U0 4G 0).

Subtraction of the above identity from (6) implies

@) U@~ U=, Gz, O*deUunl0)

It is not hard to see that both sides of the above are continuous functions of z
on £2,UB,. Tnerefore the validity of (7) on £, implies that on £2,JB,. For
ze2,JB,, (7) takes on the form

1= Un @)/ U= | UGl OUE U@ deUnn0)
Observe that
()= U deUn()
is a nonnegative Borel measure on 8, and we have
®) 1= Uon(@)/U@={ | Kz Odpu©)
for z£2,UB, and in particular (5) is valid for z€ ,.
3. The kernel K(z, ¢) on £ has a natural extension to £*:

K(z*, 0= i im _K(z,
) (2% ¢0=lim ( lim K(z ()

for (z*, {*)e2*x 2% Since K(z, {*)=limceg,c-c:K(z, {) is a positive solution of
(3) on £2—{¢*} with boundary values zero on B, we could define K(z*, {¥)=
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limeeg,,—.«K(z, £*) in (9). For a compact set X in £2* we consider three quantities
e(X), 6(X), and «(X) as follows. First let M(X) be the class of unit Borel
measures on X and set

(10) e(X)= inf [g, p]

#EN(X)
where [y, v]= f K(z, {)dp(z)dv(Q) for two Borel measures ¢ and v. The quantity
1/e(X) is referred to as the K-capacity of X. Next let

(BYoux)= _int_SUK(zr, 29)
2 K 21%, -, 2p*eX 1<y vroase

Then we know (cf. e.g. [6, 7, 137]) the existence of the limit
(11) 5(X)=kli? 3,(X)[0, +o0]

which is referred to as the K-transfimite diameter of X. Finally let

k
kty(X)= sup (inf X K(z* z¥)).
z1%, -, 2p*EX Z*EX 1=1

1

Then we know (cf. e.g. [6, 7, 13]) the existence of the limit

(12) T(X)=kli£n T X)E[0, +o0]

which is referred to as the K-Tchebycheff constant of X. We have (cf. e.g. [6,
7, 13]) the following inequality :

13) i(X)=c(X),

which is the half of the Fékete identity. We do not know to what extent the
following is true for general X in £2* but at least for X in £ and in particular
for 8, we have (cf. e.g. [7, 13])

(14) e(Bn)=0(Bn)=1(fa) .
4. Based on the minimum principle in no. 1 we prove
(15) o(Br)=0(p).

Fix an arbitrary system z¥, ---, z¥ of & points in 8. We set
1,k
o(et -, C="3 K@h &,

First observe the function z—v(z, z¥, -+, z¥) is a positive solution of (3) on
Q—Q, continuous on (£2—2,)UB,. Thus the function takes its minimum on f§,,
say at z,€f,, and in particular we have

'U(Zl, z§ky Ty Zf)éﬂ(z;k, z‘i’ky Tty Z;?k> .
Assume that [ points z,, ---, z,€ 8, (1=I<k) are chosen so as to satisfy

b3
v(zli Tty 2y Rrny z;ek)év(zly 0y 2y, szy ) Zf) .
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Then since z—u(zy, -+, 2, 2, z¥,, -+, 2¥) is a positive solution of (3) on 2—2,
which is (0, +oo]-valued continuous on (2—£2,)\JB,, the function takes its mini-
mum on B, say at z;4,f,. Therefore

U(Z], Tty Zl+ly sz+2y Tty zf)év(‘zh Tty Zly sz+ly Tty Zt) .
We can thus find % points z, -+, 2, in S8, such that
'U(Zl, Tty Zk)év(z;k’ Tty Z;zk) .
By the definition of 0,(8,), the left hand side of the above dominates (g)&k(ﬁn),

and since zf, .-+, z¥ are arbitrarily chosen in 8, we conclude that 0,(8,)=<0:(B).
On making k—--co we obtain (15).

5. Fix a point z,£,. Observe that the function {—K(z, {) is a positive
solution on 2—2,. Let a=min {K(z, {); {€p:}>0. Once more we use the
minimum principle in no. 1 to conclude

(16) K(zy, )za
for every {e£2—02,. From (8) and (16) it follows that

1= U2/ Ue)Z] | adpm(O=ap(Ba).
We conclude by (2) that
an Jim ,(8,)=0.

Set (¢, »)=[G(z, Qdp(z)dv(©). Then [y, v]=(U™ g, U*-»). We know that

the Schwarz inequality (g, v)’<(g, ¢)-(v, v) is valid (cf. e.g. [6]). Therefore the
same is true of [y, v]: [, vI’°<[p, p]-[v,v]. Let uesM(B,). By (5), [y, t.1=1.
Hence 1=[p, p1l s, #], and again by (5), [ttn, tol=p:(B.). A fortiori [z, pl=
1/p(Bs) for every p=M(B,). By the definition (10) we conclude that

(18) e(Br) =1/ pa(Br) .
Using (13), (15), (14), (18) and (17) successively in this order we deduce
19 (f)=4o0.

6. In view of (19) and 7(B8)=lim;-+«7,(8) we can find a subsequence {k,}
(m=1, 2, ---) of positive integers such that z,_(8)>2™. By the definition of 7,
there exists k, points z%, (1=1, -, k,) in B such that

km
inf > K(z*, z%,)>2"k,, .
Z*eB 1=1
Denoting by ¢, the point measure at p 2% set
km
”m=(2mkm)'11§ €2h,e
and
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y= 3 v,.
m=1

Then jK(z*, {Ndv,({*)>1 for z*<f and a fortiori fK(z*, {dy(*)=+o0 for

z*ef.

Since v(8)=1, F(z*)=[K(z*, {*)au({*) is [0, +o0]-valued continuous on

Q* and F(z) is a solution of (3) on £ such that F=0 on B, and F=+oo on S.
Set E=TF=U-F. Then E is a solution of Au=Pu on £ with boundary values
zero on B, and E/U=+o0 on B. Therefore E satisfies (1) and E is an Evans
potential relative to (P, U) on £.

The proof is herewith complete.
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