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ON CERTAIN CRITERIA FOR THE LEFT-PRIMENESS
OF ENTIRE FUNCTIONS

BY MITSURU OZAWA

1. Introduction. A meromorphic function F(z)=f(g(z)) is said to have /
and g as left and right factors respectively, provided that / is meromorphic and
g is entire (g may be meromorphic when /' is rational). F(z) is said to be prime
(pseudo-prime, left-prime, right-prime) if every factorization of the above form
into factors implies either / is linear or g is linear (either / is rational or g is
a polynomial, / is linear whenever g is transcendental, g is linear whenever / is
transcendental). When factors are restricted to entire functions, it is called to
be a factorization in entire sense.

Recently several methods on the factorization in the above sense were es-
tablished. Among them Goldstein's [3] is very powerful and elegant. He proved
a general theorem guaranteeing the right-primeness of entire functions, which
depends upon the radial growth of the given function. As a corollary he proved
the right-primeness of H^-rH^ when Hlt Ή2 are entire functions of order less
than one and #2^const, H^O. He then proved another general theorem, which
gives the left-primeness of 771^

2+i/2. This part of his proof seems to us to be
too hard to prove only the result. We shall give another proof of this part,
which seems to be very simple. Under the same idea we shall prove two general
theorems, which guarantee the left-primeness of entire functions in entire sense.
Several applications are discussed then. In order to explain our idea we shall
firstly give and discuss the easiest example ez-\-z. So the method of proof should
be elementary and simple in principle. Compare with the methods in [1], [4],
[5], [6], [11].

We freely use the symbols of the Nevanlinna theory such as N(r, a, /), ra(r, /),
T{r,f).

2. Discussion on ez+z. The first step. Suppose that e'+z=f(g(z)) with
transcendental entire / and g. Then by Pόlya's result [10] the order p(f) of /
is equal to zero. It is known that p(f')=p(f). Hence /o(//)=l. Then f{w) has
infinitely many zeros and hence there is a zero of f(w) for which g(z)=w has
infinitely many roots. At these roots {£*}
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ez*+z*=f(w)

^•+1=0.

Therefore — l+z*=f(w). We have at least two z* for one zero w of f(w). This
is impossible. Hence ez-\-z is pseudo-prime in entire sense.

The second step. ez-\-z has infinitely many zeros whose real parts tend to
+00 and does not have any zero in the left half plane 3ftz<0. Suppose that
e*+z=f(g(z)) with a polynomial g(z). If g(z) is of degree Ξ>2, then £2+z should
have zeros in the left half plane. This is impossible. Hence ez+z is right-prime
in entire sense.

The third step. Suppose that ez-\-z—f{g{z)) with a polynomial /. Consider
the derived equation

e'+l=Ag'(z)(g(z)-a1) - (g(z)-an).

If g(z)—at has two zeros zx and z2, then

Hence zj—l=f(a1)f j=l, 2. This is impossible. If g(z)—a1 has at most one zero,
then g(z)—a1=Beβz and hence g/(z)=(B'+βB)eβz have at most one zero. Since
ez+l has infinitely many zeros, there is another index, say 2, for which g(z)—a2

has infinitely many zeros. This is again a contradiction.

We shall not discuss the primeness of ez-\-z in meromorphic sense. Our idea
is to make use of the simultaneous equations F(z)=f(a), F/(z)—0.

3. Another proof of the left-primeness of Hxe
z+H2. Here Hlt H2 are entire

functions of order less than one and #2^const, H^O.

Suppose that H1e
z+H2=f(g(z)) with a polynomial / of degree n+1. Let φ

be e'W+HJHi). Then

(l-e)T(r, φ)^N(r, 0, φ)+N(r, 1, φ)+N(r, oo, φ)

^2iV(r, 0, HJ+Nlr, 0, H2)+N(r, 0, Hxe
z+H2)

=N(r, 0, Hie

z+H2)+o(rn(r, ez))

and m(r, β*)^(l+e)T(r, 0). Hence

m(r, β ^ ( l + s ) % , 0, //i^+i/J^d+ε)?^^, ez).

Let us put
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and

Then
m{r, eη^(n+l)(l-ε)m(r, g)

and by the non-constancy of H2

N(r, a,, g)+N{r, 0, g')).
3 = 1

Since N(r, 0, g')^m{rt g')^(l+ε)m(r, g),

Σ N(r, aJt g)^(l-ε)nm(r, g).
3 = 1

Hence there is an index, say 1, such that

N(r, al9 g)^(X-e)m(r, g).

