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ALMOST COQUATERNION METRIC STRUCTURES
ON 3-DIMENSIONAL MANIFOLDS

By CONSTANTIN UDRISTE

We give explicitly almost coquaternion metric structures on 3-dimensional
parallelizable manifolds and some conditions under which a 3-dimensional mani-
fold admits a Sasakian 3-structure.

1. We suppose that all the used differentiable manifolds and maps are of
class C* and we denote by X(M) the Lie algebra of all vector fields on the
manifold M.

Let M be a (4n+3)-dimensional manifold. An almost coquaternion metric
structure® on M is an aggregate consisting of three almost cocomplex metric
structures™® (@q, &q, 74, &), a=1, 2, 3, which satisfy

P00 Pp—EQN="0e0 P+ QM=
Pabs=—0o€a=Ec,
a0 Po=""0 D=7,
7a(£)=7(§2)=0,

for any cyclic permutation {a, b, ¢} of {1, 2,3}. M is said to be an almost co-
quaternion Riemannian manifold.

An almost coquaternion metric structure can be described by means of 1-
forms %, and 2-forms 0,(X, YV)=g(¢,X, Y), a=1, 2,3, VX, Yex(M).

THEOREM 1.1. If (@a, &a, 7a, &), =1, 2,3, is an almost coquaternion metric
structure, then, Ya : M—(0, o), Y(A2)eSO(3),

(43 4., %Aﬁ §ar @A, ag+(a2—a)§m®7]a), d=1,2,3,

1s again an almost coquaternion metric structure on M [10].

An almost coquaternion metric structure on M whose tensor
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* Or almost contact metric 3-structure [3].
*¥) Or almost contact metric structures [5].
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TXX, Y)=-3 2($uX, 6a¥ 1~ ful X, ¥ ]

— ol X, P Y I+ Gal X, Y I+2dnq(X, Y)E,)

vanishes is called a pseudo-coquaternion metric structure and the manifold with
such a structure a pseudo-coquaternion Riemannian manifold. A pseudo-coqua-
ternion metric structure consists of three normal almost cocomplex metric struc-
tures and corresponds to the pseudo-quaternion metric structure on M X R, where
R is the real line [10], [11].

If

(1) @a:dﬂa ’ a:l, 2, 3:
then (Pq, §as 7ar &), a=1, 2, 3, is a pseudo-coquaternion metric structure iff
2) Vx(VE)Y=7Y)X—g(X, V)& or —R(X, £)Y=7,(Y)X—g(X, Y)&,,

where V is the Riemannian connection and R is the Riemannian curvature tensor
R(X, Y):v[X,YJ‘[VXy Vrl

An almost coquaternion metric structure whith satisfies the conditions (1)
and (2) is said to be a Sasakian 3-structure. For a Sasakian 3-structure, &, a=
1, 2, 3, are unit Killing vector fields (determine a Lie group of translations [1])
with respect to g and we have ¢,=V§, [7].

THEOREM 1.2. If (@a, &u, Na, &), =1, 2,3, 15 a Sasakian 3-structure and (Ag)
is an orthogonal matrix whose entries are constants, then

(A(tli¢a, Ag ga; Ag’?a, g), d:L 2,3a

is again a Sasakian 3-structure on M.

2. Let M be a 3-dimensional manifold. We have

THEOREM 2.1. A 3-dimensional manifold M has an almost coquaternion
melric structure iff it is parallelizable [9].

Proof. Obviously, every almost coquaternion Riemannian 3-dimensional mani-
fold is parallelizable.

Conversely, the hypothesis that M is parallelizable is equivalent to the fact
that it possesses three vector fields &,, a=1, 2, 3, which are linearly independent
at every point of M. Let 7, be the dual 1-forms, that is,

va(Ea):aab ) §Wa®5a:id .

We define
¢a:Ec®vb—Eb®vc ’

where {a, b, c} is an even permutation of {1, 2, 3}, and g=>7,Q7,. We can
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verify without difficulty that (@, &q, 74, £), a=1, 2, 3, is an almost coquaternion
metric structure on M. Evidently, ©,=27,A,.

As any orientable 3-dimensional manifold is parallelizable, we have

THEOREM 2.2. Every 3-dimensional orientable manifold can be endowed with
an almost coquaternion metric structure [9].

