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RELATIVE EVANS POTENTIALS
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BY MITSURU NAKAI

Consider a 2-form P=P(z)dxdy on an open Riemann surface R such that
coefficients P(z) are nonnegative Holder continuous functions of local parameters
£— x+iy on R. Let Ω be the complement of the closure of a regular subregion
of R and U be a positive solution of the equation Au=Pu on Ω continuous on
Ω. A function E on Ω will be referred to as an Evans potential relative to
(P, U) on Ω if E is a solution of Au—Pu on Ω with boundary values zero on dΩ
such that

(1) limE(z)/U(z)=+oo
Z—>oo

where oo is the point at infinity of R. We are interested in finding the condition
on U assuring the existence of such an E. For this purpose we consider a
linear operator LP

Q from C(9fl) into the class of solutions of Au=Pu on Ω given
as follows. Let {S} be a directed net of regular subregions of R such that
S^DR—Ω, and let L^sφ be the solution of Au—Pu on Ωr\S with boundary values
zero on 95 and φ^C(dΩ) on dΩ. Then the limit

is a bounded solution of Au—Pu on Ω with boundary values φ on dΩ. We say
that U has the ideal boundary values zero if LζU=U. The main purpose of
this paper is to prove the following

THEOREM. An Evans potential E relative to (P, U) exists for any P on Ω if
and only if U has the ideal boundary values zero.

Suppose the existence of E and set V— U— LP

Q U which is a nonnegative solu-
tion of Au=Pu on Ω with boundary values zero on dΩ. In view of εE— F—
(eE/U-V/U) U and V/U^l, (1) implies that the inferior limit of εE-V as
z— >oo or dΩ is nonnegative for any positive number ε and therefore εE— F^O
on Ω which in turn implies F— 0, i.e. LP

ΩU~U. Thus the essential part of our
proof is to show the existence of E under the assumption L$U=U. The proof
will be given in nos. 1-6. Before doing this we mention several direct con-
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sequences of our theorem, most of which are earlier published :

a) An Evans-Selberg potential q(z, z0) on R is a harmonic function on R— {z0}
such that limz->c»q(z, ZQ)= + OO and q(z, z0)— log \Z—ZQ |— 0(1) as Z-+ZQ. Kuramochi
[2, cf. also 3] proved that such q(z, z0) exists on R if and only if R is parabolic
(cf. [5]). Let ZQ^R—Ω and D be a parametric disk about ZQ with DdR—Ω.
Observe that L°ΰl=l if and only if R is parabolic. Therefore by our theorem an
Evans potential E relative to (0, 1) exists on Ω if and only if R is parabolic. If
q(z, ZQ) exists, then q( , z0) — LQ

Qq( , z0) is an E. Conversely suppose E exists. Set

Ω,=Ω\J(D~{z,}) and let s(z) be 2π(( *dE)~lE(z) on Ω and log|z-*0l on D. By
\J dΩ /

the Sario theorem [12], the equation L°Ω()(q—s)=q—s has a harmonic solution q

on R— {z0} if and only if | *ds— 0, which is actually the case for the present s,
Jdί20

and the solution q is a required #(z, ^o)

b) An Evans solution v of Δu—Pu on 7? is a solution on /? such that
Iim3-,oot>(z)= + oo. Let ω=L%l. Since L£ω=ω, there exists an Evans potential
E relative to (P, ω). The equation L%(v—E)=v—E has a solution v which is a
solution of Δu=Pu on /? provided P^O on J? (Sario-Nakai [13]). Since \v—E\
= (supgβl^ — £|) α> on β, lim2^<*X2r)/α>(2r)== + oo. Therefore an Evans solution of
Δu=Pu (P=£0) exists on # if infΛω>0 (Nakai [6]).

