M. NAKAI KODAI MATH. SEM. REP. 26 (1975), 478–484

RELATIVE EVANS POTENTIALS

Dedicated to Professor Yûsaku Komatu on his 60th birthday

By Mitsuru Nakai

Consider a 2-form P=P(z)dxdy on an open Riemann surface R such that coefficients P(z) are nonnegative Hölder continuous functions of local parameters z=x+iy on R. Let Ω be the complement of the closure of a regular subregion of R and U be a positive solution of the equation $\Delta u=Pu$ on Ω continuous on $\overline{\Omega}$. A function E on Ω will be referred to as an *Evans potential relative to* (P, U) on Ω if E is a solution of $\Delta u=Pu$ on Ω with boundary values zero on $\partial\Omega$ such that

(1)
$$\lim_{z \to \infty} E(z)/U(z) = +\infty$$

where ∞ is the point at infinity of R. We are interested in finding the condition on U assuring the existence of such an E. For this purpose we consider a linear operator $L_{\mathcal{Q}}^{p}$ from $C(\partial \mathcal{Q})$ into the class of solutions of $\Delta u = Pu$ on \mathcal{Q} given as follows. Let $\{S\}$ be a directed net of regular subregions of R such that $S \supset R - \mathcal{Q}$, and let $L_{\mathcal{Q} \cap S}^{p} \varphi$ be the solution of $\Delta u = Pu$ on $\mathcal{Q} \cap S$ with boundary values zero on ∂S and $\varphi \in C(\partial \mathcal{Q})$ on $\partial \mathcal{Q}$. Then the limit

$$L^{P}_{\mathcal{Q}}\varphi = \lim_{S \to R} L^{P}_{\mathcal{Q} \cap S}\varphi$$

is a bounded solution of $\Delta u = Pu$ on Ω with boundary values φ on $\partial \Omega$. We say that U has the *ideal boundary values zero* if $L^{P}_{\Omega}U = U$. The main purpose of this paper is to prove the following

THEOREM. An Evans potential E relative to (P, U) exists for any P on Ω if and only if U has the ideal boundary values zero.

Suppose the existence of E and set $V=U-L_{\mathcal{Q}}^{P}U$ which is a nonnegative solution of $\Delta u=Pu$ on Ω with boundary values zero on $\partial\Omega$. In view of $\varepsilon E-V=(\varepsilon E/U-V/U)\cdot U$ and $V/U\leq 1$, (1) implies that the inferior limit of $\varepsilon E-V$ as $z\to\infty$ or $\partial\Omega$ is nonnegative for any positive number ε and therefore $\varepsilon E-V\geq 0$ on Ω which in turn implies V=0, i.e. $L_{\mathcal{Q}}^{P}U=U$. Thus the essential part of our proof is to show the existence of E under the assumption $L_{\mathcal{Q}}^{P}U=U$. The proof will be given in nos. 1-6. Before doing this we mention several direct con-

Received Jan. 21, 1974.

sequences of our theorem, most of which are earlier published:

a) An Evans-Selberg potential $q(z, z_0)$ on R is a harmonic function on $R - \{z_0\}$ such that $\lim_{z \to \infty} q(z, z_0) = +\infty$ and $q(z, z_0) - \log |z - z_0| = O(1)$ as $z \to z_0$. Kuramochi [2, cf. also 3] proved that such $q(z, z_0)$ exists on R if and only if R is parabolic (cf. [5]). Let $z_0 \in R - \overline{\Omega}$ and D be a parametric disk about z_0 with $\overline{D} \subset R - \overline{\Omega}$. Observe that $L_0^0 1 = 1$ if and only if R is parabolic. Therefore by our theorem an Evans potential E relative to (0, 1) exists on Ω if and only if R is parabolic. If $q(z, z_0)$ exists, then $q(\cdot, z_0) - L_0^0 q(\cdot, z_0)$ is an E. Conversely suppose E exists. Set $\Omega_0 = \Omega \cup (D - \{z_0\})$ and let s(z) be $2\pi \left(\int_{\partial \Omega}^* dE\right)^{-1} E(z)$ on Ω and $\log |z - z_0|$ on D. By the Sario theorem [12], the equation $L_{\Omega 0}^0(q-s) = q-s$ has a harmonic solution q on $R - \{z_0\}$ if and only if $\int_{\partial \Omega_0}^* ds = 0$, which is actually the case for the present s, and the solution q is a required $q(z, z_0)$.