Remark. Suppose &,, a=1, 2, 3, generate a simply transitive Lie group of
transformations G on M and &,, a=1, 2, 3, generate the reciprocal group G of G
[1]. As each transformation of G commutes with each transformation of G, the
almost coquaternion metric structure determined by &,({,) is invariant by G(G).

3. Let M be a 3-dimensional manifold and (@, &,, 74, £), a=1, 2, 3, an almost
coquaternion metric structure on M.

THEOREM 3.1. Suppose &,, a=1, 2,3, determine a Lie group of motions G
with respect to g whose structure constants are C%.

(i) If C4%=0, then G is isomorphic to an Abelian group, (Pa, Ea) Nar &), @=
1,2,3, is an integrable almost coquaternion metric structure and M is locally
Euclidean.

(ii) If Ch+#0, then G is isomorphic to a unitary, semi-simple group, (¢q, &,
Nay &), a=1, 2,3, 15 a Sasakian 3-structure and M is a space of constant positive
curvature.

Proof. As &, generate a group of motions with respect to g, we have
(3) Leaéb:CZbgc ’ a, b, C=1, 27 3 )
“4) Leug=0 or (Vyp)(X)+(Vxn)(Y)=0, VX, Yex(M),

where V is the Riemannian connection. On the other hand, from g(&, &.)=0p.,
it follows
g(LfaEby Ec)"’g(an Lfaéc)_—_oy
that is,
Cépt+C5.=0.

From these relations and from the fact that the structure constants C¢, of the
group G are skew-symmetric in the indices a and b it results that all the struc-
ture constants are zero besides Ci (and those which proceed from Ci) which
can be zero or not.

(i) If CL=0, then G is isomorphic to an Abelian group. In this case we
can choose the local coordinates so that £,—0/0x%* and hence

Ne=dx%, ¢a:%®dx”——a%b— Rdxe, g= %}dx“@dx“ ,

So our first statement is true.
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(ii) If CL+0, then the comitant C,,=C%C$; has the components C,;;=C,=
Cys=—2(C%)?% C,.=0, a+b. Consequently G is isomorphic to a unitary, semi-
simple group.

Without loss of generality, we may assume that Ci=—2. Really, if not so
we may work out the change

and putting

we get Cl=—2.
From (4) and

dna(X, Y):”%_«VX"]U,)(Y)_(vYﬁa)(X))’ VX, Yex(M),

we obtain

®) dno(X, Y)=(Vx7.)(Y).
Since g(&,, £.)=1, we have g(Vx&,, £,)=0, that is,
©) (Vx7a)(E)=0.

From (6) and (4) we get
(Veana)(Y)=0
and hence
dna(&., Y)=0, VYex(M).

From [&, & 1=—2&,=Ve.&—VeE,, where {a, b, c} is a cyclic permutation of
{1, 2, 3}, it results

) (Veao)(X)— (Ve (X )=—27(X) .
On the other hand, from (4) we obtain

(VeaoX(X)=—(V x92)(&s)
and g(&,, £,)=0 give

g(VxEq, §5)+8(Eq, Vx&)=0 or (Vxﬂa)(fb)‘l‘(vxm)(fa):o .
Thus

® (Veanp)(X)+(Verna)(X)=0,

which together with (7) give

€ Verna=—Veap=1e -

By virtue of (9) and (5) we have

(10) dna(&n, Y)=—dnp(Es, Y)=29LY) or dy,=0,=29A17,.
From (5) and (10) we get
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(11) (V)Y )=0(X) (Y )—7(X)np(Y) or
Vxéo=n(X)E—0.(X)s, VX, YeX(M),

where {a, b, ¢} is a cyclic permutation of {1, 2, 3}.
From (11) we obtain

(12) Vx(VE)(Y )=1.(Y)X—2(X, V)&,

which shows that (@, &q, 74, &), a=1, 2, 3, is a Sasakian 3-structure.
As (12) is equivalent to

R(X, £)Y=g(X, Y)€a—28(&, Y)X,
multiplying by 7,(Z) and summing for a, we obtain

R(X,Y)Z=g(X,Y)Z—g(Y, Z2)X.
So M has constant curvature 1.