c) We denote by 0B the class of pairs (/?, P) (F^O on #) such that the
only bounded solution of Δu—Pu on R is zero. It has been conjectured that
(R,P)^OB is characterized by the existence of an Evans solution of Δu—Pu on
R (cf. [6 p. 92]). Recently the author ([9]) proved the existence of a singular
P on any R, i.e. a P such that any nonnegative solution of Δu—Pu on R has
zero infimum, which completely negates the conjecture. However the conjecture
sounds so natural that we still feel that it must be 'almost true'. The P-unit
£3 on Ω is given by sup u(z) where u runs over the class of solutions of Δu=Pu
on Ω with u^l. Then the conjecture is true if it is modified as follows:

The pair (R, P) belongs to OB if and only if there exists a solution v of
Δu=Pu on R such that limlt^00v(z)/e%ί(z)= + oo for one and hence for every ad-
missible Ω.

An Evans potential E relative to (P, ep

Ω ) exists on Ω if and only if LP

Ω ep

Ω —
ep

Ω, which is, by Ozawa [10]-Royden [11], equivalent to (R, P)^OB. From this
E we can construct a required v by the entirely same method as in b.

d) Let R be a hyperbolic Riemann surface and G°(z, ζ) be the harmonic
Green's function on R. An Evans harmonic function h on R is a positive har-
monic function on R such that \imn-.+<x,h(zn)— + 00 for every sequence {zn} of
points in R converging to the point at infinity of R with lim inf^+ooG0^, ζ)>0
for one and hence for every ζeT?. The existence of such an h was shown in
Nakai [7]. This is also a direct consequence of our theorem. Let ζ^R—Ω.
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Since L?aG\ , ζ)=G°( , ζ), an Evans potential E relative to (0, G°( , ζ)) exists on
Ω. The hyperbolicity of R assures the existence of a harmonic solution h of
UΩ(h-E)=h-E on R (cf. [8]), which is the required h.

e) Assume that P^O on R. Then the Green's function G(z, ζ) of the equa-
tion Au=Pu always exists on R (Myrberg [4]). As a counter part of the result
in d, Kawai [1] proved that there exists a positive solution u of Δu=Pu on R
such that limn-H-ββtt(2rn)= + oo for every sequence {zn} converging to the point at
infinity of R with lim infn-*+ooG(2rn, ζ)>0 for one and hence for every ζeP. By
the entirely same observation as in d we can derive this result from our theorem.

1. We proceed to the existence proof of an Evans potential E relative to
(P, U) on Ω under the assumption L^U=U on Ω. Throughout our proof we
fix a regular exhaustion {Rn} (n=l, 2, •••) of R such that R^ΩQ with Ω0=R—Ω
and set Ωn—Rnr\Ω. Then {Ωn} (n— 1, 2, •••) is an 'exhaustion' of, Ω. We also
set β^dΩ^dΩo and βn=dRn, Le. dΩn=β0\Jβn. Let P* be the Cech compacti-
fication of R, β=R*—R the Cech ideal boundary of /?, and Ω*=R*—(R-Ω)=
R*— ΩQ, i. e. β*— β0{JΩ^Jβ. Then any [— oo, +oo]_valued continuous function
on β0^JΩ can be uniquely extended to a [—00, +oo]-valued continuous function
on Ω*. We denote by C7n,m (n<m) the solution of Δu=Pu on Ωm—Ωn with
boundary values U on βn and zero on βm. Since L^U—U, \immU0,m=U. In
view of £/o,m^£Λι,m^£Λ we also have

(2) lim Un,n=U (71=0,1,-)-
m— »-fco

For our purpose it is convenient to consider the elliptic equation

(3) ΔφO+27 log £/(*)• Vφr)=0

instead of Au=Pu, where 7<p is the gradient vector field (dφ/dx, dφ/dy). It is
easily verified that the operator v^Tv—U-v is a bijective correspondence be-
tween the class of solutions of (3) and that of Au=Pu. The merit of consider-
ing (3) is the validity of the following

Minimum principle. Let v be a [0, +oo']-valued continuous function on
Ω—Ωn such that v is a solution of (3) on Ω—Ωn. Then v takes its minimum
on βn.