Evidently

(n+l)m(r, g)^(l-e)m(r, e').

Let X(z) be

HΛH'2

iΞΞO implies H1~Ce~\ CφQ, which is impossible. We need to verify the
non-constancy of X(z). Firstly we consider the case H{^aH2. Then there is a
point z0 at which #i=0, H2Φ0 or H^O, H2—0 or Hλ=H2~() with different multi-
plicities. In these cases it is easy to prove the non-constancy of X. If Hx=aHz,
then X(z) = const implies Hί=AH2

ί—H1. Hence

This is untenable. Thus X(z) is not a constant. £"O)=tfi and /(#i)=0 imply

(H'1+H1)e*+Hί=0.

Hence every root of g(z)=a1 satisfies

Xω=f(a1).
Thus

N(r, alf g)^N(r, ΛaJ, X)

Hence we have
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^rτ=o(m(r, ez)).

This is impossible. Thus we have the left-primeness of Hλe
ZJcH2.

4. Two general theorems. The above observation suggests a certain general
idea to make use of the simultaneous equations F=c, F/=0. Indeed we have the
following

THEOREM 1. Let F(z) be an entire function of finite order whose derivative
F'(z) has infinitely many zeros. Assume that the number of common roots of
F(z)=c and F'(z)=Q is finite for any constant c. Then F{z) is left-prime in
entire sense.

Proof. Suppose that F(z)=f(g(z)) with transcendental entire / and g. Then
ρ(F)<oo implies p(f)=p(f')=:0 by Pόlya's theorem [10]. So there are infinitely
many roots of f'(w)=Q, among which there is a root w0 of f'(w)=0 such that
g(z)=w0 has infinitely many roots. At these roots of g(z)=w0 we have

F(z)=f(w0),

However this has only finitely many common roots by our assumption. This is
impossible. Thus F is pseudo-prime in entire sense.

Suppose that F(z)—P(g{z)) with a polynomial P and entire g. Assume that
P is of degree at least two. Then P'(w) has at least one zero a. If g(z)=a has
infinitely many roots, we have a contradiction as in the above. If g(z)=a has
only a finite number of roots, then g(z)=a+Q(z)em*\ g'(z)=(Qf+QHf)eH have
only finitely many zeros, where Q and H are polynomials. Since F'(z)=Q has
infinitely many roots, there must be another zero β of P'{w) for which g(z)=β
has infinitely many roots. This gives again a contradiction. Thus we have the
left-primeness of F in entire sense. q. e. d.

We cannot omit our main assumption. This is shown by

eιz/2

In fact, ^ s i n z + ^ ^ O and 2z(sin ^+1)+^ 2 cos^^O have infinitely many common
roots.

We cannot omit the side condition on the number of zeros of F'. This is
shown by P(z)p exp (pH(z)) with polynomials P and H and a positive integer p.
However if p(F) <oo and if Ff has 0 as a Picard exceptional value then F is
pseudo-prime in entire sense.
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THEOREM 2. Let F(z) be an entire function satisfying N(r, 0, F')>km(r, F)
for some k>0. Assume that the simultaneous equations

F(z)=c

have only finitely many common roots for any constant c. Then F is left-prime
in entire sense.

Proof. Suppose that F=f(g) with transcendental / and g. Assume firstly
that f'(w)=Q has not root. Then

N{r, 0, F')=Wr, 0, g')

^m(r, g')^0i+e)m(r, g)

for r $ £ , where E is a set of r of finite measure. On the other hand

m(r, F)^N{r, A, F)^ ± N(r,a,,g)

^(ί-l)m(r, g)-O(\og rm(r, g))

for r&E. Here p is an arbitrary positive integer. Hence by N(r, 0, F')>km(r, F),
k>0

(kp-k-l)m(r, g)^O(\ogrm(r, g))

for r&E. We have

This is impossible, since p is arbitrary.

Assume that f(w)=0 has only one root w1 and g(z)=w1 has only finitely
many roots. Then

N{r,0,F')=N(r,0,g')+O(logr)

^m(r, g)+O(\og rm(r, g))+O(log r).

But N(r, 0, Ff)^km{χ, F) implies

Mr, 0, F')^k(p-l)m(r, £)(l-ε)

for r^E. This gives a contradiction.

Assume that f(w) has only one zero w1 and g(z)=w1 has infinitely many
roots. At these roots
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But these equations have only finitely many common roots. This is impossible.

Assume that f{w) has at least two zeros w1 and w2. Then we can choose
Wj so that g(z)=Wj has infinitely many roots. Hence by considering F=f(Wj)t

F'=Q we have a contradiction.