THEOREM 3.2. A 3-dimensional manifold M admits a Sasakian 3-structure
iff it possesses three independent vector fields which determine a unitary semi-
sumple Lie group of transformations.

Proof. We first assume that M possesses a Sasakian 3-structure (@, &4, 74, £),
a=1, 2,3. From

0.(X, Y)=dn (X, V)=V )(Y), VX, Yex(M),
it follows that &, are Killing vector fields of the Riemannian metric g for which
[€a, Eo]=Vea&o—VerEa=—2¢, .

So &, generate a unitary semi-simple Lie group of transformations.

Conversely, let &, a=1, 2, 3, be three independent vector fields on M which
determine a unitary semi-simple Lie group of transformations. Without loss of
generality, we can suppose

[&a, &o1=—2& or Lebp=—26.

From 74(§,)=04, we find

(Leana)(En)+0a(Leabs)=0
and hence
(Leana)(E)=0, that is, Lean,=0.

Analogously, we have

(Lécva)(fo)‘}‘ ”a(Lcha)zo
and hence

Legpy=—Leyn,=—27..

From these relations we obtain
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LEag:LGa(g 7]b®7]b)=0

and so &, are Killing vector fields. By virtue of Theorem 3.1, (#,=9,QE&,—7:Q&s,
Eas Nay 8=20.Q7,) is a Sasakian 3-structure on M.

THEOREM 3.3. A 3-dimensional manifold M admits a Sasakian 3-structure
iff it possesses three independent 1-forms », which satisfy

7]a/\dﬂb:2(7]1/\772/\7]3)5ab ’ ar b:]-y 2, 3 .

Proof. Let us suppose that (@, &4, 74, &), a=1, 2, 3, is a Sasakian 3-struc-
ture on M. Then we have

Ane=7Q0:— 0. Q=29 A7,

for any cyclic permutation {a, b, ¢} of {1, 2, 3}, and hence

NaNANe=2(N: AN A93)045 .

Conversely, from 9,Ad9,=0, a#b, it follows dn,=fns An. and from 9P, Adn,
=2(n1 AN A7s) we get f=2. Let &, be the dual vector fields of the 1-forms 7,.
We have

dna(§a, X)=0, dna(&s, X)=—dns(&a, X)=1(X), YXeX(M).
We define on M the metric

g:§7]a®7]a ’ g-l=§8a®$a

and

¢a:g_l(d7]a)=éc®7]b_$b®7]c .

Evidently, (@4, &4, 74, &), a=1, 2,3, is an amost coquaternion metric structure
on M.
From

dnu(X, V)= {X(0a(Y )= Y (0u(X)—7a([X, Y D}

=0o(X)e(Y)—=1(X)0s(Y)
we obtain

776([50,; $oj)="2 or I:&av 50]2_254' .

Hence &,, a=1, 2, 3, generate a unitary semi-simple Lie group of transformations,
that is, (@., &a, 7a, &), a=1, 2, 3, is a Sasakian 3-structure.

4. Examples.

(a) Let
S?={x|xe R, ||x]|=1}
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be the unit sphere in the FEuclidean space R* and (J,, h), a=1, 2, 3, be the
canonical quaternion Hermitian structure on R‘. If we denote the induced metric
on S® from the Euclidean metric 2 on R* by g and if we define

£o=Jox, x€S%, 9(X)=8g(£e, X), @aX=JuX+7.(X)x,

then (Pq, &qy Ma, &), a=1,2,3, is a Sasakian 3-structure on S® In other words,
the independent 1-forms %, satisfy

NaANAN=2(01 A2\ N5)00as , a, b=1,2,3.

(b) A 3-dimensional manifold M which admits a Sasakian 3-structure has
positive constant curvature. Therefore, if we suppose that M is a complete
manifold, then M=S®/I" (spherical space form), where I" is a finite subgroup of
0O(4) which acts freely on S® More precisely [6], I” is any one of subgroups
of Clifford translations given by :

(i) ['={ud},
(ii) I'={+d},
(iii) I is the cyclic group of order ¢>2 generated by

2 . 2m
4 0 cos '—‘?— —Sin T
(0 A)’ where A= ,
sin <%~ cos 2%
2 2

(iv) I is the group of Clifford translations which corresponds to a binary
dihedral group, a binary tetrahedral group, a binary octahedral group or a binary
icosahedral group.

