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ON THE LOCAL VERSION OF PU'S PROBLEM

BY TAKASHI SAKAI

1. Introduction. Let 9ft={(Pn, g)} be the space of riemannian structures
on the n-dimensional real projective space Pn. Let vol (P71, g) denote the volume
of Pn with respect to the canonical measure vg derived from g, and Lg(c) denote
the length of a closed curve c relative to g. Now we define

71, g)=vol (Pn, g)/ίlnί {Lβ(c)\c homologically
non-trivial piecewise smooth closed curve on P71}]71.

Thus quotα(Pn, g) may be considered as a function over 9ft.
Now Pu's problem states that " quot^P7*, gO^quot^P71, g0) holds where gQ

denotes the canonical structure of constant curvature, and the equality holds if
and only if (Pn, g) is of constant curvature ". That is, the function quot^P71, g)
on 9ft takes the minimum value exactly at the riemannian structure of constant
curvature. For n=2 the problem is solved affirmatively (Pu [6]). But for
n>2 the problem is completely open. Some authors have tried to solve the
problem for some classes of riemannian structures on Pn (i. e. for some subsets
of 9ft) (See I. Chavel [2], [3], [4], P.M. Pu [6], T. Sakai [7]).

Quot^P71, g) is not a differentiate function on 9ft. That is, even if g{t) is
a differentiate one parameter family of riemannian structures on P71, generally
quot^P71, g) doesn't depend differentiably on t. In the present note we shall
consider the following function / on 9ft instead of quoti.

Let G=SO(n+l)/SO(n—l)xSO(2) be the Grassmann manifold of all real pro-
jective lines (i. e. closed geodesies of length π with respect to the metric g0 of
constant curvature 1) of Pn=SO(n+l)/SO(n)x(±In+1). G is assumed to carry
the bi-invariant riemannian structure which is derived from the Killing form of
the Lie algebra of O(n+1).

Now we define for (Pn,g)

f(P\ *)ΞVO1 (P\ g)/{c(Pn, g)}n , where

c(Pn, #)=

In the above definition, vol G denote the volume of G with respect to the bi-
invariant metric defined above, and c(s) is a closed geodesic in (Pn, g0) of length
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π which is parametrized by arc length. This function / has been considered
in M. Berger ([1]) in a more general setting.

In the first part of the present note we shall consider this function. It is
known that / is a differentiable function on We and that g0 of constant curva-
ture is a critical point of/; i. e. d/dt(f(gt))t=0=0 holds for any differentiable one
parameter family g(t) with g(0)=g0 in 9ft (See Berger [1]). We shall show that
conversely any riemannian structure on Pn which is a critical point of / must
be a metric of constant curvature.

Thus we have a following characterization of the riemannian structure of
constant curvature on Pn.

THEOREM A. (Pn, g) is a critical point of f on We if and only if (Pn, g) is
of constant curvature.

Remark. We have f(g0)=qnot1(Pn, g0) and / ( ^ q u o t ^ P " , g) for any (Pn, g)
e2R.

In the second part of the present note we shall treat the generalized Pu's
problem which has been proposed by Berger ([1]). Let K1=R, K2=C, KA=H,
K8=Ca be the fields of real numbers, complex numbers, quaternions, and Cayley
numbers respectively. Let Pf be an α-(/Q)dimensional projective space (ΐ=l,
2, 4, 8) and 9tt=9Γc?={(P?, g^ b e t h e s p a c e of riemannain structures on Pf. We
set for l^b<La—l

carcδ(Pf, g)=lnf {vol (F, g\γ)\c: YdPf is a (fo')-dimensional compact
orientable submanifold of Pf and the image of a gen-
erator of Hbi(Y) by £* is a non-zero element of Hbi(Pf)}

carc'6(Pf,£)=Inf {vol(F,^| γ) \ Y(caPΐ) is diffeomorphic to P\ and c*
maps a generator of HU(Y) onto a generator of i/6ι(Pf)}

quotδ(P?, £)=(vol (Pf, £))Y(carc6(P?, g))a

quot'6(P?, g)=(vol (Pf, ^))V(carcί(Λα, ^))α.