Suppose that F=P(g) with a polynomial P and entire g. If P/(w)—0 has
only one root w1 and g{z)—w1 has a finite number of roots, then g(z)=w1

JrQeH

and g/—{Q/J

ΓH
/Q)eH with a polynomial Q and entire H. Hence

N(r, 0, g')£N(r, 0,

r, g))

for r $ £ On the other hand with p—άegP

N(r, 0, g')=N(r, 0, F')+O(log r)

This gives a contradiction. If P'(w)=0 has one root w2 but ^(^^Wi has infinitely
many roots or if P'(w) has at least two roots and hence g{z)=wx has infinitely
many roots, then we consider F=f(w1), F/=0 at these roots. This gives again
a contradiction. q. e. d.

5. Applications of Theorem 1.

COROLLARY 1. PiSin^+i^ is left-prime if Plf P2 are polynomials, Λ^0,
P2Ξ£const and further deg P^deg P2 or deg P^deg P2 but the leading coefficients
of P\ and P\ are different.

Proof. Consider P1$inz+P2=c and P{ sin z+Pi cos z+Pi=0. By cancelling
out sin z and cos z we have

When (*) reduces to an identity for a c, we cannot conclude anything. However
we have assumed that deg Λ^deg P2 or deg Λ=deg P2 but the leading coefficients
of P\, P\ are different. Hence (*) is not an identity. Evidently (*) has only
finitely many solutions. Hence F=c and F'=Q have finitely many common roots
for any c. Next consider the number of roots of P[smz+P1zosz+Pf

2=^. If
this has only finitely many roots, then

P[ sin z+P2 cos z+P'2=Qeaz
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with a constant a and a polynomial Q. Then we can make use of the im-
possibility of BoreΓs identity [2], [7]. We have the existence of infinitely many
roots of Pίsinz+Pz cosz+P^Q. Hence P1$inz+P2 with the conditions on Px

and P2 is left-prime in entire sense.

In order to prove the left-primeness in meromorphic sense we need another
method. Suppose that F(z)=f(g(z)) with meromorphic (not entire) / and entire g.
Suppose further that /, g are transcendental. Then by a result in [9]

g(z)=w1-{-Beaz.

Hence

Px sin

Here / * is transcendental and p(f*)=p(f)=0 and B, a are constants, n is a
positive integer. Hence

(l+ε)ra(r, sin z)^m(r, P1 sin z+P2)

^ JV(r, 0, Λ sin z+P2)=N(r, 0,

But m(r, sin *)=2r/7r+O(l). Hence

Here iΓ is arbitrary. This is impossible.

Suppose that / is rational and g is meromorphic. Let a be a pole of /. Then
g(z)—a should have no zero. Hence gi(z)=l/(g(z)—a) is entire. Thus F(z)=
R(gi(z)) with rational R and entire gλ. Then R has only one pole b. Therefore
g1(z)=b+Aeaz. Thus F(z) is representable as P(b+-Aeaz)e-maz with a polynomial
P and a positive integer m. This is clearly periodic, but Pλ sin z+P2 is not. This
is untenable. Evidently the case that / is a polynomial and g is meromorphic
(not entire) does not occur. q. e. d.

When P\—P\y (*) may reduce to an identity, for example, for c=0. Then
right-primeness of P1s\nz-\-P2 is not true in general. We can decide when it is
right-prime. We shall not touch this problem.

COROLLARY 2.

F(z)=Ce-t2dt+z
J 0

is prime.
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Proof, Consider the simultaneous equations

ί F ' = 0 .

F'=0 gives e x p ( - z 2 ) + l = 0 . Hence with z=reiθ cos 20=0, that is, θ=π/4, 3ττ/4,
5τr/4 and 7ττ/4. Then on the ray Θ=π/A

J o 6 ndt=c-z.

It is very easy to prove the existence of

f "cos (t2-π/i)dt, f "sin (t2-π/i)dt
J o ^ o

by the Leipnitz law for the alternating series. Hence

is bounded for r—>oo. But c—z is not. Hence there are only finitely many roots
of F=c on the ray θ—π/L On the other rays #=3τz:/4, 5τr/4, 7π/4 the same holds.
Thus F=c and F'=0 have only finitely many common roots. Consider N(r, 0, Ff).
Evidently

rn 0, F')^

Hence by Theorem 1 F(z) is left-prime in entire sense.