b) An Evans solution v of $\Delta u = Pu$ on R is a solution on R such that $\lim_{z\to\infty} v(z) = +\infty$. Let $\omega = L_{\mathcal{Q}}^{p} 1$. Since $L_{\mathcal{Q}}^{p} \omega = \omega$, there exists an Evans potential E relative to (P, ω) . The equation $L_{\mathcal{Q}}^{p}(v-E) = v-E$ has a solution v which is a solution of $\Delta u = Pu$ on R provided $P \neq 0$ on R (Sario-Nakai [13]). Since $|v-E| \leq (\sup_{\partial \mathcal{Q}} |v-E|) \cdot \omega$ on Ω , $\lim_{z\to\infty} v(z)/\omega(z) = +\infty$. Therefore an Evans solution of $\Delta u = Pu$ $(P \neq 0)$ exists on R if $\inf_{\mathcal{Q}} \omega > 0$ (Nakai [6]).

c) We denote by O_B the class of pairs (R, P) $(P \not\equiv 0 \text{ on } R)$ such that the only bounded solution of $\Delta u = Pu$ on R is zero. It has been conjectured that $(R, P) \in O_B$ is characterized by the existence of an Evans solution of $\Delta u = Pu$ on R (cf. [6; p. 92]). Recently the author ([9]) proved the existence of a singular P on any R, i.e. a P such that any nonnegative solution of $\Delta u = Pu$ on R has zero infimum, which completely negates the conjecture. However the conjecture sounds so natural that we still feel that it must be 'almost true'. The *P*-unit $e_{\mathbf{Q}}^{\mathbf{Z}}$ on Ω is given by $\sup u(z)$ where u runs over the class of solutions of $\Delta u = Pu$ on Ω with $u \leq 1$. Then the conjecture is true if it is modified as follows:

The pair (R, P) belongs to O_B if and only if there exists a solution v of $\Delta u = Pu$ on R such that $\lim_{z\to\infty} v(z)/e_Q^P(z) = +\infty$ for one and hence for every admissible Ω .

An Evans potential E relative to $(P, e_{\mathcal{Q}}^{P})$ exists on \mathcal{Q} if and only if $L_{\mathcal{Q}}^{P}e_{\mathcal{Q}}^{P} = e_{\mathcal{Q}}^{P}$, which is, by Ozawa [10]-Royden [11], equivalent to $(R, P) \in O_{B}$. From this E we can construct a required v by the entirely same method as in **b**.

d) Let R be a hyperbolic Riemann surface and $G^0(z, \zeta)$ be the harmonic Green's function on R. An Evans harmonic function h on R is a positive harmonic function on R such that $\lim_{n\to+\infty}h(z_n)=+\infty$ for every sequence $\{z_n\}$ of points in R converging to the point at infinity of R with $\liminf_{n\to+\infty}G^0(z_n, \zeta)>0$ for one and hence for every $\zeta \in R$. The existence of such an h was shown in Nakai [7]. This is also a direct consequence of our theorem. Let $\zeta \in R-\overline{\Omega}$.

MITSURU NAKAI

Since $L_{\mathcal{Q}}^{0}G^{0}(\cdot, \zeta) = G^{0}(\cdot, \zeta)$, an Evans potential E relative to $(0, G^{0}(\cdot, \zeta))$ exists on Ω . The hyperbolicity of R assures the existence of a harmonic solution h of $L_{\mathcal{Q}}^{0}(h-E) = h-E$ on R (cf. [8]), which is the required h.

e) Assume that $P \not\equiv 0$ on R. Then the Green's function $G(z, \zeta)$ of the equation $\Delta u = Pu$ always exists on R (Myrberg [4]). As a counter part of the result in **d**, Kawai [1] proved that there exists a positive solution u of $\Delta u = Pu$ on R such that $\lim_{n \to +\infty} u(z_n) = +\infty$ for every sequence $\{z_n\}$ converging to the point at infinity of R with $\liminf_{n \to +\infty} G(z_n, \zeta) > 0$ for one and hence for every $\zeta \in R$. By the entirely same observation as in **d** we can derive this result from our theorem.