Set c=min (v(z) z^βn}. Since Tυ—cUnfm is a solution of Δu— Pu on Ωm—Ωn

with boundary values U v—cUnjm=(v—c)^U^Q on βn and U v—cUnfm=U'V^Q
on βm, we see that Tv^cUUjm on Ωm—Ωn. By (2) we deduce that Tv^cU, i.e.
v^c on Ω—Ωn.

2. Modifying the Green's function G(z, ζ) (Gn(z, ζ), resp.) of Δu=Pu on
(Ωn, resp.) we consider a new kernel K(z, ζ) on Ω defined by

(4) /f(z,ζ)=ί/(z)-1G(
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which is also a positive symmetric kernel on Ω and TK( , ζ)=G( , ζ)U(ζ)~1 Need-
less to say K(z, ζ) is not the Green's function of (3) unless P=Ό and £7=1. First
we give an analytic proof of the existence of the K-capacitary measure μn on βn

characterized by the identity

(5) f K(z, Qdμn(Q=l
J βn

for every z^βn. Fix a point z<=Ωn. Apply the Green formula to functions
G(z, •) and U—UQ)n for the region Ωn less the small δ-άisk about z. Then on
letting d— >0 we obtain

(6) 2π(£7(*)-£7o>n(*)) = -f G(2r,ζ)*dc(£7(ζ)-£70>n(ζ))+f ί7(ζ)*dcG(*, ζ) .
Jβn Jβn

Still fixing the same point ze£?w we again apply the Green formula to functions
Gm(z, 0 and £7Λ>m for the region Ωm—Ωn to obtain

0— f Gm(z, ζ)*dct7nfm(ζ)+ f U(Q*d,Gm(z, ζ) .
•'βw J/3n

In view of the limit property (2), on letting ra-»+°o, we conclude that

0=-f G(*,ζ)*dc£7(ζ)+f U(Q*d<G(z, Q .
J/3re ^^n

Subtraction of the above identity from (6) implies

(7) £7(z)- £/„,„(*)=-

It is not hard to see that both sides of the above are continuous functions of z
on Ωn\Jβn. Tnerefore the validity of (7) on Ωn implies that on Ωn\Jβn. For

nι (7) takes on the form

U(zY*G(z, ζ)t7(ζ)-1£7(ζ)*dc£70>n(ζ) .

Observe that

is a nonnegative Borel measure on βn and we have

(8) l-ί/o,»

for z<=ΩnUβn and in particular (5) is valid for ^eβ^.

3. The kernel K(z, ζ) on β has a natural extension to Ω* :

(9) /f(^*, ζ*)- lim ( lim K(z, ζ))

for (z*, ζ*)eβ*χβ*. Since tf(z, ζ*)=limcefl,c^c^(2r, ζ) is a positive solution of
(3) on Ω— {ζ*} with boundary values zero on /30, we could define /f(z*, ζ*)=
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lim^Ω)Z^z*K(zt ζ*) in (9). For a compact set X in β* we consider three quantities
e(X\ δ(X), and τ ( X ) as follows. First let M(X) be the class of unit Borel
measures on X and set

(10) ε(X)= inf

where [μ, v~]=jK(z, Odμ(z)dv(Q for two Borel measures μ and v. The quantity

is referred to as the K-capacity of X Next let

l,-,k

inf Σ K(zf, zf) .

Then we know (cf. e. g. [6, 7, 13]) the existence of the limit

which is referred to as the K-transfinite diameter of X. Finally let

kτk(X)= ^ sup ( mf Σ #(**, *ΪO) -

Then we know (cf. e.g. [6, 7, 13]) the existence of the limit

(12) τ(X)= lim τA(Z)e[0, +00]

which is referred to as the K-Tchebycheff constant of X. We have (cf . e. g. [6,
7, 13]) the following inequality :

(13) δ(X)^τ(X) ,

which is the half of the Fekete identity. We do not know to what extent the
following is true for general X in β* but at least for X in Ω and in particular
for βn we have (cf. e.g. [7, 13])

(14) e(βn)=δ(βn)=τ(βn) .