Let us consider the right-primeness of F(z). Suppose that F(z)=f(g(z)) with
a polynomial g(z). Evidently g(z) is of degree four, two or one. If g(z) is of
degree four, F(z)=f(g(z)) has almost equal values when \z\ is sufficiently large
and #—0, π/2, π and 3ττ/2. However two of these four give bounded values to F
but the remaining two of these give unbounded values to F. This is impossible.
If g is quadratic and is a{z—α)2+/?, then all the zeros of F\z) except for only
one should be symmetric with respect to the point a. Thus a should be the
origin. Hence g{z)—az2jrb. Then F{—z)—F{z). On the other hand F{z) has
the power series expansion

*+n?o (~~1 ) (2n+l)n! *

Hence F(z) =—F(—z). This is untenable. Thus F(z) is right-prime in entire
sense. Therefore F(z) is prime in entire sense. Then we make use of Gross'
theorem, which asserts that every non-periodic entire prime function in entire
sense is prime [6]. Thus F(z) is prime. q. e. d.

For the function

{'e-tPdt+Z
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we can apply the above method, although we need a more delicate consideration.
Then we have the primeness of this function. For

Ce-tPdt, p^2
Jo

the primeness was proved by an entirely different method [8].

6. Applications of Theorem 2.

COROLLARY 3. e2(z)+P(z), es(z)+z, e^{z)+z are prime, where en(z) is defined
by expθn-iθ)), e^—expz and P is a non-constant polynomial.

Proof. The case e2(z)+P(z\ Consider the equations

F=c

By F(z)—c we have

e*=log(c-P(z))+2pπι

and with z=x+iy
ex cosy—log \c—P(z)\ .

For x^x0, excosy is bounded, but \og\c—P\ is not bounded for | z | ^ | ^ | . Hence
for x^x0 there are only finitely many roots of F—c. By F'=0 we have

e2(z)=-P'e-

and hence

This gives

P-c

If ^-^oo, then the right hand side tends to — oo. Hence for x^x0 there are only
finitely many solutions. Hence the equations F—ct F

/=0 have only a finite num-
ber of common roots.

Next consider N(r, 0, F'). Let

ψ~ e2{z)+P\z)e~z

Then

T(r, φ)£N(r, oo, φ)+N(r, 0, φ)+N(r, 1, ^)+O(logrT(r, ̂ ))
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for r&Eφ, which has at most a finite measure. Then

N(r, 0, F0^T(r, φ)(l+ε)

for r&Eφ.

Hence by Theorem 2 (with a slight modification by the existence of Eφ) we
have the left-primeness in entire sense. We shall not discuss the right-primeness
of the function, since this is quite similar as in the following example.

The case e^+z. Consider the equation e4i(z)+z=c. Evidently e4(z) is
bounded for x^x0, z=x+ιy. But c—z is not bounded for Izl^l^J. Hence for
X^XQ there are only finitely many roots of eA(z)-\-z=c. The equation implies
es(z)=\og(c—z)+2pπi. Taking its real part we have

cos (sin (ex sin y) exp (ex cos y)) exp (cos (ex sin y) exp (ex cos 3;))

=log \c-z\ .

If cos y^O and x^x0, then the modulus of the left hand side is not greater than

exp (cos (ex sin y) exp(β* cosy))^e2{ex cosjy),

which is bounded for cosjμ^O and x->-\-co. If cosj>>0, cos (ex sm^)^0 and
X-++00, then the left hand side is again bounded. Hence by the unboundedness
of Ilog|c—z\\ for jr-^+oo there are only finitely many roots of ei(z)-]-z=c, if

^O or x^x0, cos^>0, cos (^xsiny)^0. By F'=Q

and hence

e3(z)e2(z)ei(z)=l/(z-c).

This implies

and its real part

cos (e* sinjy) exp(ex co$y)+ex cosy+x=— log \z—c\ .

If cos;y>0, cos(^cos>)>0, the left hand side tends to +00 as x—>+°o, but the
right hand side tends to —00 as x^+00. Hence for x^x0, cosj>>0, cos (ex sin^)>0
the equations F=c and ^ = 0 have only finitely many common roots. Therefore
the equations F=c, F'=Q have at most finitely many common roots for every c.

Consider N(r, 0, P) . By the second fundamental theorem

N(r, 0, F0^(l-e)m(r, e£z)+z)

for r&Eφj which is a set of r of finite measure. Here
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Thus eA(z)+z is left-prime in entire sense.