(¢) THEOREM 4.1. If M is an orientable hypersurface in the Euclidean space
R* such that its spherical map is regular, then M admits a Sasakian 3-structure.

Proof. We choose the unit normal vector { to M in R* such that the posi-
tive orientation of M is coherent with the positive orientation of R*. Then { is
a differentiable vector field over M and by means of { we construct the
spherical map of Gauss s: M—S?3,

If M is covered by a system of coordinate neighborhoods {U; (u?, u?, u®)}
and S® is covered by a system of coordinate neighborhoods {V; (v, v?% v%)},
then s can be represented locally by

v*=v¥(ut, u?, u®), a, 8=1,2,3,
and by hypothesis
ov®
5P +0.

On the other hand S® possesses a Sasakian 3-structure, that is three inde-
pendent 1-forms %,, a=1, 2, 3, which satisfy
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77a/\d7%:2(771/\ 772/\773>5a.b ’ ay bzly 2y 3’
or locally
NaNAN, =22 dV* NdV* Adv®d,s .

We denote by s* the dual map of forms on S® into forms on M induced by
the map s. Then s*p, are three 1-forms on M and

s¥(PaANAYa)=5*N  NA(5*¥70),  S*(PAD A D) =S¥ ANS*D A S¥T5 .
As locally we have
SEP SR, A 3*773:,2(1)(14))\—22%‘cz’u‘/\duW\d!u3 ,

the three 1-forms s*n, are independent.

We deduce
ov®
ouf

s*7}a/\d(s*7)b)=22(v(u))! ]dul/\ du® A du?
or
S*Da AN A(s* 1) =2(S* D1 A S*7, A 5%75)00s

Therefore the 1-forms s*p,, a=1, 2, 3, give rise to a Sasakian 3-structure on M
(Theorem 3.3.).

BIBLIOGRAPHY

[1] EiseNHART, L.P., Continuous groups of transformations, Dover Publications,
Inc. New York, 1961.

[2] KoavasHi, S. aAND Nomizu, K., Foundations of differential geometry, vol.
I-1I, Interscience publishers, 1963-1969.

[3] Kuo, Y.Y., On almost contact 3-structure, TO6hoku Math. J., 22 (1970), 325-
332.

[4] Oclue, K. AND OkUMURA, M., On cocomplex structures, Kodai Math. Sem.
Rep., 19 (1967), 507-512.

[5] Sasaki, S., Almost contact manifolds, Math. Inst. T6hoku Univ. Part I, 1965.

[6] Sasakl, S., On spherical space forms with normal contact metric 3-structure,
J. Diff. Geom., 6 (1972), 307-315.

[7] TacHIBANA, S. aND Yu, W.N,, On a Riemannian space admitting more than
one Sasakian structures, Tohoku Math. J., 22 (1970), 535-540.

[8] Tanno, S., Killing vectors on contact Riemannian manifolds and fiberings
related to the Hopf fibrations, To6hoku Math. J., 23 (1971), 313-333.

[9] UpbrisTE, C., Structures presque coquaternioniennes, Bull. Math. Soc. Sci.
Math. R.S.R., 13(61), 4 (1969), 487-507.

[10] UpbrisTEk, C.,, Almost coquaternion structures, Doctoral thesis of Mathematical
Sciences, Cluj University, Romania (1971).

[11] UpbrisTE, C., On fiberings of almost coquaternion manifolds, An. St. Univ.
Iasi, Matematica, XVIII (1972), 407-415.

[12] Yano, K., The Theory of Lie Derivatives and Its Applications, North-Holland



326 CONSTANTIN UDRISTE

Publ. Co., Amsterdam, 1957.

[13] Yano, K., Integral formulas in Riemannian geometry, Marcel Dekker, Ink.,
New York, 1970.

[14] Yano, K. aAND Ako, M., Integrability conditions for almost quaternion struc-
tures, Hokkaido Math. J., 1 (1972), 63-86.

DEPARTMENT OF MATHEMATICS I
POLYTECHNIC INSTITUTE, BUCHAREST, ROMANIA.