4. Based on the minimum principle in no. 1 we prove

(15) δ(βn)^δ(β).

Fix an arbitrary system z f , ••• , z$ of k points in β. We set

First_ observe the function z-»v(z, zf, ••• , ̂ f) is a positive solution of (3) on
Ω—Ωn continuous on (Ω—Ωn}\Jβn. Thus the function takes its minimum on βn,
say at z^βnt and in particular we have

v(zl9 z f , ••• , zϊ)^

Assume that / points zl9 •-• , zt^βn (l<*l<k) are chosen so as to satisfy

α, — , Zι, zf+1, — , zf)^!;^!, — , Zf-i , zf,
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Then since z-*v(zlt ••• , zh z, z?+2, ••• , z$) is a positive solution of (3) on Ω—Ωn

which is (0, +°°]-valued continuous on (Ω—Ωn)\Jβn, the function takes its mini-
mum on βn, say at Zι+1^βn. Therefore

v(zι, "' , Zι+ι, zf+2, ••• , zϊ)^v(zlt -•' , zh zf+1, ~ , zf) .

We can thus find k points zlt ••• , zk in βn such that

v(zlt — , zk)^v(zf, ••• , zf) .

By the definition of δk(βn), the left hand side of the above dominates

and since zf, ••• , zf are arbitrarily chosen in β, we conclude that δk(
On making k— »+oo we obtain (15).

5. Fix a point z0^Ωlt Observe that the function ζ—*K(z0, ζ) is a positive
solution on Ω—Ω^ Let α— min {K(z0, ζ) ζ<^βι}>Q. Once more we use the
minimum principle in no. 1 to conclude

(16) K(z0, ζ)2ϊα

for every ζeΩ—Ω^. From (8) and (16) it follows that

l-£/.,»(*.)/ί/(z.)2:f adμn(ζ)=aμn(βn) .
J βn

We conclude by (2) that

(17) lim^»(j8B)=0.
n— >+oo

Set (^, v)=JG(*, Qdμ(z}dv(Q. Then [̂ , v]=(ί/-1 //, ί/-1^). We know that

the Schwarz inequality (//, u)2^(μ, //) (v, v) is valid (cf. e.g. [6]). Therefore the
same is true of [μ, ι>] : [//, v]2^[/^, μ] [y, v]. Let μ^M(βn}. By (5), [//, ^n] = l.
Hence l^C//, μΣμn, μn~], and again by (5), [//„, /«^^]=/«7^(/3w). A fortiori [μ, μ]^
l/μn(βn) for every μ^M(βn}. By the definition (10) we conclude that

(18) *(

Using (13), (15), (14), (18) and (17) successively in this order we deduce

(19) r(]8)= + oo.

6. In view of (19) and τ(β)=limk-*+oaτk(β') we can find a subsequence {km}
(m=l,2, •••) of positive integers such that τkm(β)>2m. By the definition of τk

there exists &m points z^>τ (z=l, ••• , ^m) in /3 such that

inf -ΣK(z*,z
z*ey3 1 = 1

Denoting by εp the point measure at ^eβ*, set

^=(2m*J-1

tΣe,*lft

and
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Then §K(z*, ζ*)fiMζ*)>l for z*tΞβ and a fortiori J/^(z*, ζ*)rfy(ζ*)=+ 00 for

^*e/3. Since v(/3)=l, F(z*)= LftT(z*, ζ*)ύ?v(ζ*) is [0, +00].valued continuous on

β* and FO) is a solution of (3) on Ω such that .F=0 on β0 and ,F= + oo on /3.
Set E=TF—U-F. Then £ is a solution of Au=Pu on ί? with boundary values
zero on β0 and E/U— + oo on β. Therefore E satisfies (1) and E is an Evans
potential relative to (P, U) on £?.

The proof is herewith complete.
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