1. We proceed to the existence proof of an Evans potential E relative to (P, U) on Ω under the assumption $L_{\Omega}^{P}U=U$ on Ω . Throughout our proof we fix a regular exhaustion $\{R_n\}$ $(n=1, 2, \cdots)$ of R such that $R_1 \supset \overline{\Omega}_0$ with $\Omega_0 = R - \overline{\Omega}$ and set $\Omega_n = R_n \cap \Omega$. Then $\{\Omega_n\}$ $(n=1, 2, \cdots)$ is an 'exhaustion' of Ω . We also set $\beta_0 = \partial \Omega = \partial \Omega_0$ and $\beta_n = \partial R_n$, i. e. $\partial \Omega_n = \beta_0 \cup \beta_n$. Let R^* be the Čech compactification of R, $\beta = R^* - R$ the Čech ideal boundary of R, and $\Omega^* = R^* - (R - \overline{\Omega}) = R^* - \Omega_0$, i. e. $\Omega^* = \beta_0 \cup \Omega \cup \beta$. Then any $[-\infty, +\infty]$ -valued continuous function on $\beta_0 \cup \Omega$ can be uniquely extended to a $[-\infty, +\infty]$ -valued continuous function on Ω^* . We denote by $U_{n,m}$ (n < m) the solution of $\Delta u = Pu$ on $\Omega_m - \overline{\Omega}_n$ with boundary values U on β_n and zero on β_m . Since $L_{\Omega}^* U = U$, $\lim_m U_{0,m} = U$. In view of $U_{0,m} \leq U_{n,m} \leq U$, we also have

(2)
$$\lim_{m \to +\infty} U_{n,m} = U$$
 $(n=0, 1, \cdots).$

For our purpose it is convenient to consider the elliptic equation

(3)
$$\Delta v(z) + 2\nabla \log U(z) \cdot \nabla v(z) = 0$$

instead of $\Delta u = Pu$, where $\nabla \varphi$ is the gradient vector field $(\partial \varphi / \partial x, \partial \varphi / \partial y)$. It is easily verified that the operator $v \rightarrow Tv = U \cdot v$ is a bijective correspondence between the class of solutions of (3) and that of $\Delta u = Pu$. The merit of considering (3) is the validity of the following

Minimum principle. Let v be a $[0, +\infty]$ -valued continuous function on $\Omega - \Omega_n$ such that v is a solution of (3) on $\Omega - \overline{\Omega}_n$. Then v takes its minimum on β_n .

Set $c=\min \{v(z); z \in \beta_n\}$. Since $Tv-cU_{n,m}$ is a solution of $\Delta u=Pu$ on $\Omega_m-\bar{\Omega}_n$ with boundary values $U \cdot v - cU_{n,m} = (v-c) \cdot U \ge 0$ on β_n and $U \cdot v - cU_{n,m} = U \cdot v \ge 0$ on β_m , we see that $Tv \ge cU_{n,m}$ on $\Omega_m - \bar{\Omega}_n$. By (2) we deduce that $Tv \ge cU$, i.e. $v \ge c$ on $\Omega - \bar{\Omega}_n$.

2. Modifying the Green's function $G(z, \zeta)$ $(G_n(z, \zeta), \text{ resp.})$ of $\Delta u = Pu$ on Ω $(\Omega_n, \text{ resp.})$ we consider a new kernel $K(z, \zeta)$ on Ω defined by

(4)
$$K(z, \zeta) = U(z)^{-1}G(z, \zeta)U(\zeta)^{-1}$$

480

which is also a positive symmetric kernel on Ω and $TK(\cdot, \zeta) = G(\cdot, \zeta)U(\zeta)^{-1}$. Needless to say $K(z, \zeta)$ is not the Green's function of (3) unless $P \equiv 0$ and $U \equiv 1$. First we give an *analytic* proof of the existence of the *K*-capacitary measure μ_n on β_n characterized by the identity

(5)
$$\int_{\beta_n} K(z,\zeta) d\mu_n(\zeta) = 1$$

for every $z \in \beta_n$. Fix a point $z \in \Omega_n$. Apply the Green formula to functions $G(z, \cdot)$ and $U - U_{0,n}$ for the region Ω_n less the small δ -disk about z. Then on letting $\delta \rightarrow 0$ we obtain

(6)
$$2\pi(U(z) - U_{0,n}(z)) = -\int_{\beta_n} G(z,\zeta)^* d_{\zeta}(U(\zeta) - U_{0,n}(\zeta)) + \int_{\beta_n} U(\zeta)^* d_{\zeta} G(z,\zeta) \,.$$