Now Berger's problems state as follows

I(a, b i): quotδ(Pf, ^)^quotδ(P?, ̂ 0) for

Γ(a, b i): quotδ(Pf, ^)^quotδ(Pf, ^0) for

IC(a, b i): "I(a, b i)" and the equality holds if and only if g=£0,

IC'(a, b i): "Γ(a, b i)" and the equality holds if and only if g=g0,

where g0 denotes the canonical riemannain structure of symmetric space of
rank one on Pf.

In this general case, we shall consider the following function f=fct'h in stead
of quotδ(P?, g). Let G—Ga

x

th be a Grassmann manifold of ^-dimensional projec-
tive subspaces of Pf. G carries a riemannian structure of symmetric space.
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Now we define following Berger ([1]),

«Pi, *) = (vol O-'J^vol (F, g\γ)vG

S)=(voi {Pf, g)mc(P*, g))a.

Then / is a "differentiable function" on 9ft, and we have /(Pf, gΌ)=quotδ(P?, g0)
and /(Pf, £)^quot'6(P?, £)^quotδ(P?, g). It is known that g0 (the canonical rie-
mannian structure of symmetric space of rank one) is a critical point of / i. e.
d/dt(f(g(t))\t=0=0 for and differentiable one parameter family g(t) of riemannain
structures on Pf with g(0)=g0.

In the present note we shall calculate the second variation d2/dt2(f(g(t)))\t=0

at g0 and consider the problem; "For what g(t), d2/dt2(f(g(t)))t=0>0 holds?".
This implies the following result concerned with Berger's problem.

THEOREM B. Let (Pf, g(t)) be a differentiable one parameter family of rie-
mannain structures on Pf such that g(0)=g0 is the canonical metric on Pf and
g'(0)=λg0 holds, where λ is a not constant function on Pf. Then there exists a
positive number ε such that

qxxotb(Pf, g(t))^quot'b(Pf, g(t))> quotb(Pf, go)

holds for any 0 < | f | < e .

Remark. For b=ι=l, Chavel ([3]) has proved that for any g(t) such that
g(0)=g0 and ^(0) is not a constant multiple of g0, there exists a positive num-
ber ε such that quoUiP71, gifyyquot^P71, g0) holds for 0 < | f | < ε . But his proof
depends on a theorem of Michel ([5]) which is valid only for real projective
space. So ChaveΓs method seems to be not valid for this general case.

Remark. If (Pf, g) is conformally related to the canonical structure, then it
is known that quotδ(P?, g)^quotδ(P?, g0), where the equality holds if and only
if g=g0 up to the homothety. Since the condition "g'(ΰ)=λgo" means that g(t)
is conformally related to g0 up to the first order, the theorem may be considered
as the local version of the above result. Of course there are many g(t) which
satisfy ^ / ( 0 ) = ^ 0 but are not conformally related to g0.

2. Proof of Theorem A. First we shall sum up the formulas which are
used in the sequel.

LEMMA 1. Let M be a compact C°°-manιfold and g(t) be a differentiable one
parameter family of riemannian structures on M. Then we have,

(2.1) {vol (M, g(t))}'=l/2JMtvaceg(Og'(t>g

where trace^oi^CO means the trace of the symmetric covariant 2-tensor g'(t) with
respect to git), i.e. tnceB«)g'(f)=g%'(t)g'iAt).
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Proof of Lemma 1). This is well known. In fact we have

{W=l/2trace,« ) s ' (0 (See Berger [1]).

LEMMA 2. Let (M, g) be a compact riemannain manifold of dimension n,
and p: UM-^M be the unit tangent bundle. Then for any symmetric covariant
2-tensor h on M we have

(2.2) f traceghvg=—-— f { \h(x, x)v Km

where ωn-λ denotes the volume of the unit sphere and vp_1(m) denotes the measure
of the UmM derived from g.