Next we shall consider the right-primeness of eA(z)-\-z. By the above proof
there is no zero of e±{z)+z in xt==Xo, \y\^y0- Here x0 is arbitrary andy0 depends
on x0. Let {zL} be the set of zeros of e4(z)-\-z and zi=xι+ιyι. Then by the above
fact {xι) does not have any finite cluster point. Of course there are only finitely
many zt having the same real part. Thus {xt} has at most one cluster point
+00. On the other hand

N(r, 0, e4(z)+*)~m(r, eA(z))

for r$Eφ, where ό is e4(z)/(e4(z)+z). Hence {xt} tends to +00. Let us consider
e^+z—f^Piz)) with a polynomial P(z). If P(z) has its degree at least two,
then there must be infinitely many zeros of e4(z)+z in the left half plane.
However this is not the case which we have just proved. This is a contradiction.
We thus have the right-primeness of e4(z)+z in entire sense. Hence e4(z)+z is
prime in entire sense. e4(z)+z is not periodic. Hence e4{z)Λ-z is prime by Gross'
theorem [6].

The case e3(z)+z is easier than the case e4(z)+z. q. e. d.

Now the primeness of en(z)+z is almost evident. The above proof for n=A
suggests the proof for n and the proof is an almost routine work. Compare with
the method in [5], in which the primeness of e2(z)+z was proved.

Without any proof we state the following.

COROLLARY 4. e2(z)e(z)+z, e2(z2)+z are prime.

7. An extension of Theorem 2. Sometimes the side condition on N(r, 0, F7)
in Theorem 2 makes an obstruction for applications. However we can really
weaken it as in the following.

THEOREM 2'. Let F be entire with N(r, 0, F'^Klog log M(Ar, F) for any
positive K. Assume that the equations F=c and F'=0 have finitely many common
roots for every c. Then F is left-prime in entire sense.

We shall not give any explicit proof of this Theorem. We only make use
of Pόlya's estimations (F=f(g))

M(r, F)^M(cM(dr, g), f), 0<d<l, 0 < c < l ,

M(r, F)^M(M(r, g), f)

and the known estimations
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M(r, F) ^ ^ P

with α>l . The process of the proof is quite similar as in Theorem 2. This
Theorem contains Theorem 1.

COROLLARY 5.

F(z)=Ce2(t)dt+z
Jo

is prime.

Proof. F'(z)=e2(z) + 1. Then by the second fundamental theorem for e2(z)
we have

N(r,0, F')^rn{r, F')(l-s)

for r&EF,, which is of finite measure. Here A is a constant. Further M(r,F')
^e2(r). Hence

log log M(4r, F)glog log (4rM(4r, F')+O(ΐ))

for some constant B and for r^r0. Hence

N(r, 0, F')^Klog log M(4r, F)

for any K>0 and r&EF,, r^r0.

F'(z)=0 has solutions z=\og (2p+ϊ)π+i(2nπ+π/2) for p^Q an integer and n
an integer and ^=log{— (2p+l)π}+i(2nπ—π/2) for p<Q an integer and n an
integer. It is enough to discuss the case y—2nπ+π/2, since the case y—2nπ—π/2
can be discussed in a quite similar manner. At the above zeros z—x+iy of F/

f Ze2(t)dt=-{ V o s ί sin sin t dt+V cos e'dt
J o ^ o ^ o

ĉosί c o s s j n t dt+i\ sin ^rfί.
o J o

Taking its imaginary part we have

ecos t cos sin t dt + sin etdt=β—y

o Jo

with c=α+i/3. Evidently
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Γ sin e>ds=C-ψ-dt
J o J i I

exists. Hence

{j'sinCc <Msds
\J 0

for x^O. If y>0, then

o ~~ eThus

This is impossible for y^y0. If y<0, then

cos 1
dt<-

Thus

e

which is untenable for y^—y0. Next taking the real part of F=c we have

a—x=[ cos^Λ—f £ c o s ί s ins inίdί .

Evidently

exists and hence the first integral in the right hand side is bounded. The second
integral is also bounded for | ^ | ^ ^ 0 . Thus for x^x0 we have a contradiction.
Therefore the equations F=c and F'=0 have only finitely many common roots
for every c. Thus by Theorem 27 F is left-prime in entire sense.

The right-primeness of F in entire sense is almost trivial. Since F / =0 has
solutions z=\og(2pπ+π)+i(2nπ+π/2\ p^O and z=\og(—2pπ—π)+i(2nπ-π/2),
p<0. Hence all the solutions lie in the right half plane. Consider F'=f(g)g'
with a polynomial g. Assume that g is of degree^2. Then there must be in-
finitely many zero of Ff in the left half plane. This is impossible.

Therefore F is prime in entire sense and hence by the non-periodicity of F
F is prime. q. e. d.
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