Still fixing the same point $z \in \Omega_n$ we again apply the Green formula to functions $G_m(z, \cdot)$ and $U_{n,m}$ for the region $\Omega_m - \overline{\Omega}_n$ to obtain

$$0 = -\int_{\beta_n} G_m(z, \zeta)^* d_{\zeta} U_{n,m}(\zeta) + \int_{\beta_n} U(\zeta)^* d_{\zeta} G_m(z, \zeta) \,.$$

In view of the limit property (2), on letting $m \rightarrow +\infty$, we conclude that

$$0 = -\int_{\beta_n} G(z, \zeta)^* d_{\zeta} U(\zeta) + \int_{\beta_n} U(\zeta)^* d_{\zeta} G(z, \zeta) \,.$$

Subtraction of the above identity from (6) implies

(7)
$$U(z) - U_{0,n}(z) = \frac{1}{2\pi} \int_{\beta_n} G(z, \zeta)^* d_{\zeta} U_{0,n}(\zeta) \, .$$

It is not hard to see that both sides of the above are continuous functions of z on $\Omega_n \cup \beta_n$. Therefore the validity of (7) on Ω_n implies that on $\Omega_n \cup \beta_n$. For $z \in \Omega_n \cup \beta_n$, (7) takes on the form

$$1 - U_{0,n}(z) / U(z) = \frac{1}{2\pi} \int_{\beta_n} U(z)^{-1} G(z,\zeta) U(\zeta)^{-1} U(\zeta)^* d_{\zeta} U_{0,n}(\zeta) .$$

Observe that

$$d\mu_n(\zeta) = \frac{1}{2\pi} U(\zeta)^* d_{\zeta} U_{0,n}(\zeta)$$

is a nonnegative Borel measure on β_n and we have

(8)
$$1 - U_{0,n}(z) / U(z) = \int_{\beta_n} K(z, \zeta) d\mu_n(\zeta)$$

for $z \in \Omega_n \cup \beta_n$ and in particular (5) is valid for $z \in \beta_n$.

3. The kernel
$$K(z, \zeta)$$
 on Ω has a natural extension to Ω^* :

(9)
$$K(z^*, \zeta^*) = \lim_{z \in \mathcal{G}, z \to z^*} (\lim_{\zeta \in \mathcal{G}, \zeta \to \zeta^*} K(z, \zeta))$$

for $(z^*, \zeta^*) \in \Omega^* \times \Omega^*$. Since $K(z, \zeta^*) = \lim_{\zeta \in \mathcal{Q}, \zeta \to \zeta^*} K(z, \zeta)$ is a positive solution of (3) on $\Omega - \{\zeta^*\}$ with boundary values zero on β_0 , we could define $K(z^*, \zeta^*) =$

MITSURU NAKAI

 $\lim_{z\in \mathcal{Q}, z\to z^*} K(z, \zeta^*)$ in (9). For a compact set X in \mathcal{Q}^* we consider three quantities $\varepsilon(X)$, $\delta(X)$, and $\tau(X)$ as follows. First let M(X) be the class of unit Borel measures on X and set

(10)
$$\varepsilon(X) = \inf_{\mu \in \mathcal{N}(X)} [\mu, \mu]$$

where $[\mu, \nu] = \int K(z, \zeta) d\mu(z) d\nu(\zeta)$ for two Borel measures μ and ν . The quantity $1/\varepsilon(X)$ is referred to as the *K*-capacity of *X*. Next let

$$\binom{k}{2}\delta_k(X) = \inf_{z_1^*, \cdots, z_k^* \in X} \sum_{i < j}^{1, \cdots, k} K(z_i^*, z_j^*) .$$

Then we know (cf. e.g. [6, 7, 13]) the existence of the limit

(11)
$$\delta(X) = \lim_{k \to +\infty} \delta_k(X) \in [0, +\infty]$$

which is referred to as the K-transfinite diameter of X. Finally let

$$k\tau_k(X) = \sup_{z_1^*, \dots, z_k^* \in \mathcal{X}} (\inf_{z^* \in \mathcal{X}} \sum_{i=1}^k K(z^*, z_i^*)).$$

Then we know (cf. e.g. [6, 7, 13]) the existence of the limit

(12)
$$\tau(X) = \lim_{k \to +\infty} \tau_k(X) \in [0, +\infty]$$

which is referred to as the *K*-*T*chebycheff constant of *X*. We have (cf. e.g. [6, 7, 13]) the following inequality:

(13)
$$\delta(X) \leq \tau(X) ,$$

which is the half of the Fékete identity. We do not know to what extent the following is true for general X in Ω^* but at least for X in Ω and in particular for β_n we have (cf. e.g. [7, 13])

(14)
$$\varepsilon(\beta_n) = \delta(\beta_n) = \tau(\beta_n)$$
.