Proof of Lemma 2). This is also standard. For every m<=M, choose an
orthonormal frame with respect to which h takes the form

h(x, x)=λ1x\+λtx\+ Yλnx\.
Then

f /K*,*K-κm)=Σλf 2 + +X2 ^idS"-1^^^-traced.

Let (Pn, g0) denotes the n-dimensional real projective space with the canonical
riemannian structure of constant curvature 1. Then the unit tangent bundle
UP71 has the natural induced riemannian structure h0 derived from g0 (See the
proof of Lemma 3). On the other hand let G be the Grassmann manifold of
real projective lines (i. e. closed geodesic of length π in (Pn, g0)) of Pn. We
endow with G the canonical riemannian structure kQ of symmetric space. To
every unit tangent vector x<=UPn, we assign q(x)^G which is the closed geo-
desic of (Pn, g0) with the initial direction x. Then we have the bundle struc-
ture q: UP—+G. In the above notation we have

LEMMA 3. p : {UP71, ho)-*(Pn, g0) and q : (UPn, ho)-*(G, k0) are riemannian
submersions. The fiber p'1^), m^M is an (n—l)-dimensιonal sphere of constant
curvature 1 and the fiber q~ι{c), c<=G is a closed geodesic of length π in {UP71, h0),
where q~λ(c) may be identified with real projective line c.

Proof of Lemma 3). This follows from the following representations of
(Pn,go), (UP71, h0), (G, h0) as the riemannain homogeneous spaces:

{P\ g0)=SO(n+l)/SO(n)x {±/n+1}

(UPn, h0)=SO(n+l)/SO(n-l)x{±In+1}

(G, k0)=SO(n+ϊ)/SO(n-l)xSO(2),

where these homogeneous spaces are assumed to carry the bi-invariant normal
homogeneous riemannian structures which are derived from the Killing form of
the Lie algebra of O(n+1). Then p, q are riemannian submersions and we have
p-\m)^SO(n)/SO(n-ΐ) and ^1(c)
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LEMMA 4. Let alf •••, an be positive real numbers. We put

2 , 9

 a ι X \ 9 άίS71"1 (no* summed with respect to ϊ).

// Ai= -" =An holds, we have a1= ••• =an.

Proof of Lemma 4). By an elementary calculus we get

A1—A2=(a1—a2)\ (positive function ow Sn~1)dSn~1.

Now we shall return to the proof of Theorem A. We put g(Q)=g, g'(0)=h
and assume that g is a critical point of /. Then for any digerentiable one
parameter family g(t) in 9Jΐ with g(Q)=g, we have by (2.1)

(2.3)

J,,«race.K-» vol (I- ^ { ί l ^ i ί f 1 * W =»
Let S2(M) denote the space of symmetric covariant 2-tensor fields on M. So g
is a critical point of / if and only if

Kc(s),c(s)) dΛ

=constant
I tra.ceghvg

Jpn

for any h<=S2(Pn). On the other hand by (2.2) and Lemma 3, using the inte-
gration along the fiber of riemannian submersion the left hand side of (2.4)
takes the form

r, x)
| | * | | , "P-K.J"Ό

where UffiP71 denote the space of unit tangent vectors at m with respect to
the metric g. Note that vg(m)= Vdet (gtJ(m))/det ((go)ij(m)) ̂ 0(ra) holds. So if
g is a critical point of /, then there exists a C°°-function k(m) on Pn such that

( 2 5) LniSu^m h\\Xχ\\f ^-Hm-k(m)ju(£pnKx,

holds for any h^S\Pn). Then at every point w e Γ , we have

(2.6) ^(m)

for any h<^S\Pn). In fact, assume that (2.6) is not satisfied for some
and /zeS2(M). Then we may assume that m—>ah(m) is positive on some neigh-
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borhood U of m. Choose a C°°-function φ (φ^O) on Pn such that φ—l on some

V((ZU) and φ=Q outside of U. Then f φahvga—[ ocφhvgQ>0. This contradicts
Jpn Jpn

(2.5). Now take an orthonormal frame relative to g0 in TmPn so that g takes
the form

g(x, x)=a1xl+ ••• +anx
2

n (alf •••, α n > 0 ) ,

where xt's are the components of x with respect to this orthonormal basis. In
(2.6) take especially h(x, x)—x\. So we have

f2 2 / o χ2% o rfSw-1 = ife(

where we have put y\—axx\ (not summed). That is,

-S -. V « A x i ^ - = *W"-X/" (̂ constant).