4. Based on the minimum principle in no. 1 we prove

(15)
$$\delta(\beta_n) \leq \delta(\beta)$$
.

Fix an arbitrary system z_1^*, \dots, z_k^* of k points in β . We set

$$v(\zeta_1^*, \cdots, \zeta_k^*) = \sum_{i < j}^{1, \cdots, k} K(\zeta_i^*, \zeta_j^*).$$

First observe the function $z \rightarrow v(z, z_2^*, \dots, z_k^*)$ is a positive solution of (3) on $\Omega - \overline{\Omega}_n$ continuous on $(\Omega - \overline{\Omega}_n) \cup \beta_n$. Thus the function takes its minimum on β_n , say at $z_1 \in \beta_n$, and in particular we have

$$v(z_1, z_2^*, \cdots, z_k^*) \leq v(z_1^*, z_2^*, \cdots, z_k^*)$$

Assume that l points $z_1, \dots, z_l \in \beta_n$ $(1 \le l < k)$ are chosen so as to satisfy

$$v(z_1, \cdots, z_l, z_{l+1}^*, \cdots, z_k^*) \leq v(z_1, \cdots, z_{l-1}, z_l^*, \cdots, z_k^*)$$
.

482

Then since $z \rightarrow v(z_1, \dots, z_l, z, z_{l+2}^*, \dots, z_k^*)$ is a positive solution of (3) on $\Omega - \overline{\Omega}_n$ which is $(0, +\infty]$ -valued continuous on $(\Omega - \overline{\Omega}_n) \cup \beta_n$, the function takes its minimum on β_n , say at $z_{l+1} \in \beta_n$. Therefore

$$v(z_1, \cdots, z_{l+1}, z_{l+2}^*, \cdots, z_k^*) \leq v(z_1, \cdots, z_l, z_{l+1}^*, \cdots, z_k^*)$$
.

We can thus find k points z_1, \dots, z_k in β_n such that

$$v(z_1, \cdots, z_k) \leq v(z_1^*, \cdots, z_k^*).$$

By the definition of $\delta_k(\beta_n)$, the left hand side of the above dominates $\binom{k}{2}\delta_k(\beta_n)$, and since z_1^*, \dots, z_k^* are arbitrarily chosen in β , we conclude that $\delta_k(\beta_n) \leq \delta_k(\beta)$. On making $k \to +\infty$ we obtain (15).

5. Fix a point $z_0 \in \Omega_1$. Observe that the function $\zeta \to K(z_0, \zeta)$ is a positive solution on $\Omega - \Omega_1$. Let $a = \min \{K(z_0, \zeta); \zeta \in \beta_1\} > 0$. Once more we use the minimum principle in no. 1 to conclude

(16)
$$K(z_0, \zeta) \ge a$$

for every $\zeta\!\in\!\varOmega\!-\varOmega_{\scriptscriptstyle 1}$. From (8) and (16) it follows that

$$1 - U_{0,n}(z_0) / U(z_0) \ge \int_{\beta_n} a d\mu_n(\zeta) = a \mu_n(\beta_n) \,.$$

We conclude by (2) that

(17)
$$\lim_{n \to +\infty} \mu_n(\beta_n) = 0$$

Set
$$(\mu, \nu) = \int G(z, \zeta) d\mu(z) d\nu(\zeta)$$
. Then $[\mu, \nu] = (U^{-1} \cdot \mu, U^{-1} \cdot \nu)$. We know that

the Schwarz inequality $(\mu, \nu)^2 \leq (\mu, \mu) \cdot (\nu, \nu)$ is valid (cf. e.g. [6]). Therefore the same is true of $[\mu, \nu] : [\mu, \nu]^2 \leq [\mu, \mu] \cdot [\nu, \nu]$. Let $\mu \in M(\beta_n)$. By (5), $[\mu, \mu_n] = 1$. Hence $1 \leq [\mu, \mu] [\mu_n, \mu_n]$, and again by (5), $[\mu_n, \mu_n] = \mu_n(\beta_n)$. A fortiori $[\mu, \mu] \geq 1/\mu_n(\beta_n)$ for every $\mu \in M(\beta_n)$. By the definition (10) we conclude that

(18)
$$\varepsilon(\beta_n) \ge 1/\mu_n(\beta_n)$$
.

Using (13), (15), (14), (18) and (17) successively in this order we deduce

(19)
$$\tau(\beta) = +\infty$$

6. In view of (19) and $\tau(\beta) = \lim_{k \to +\infty} \tau_k(\beta)$ we can find a subsequence $\{k_m\}$ $(m=1, 2, \cdots)$ of positive integers such that $\tau_{k_m}(\beta) > 2^m$. By the definition of τ_{k_m} there exists k_m points $z_{m,\iota}^*$ $(\iota=1, \cdots, k_m)$ in β such that

$$\inf_{z^* \in \beta} \sum_{i=1}^{k_m} K(z^*, z^*_{m,i}) > 2^m k_m .$$

Denoting by ε_p the point measure at $p \in \Omega^*$, set

$$\nu_m = (2^m k_m)^{-1} \sum_{i=1}^{k_m} \varepsilon_{z_{m,i}^*}$$

and

MITSURU NAKAI

$$u = \sum_{m=1}^{+\infty} \nu_m$$

Then $\int K(z^*, \zeta^*) d\nu_m(\zeta^*) > 1$ for $z^* \in \beta$ and a fortiori $\int K(z^*, \zeta^*) d\nu(\zeta^*) = +\infty$ for $z^* \in \beta$. Since $\nu(\beta) = 1$, $F(z^*) = \int K(z^*, \zeta^*) d\nu(\zeta^*)$ is $[0, +\infty]$ -valued continuous on Ω^* and F(z) is a solution of (3) on Ω such that F=0 on β_0 and $F=+\infty$ on β . Set $E=TF=U \cdot F$. Then E is a solution of $\Delta u = Pu$ on Ω with boundary values zero on β_0 and $E/U=+\infty$ on β . Therefore E satisfies (1) and E is an Evans potential relative to (P, U) on Ω .

The proof is herewith complete.

References

- [1] KAWAI K., Evans-type P-harmonic functions on a Riemann surface, Doctoral dissertation, University of California, Los Angeles, 1971.
- [2] KURAMOCHI, Z., Mass distributions on the ideal boundaries of abstract Riemann surfaces, I., Osaka Math. J., 8, 119-138 (1956).
- [3] KURAMOCHI, Z., On the existence of functions of Evans's type, J. Fac. Sci. Hokkaido Univ., 19, 1-29 (1965).
- [4] MYRBERG, L., Über die Existenz der Greenschen Funktion der Gleichung $\Delta u = c(P)u$ auf Riemannschen Flächen, Ann. Acad. Sci. Fenn., 170 (1954).
- [5] NAKAI, M., On Evans potential, Proc. Japan Acad., 38, 624-629 (1962).
- [6] NAKAI, M., On Evans' solution of the equation $\Delta u = Pu$ on Riemann surfaces Kodai Math. Sem. Rep., 15, 79-93 (1963).
- [7] NAKAI, M., Green potential of Evans type on Royden's compactification of a Riemann surface, Nagoya Math. J., 24, 205-239 (1964).
- [8] NAKAI, M., On principal function problem, Nagoya Math. J., 38, 85-90 (1970).
- [9] NAKAI, M., Densities without Evans solutions, Töhoku Math. J., 26, 363-370 (1974).
- [10] OZAWA, M., Classification of Riemann surfaces, Ködai Math. Sem. Rep., 4, 63-76 (1952).
- [11] ROYDEN, H.. The equation $\Delta u = Pu$ and the classification of open Riemann surfaces, Ann. Acad. Sci. Fenn., 271 (1959).
- [12] SARIO, L., A linear operator method on arbitrary Riemann surfaces, Trans. Amer. Math. Soc., 72, 281-295 (1952).
- [13] SARIO, M. AND NAKAI, M., Classification Theory of Riemann Surfaces, Springer, 1970.

NAGOYA UNIVERSITY	To contact the author:
AND	Mitsuru Nakai
Nagoya Institute of Technology	52 Eguchi, Hinaga
	Chita, Japan

484