So by Lemma 4 we have aλ— ••• =α n , that is, g (=ag0) is conformally related to
the canonical riemannian structure on Pn. Finally we show that this positive
C°°-function a on Pn must reduce to a constant. Let h=φg0 where φ is any
C°°-function, then from (2.4) we have

and consequently a must be a constant. q. e. d.

3. Proof of Theorem B. Let g=g0 be the riemannian structure of symmetric
space of rank one on Pf. Let g(t) be any differentiate one parameter
family of riemannian structures on Pf with g(0)=g0. Then it is known that
d/dt(f(g(t)))\t=0=0. But ̂ o is never a minimum value of /. In fact, φt be a
one parameter family of diffeomorphism of Pf and set g(t)=φ?g0. Then we
have f(g(t))^f(g0). Now we shall calculate the second variation of / at g, i. e.
d2/dt\f(g{t)))\t=0. The usefull tool is the integration along the fiber of the
following two riemannian submersions. Let F? t δ be the set of ϋCi-subspaces of
real dimension bi (tangent spaces to the ̂ -dimensional projective subspaces of
Pf) and p: V?'b^P? be the map which associate to F E 7 ? & the point wePf
such that VaTmP?. Let q: F?'δ->G be the map which associate to F E F J 6 the
Krprojective subspace Y(^G) tangent to V at p{V). Then there are natural
riemannian structures h0, k0 on Vftb and G respectively such that p:(V?tb,h0)
—>(P?, go), q (^?'δ, ho)-^(G, k0) are riemannian submersions (For the proof see
Berger [1] pp. 26-31). In the following we put g'(0)=h, g"(0)=k, volP=vol(P?,£0),
and volP/=vol(Pί,5"0). Then by Lemma 1 (See the proof of Lemma 1) we get



158 TAKASHI SAKAI

(3.1) {vol (Y, s(f).r)}'l -.=-l/2<Λ, A ^

+1/4 L (traced)2 vt,

where <,>_α denotes the global inner product by the integration.

(3.2) volG

From (3.1) and (3.2) we have

(3.3) (vol P)-i+Xvol P')α+2d2/dt%f(g(t))) | ί = 0

- {b(α-b)/Aα} (vol PΎ{jpαtτaceehVg}
2+(b vol P(vol P'

$p?(tracegh)\-b vol P(vol P')2/2-<h, h}^

+ α(vol Py vol P'/(2 vol G)\ <hv,hiY)rvG

- α(vol P)2 vol P7(4 vol G)J^ vGJ^ (trace^ , r

There are many h=g'(ϋ) which makes (3.3) negative. But such an h doesn't
give a counter example to Berger's problem because /(^)^quotδ(P?, g) holds.
On the other hand it seems interesting to find the class of ^(O) which make
(3.3) positive, because f(g(t)) takes the strictly minimal value at t=0 for such
*7(0).

Next we shall give an example of such ^(O). We assume that h=g'(Q)=λg0

holds, where λ is any C°°-function over P?. In this case (3.3) takes the form

(3.4) (vol P)"δ+2(vol P)α+2 dVdt\f(g(t))) \ t=0

= -{αb(α-b)i2}/4α (vo\ P

X(vol PΎ^pJvg)-αbι/2-γo\ P(vol ^

+ α6ι/2 vol P(vol ^

= {αb(α-b)i>}/4 (vol P02{vol

by virtue of Cauchy-Schwarz inequality, and equality holds if and only if λ is
a constant function. This completes the proof of Theorem B.
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