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SOME PROPERTIES OF CANONICAL PRODUCTS
OF FINITE GENUS

By MASANOBU TSUZUKI

Introduction. Let f(z) be a canonical product of finite order with only

negative zeros. If A>1, then
A
001> 7

with an absolute constant A>(0. This result is due to Edrei, Fuchs and Heller-
stein [1]; for d(0, /) and other standard terminology and notations used below,
see [2].

Recently Ozawa obtained a fairly improved bound of the above constant
A [3]. But it still remains open to find the best possible bound of A.

We now set

h(2)=inf 6(0, f)

=sun T o, 77

where f ranges over all canonical products of finite order 2, with only nega-
tive zeros. Then the above problem reduces to get the exact value of A(Q).
In this note we shall prove first the following

THEOREM 1. If 1=q=<21<q+1, then we obtain

1
MLl ——7—~,
W=1=gq
where
B(g9)=2(29+1)(2+1og (¢+1)) .
From the definitions it is clear that
1-h(D=1U2).
Hence Theorem 1 is contained in the following
THEOREM 2. If 1=¢=<2<q+1, then

I(2=1/B(q).

Recieved Mar. 1, 1973.
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Our proof of Theorem 2 depends on the construction of a canonical product
f(2) of order A satisfying

— _ N(r,1/f)
™2 Tog M(r, 7y =1/ P

On the other hand Shea conjectured [4] that for entire functions of order
A>1

= N(r,1/f) |sin 7]
) T My 2ot

and Williamson showed [5] that for canonical products with only negative
zeros (1) is valid under suitable hypotheses. In this connection Williamson
asked if canonical products f(re'’) of genus ¢=2 with only negative zeros
asymptotically attain their maximum modulus for |0|<r/2. It will be shown
here that this is not in general the case. In fact for a canonical product
f(re'®) if we denote by S(a) a set of 7 such that the maximum modulus of f(2)
on |z|=r only attains for |f—r|<e«, our third result is

THEOREM 3. There exists a canonical product f(re'?) of genus q=1 with only
negative zeros such that for an arbitrarily given number ¢>0 S(e) has upper den-
sity 1.

1. Constructions of functions n(r) and N(r). Consider a decreasing sequ-
ence {¢,} (n=1, 2,3, ---) such that
e, —> 0 as n —> 0o
and define an increasing unbounded sequence {r,} (n=1, 2, 3, ---) satisfying
(L1 nriren it

where 4 is a positive constant. From the sequence {7,} we construct three
sequences {f,}, {s,} and {u,} by

S A T T
(12) U =og )"’ tn= (ogry?’ 5= log T

’

for r,>e¢, respectively.
Denoting by [X] the integral part of X, we define

L(n, p)___[ _Z,;_>l+p]=[(log 7)o+

with a positive constant p.
Let

13 U=tk 7 (k=1,2,3, -, L(n, 1))

and
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_[Atp)rien
(1.4) Moo=~ Tl

We may assume, by renumbering of {r,} if necessary, that the following rela-
tions are satisfied :

Up 1 =Up <tp <Sp< un,L(n,p)é "oy

Tn<Unii,
(1.5)

L(n, p)=2,

My p=2
for n=1, 2, 3, ---.

We now put
n(r)=0, 0=sr<uy)

kml,p (ul,k§r<ul,k+l : kzl, 2} 3y Tty L(l; p)_l)

L1, pym, (U, ra,m=r<ity)

n(r):{
and for n=2
n(fn—1)+kmn,p (un,k§r<un,k+1 : k:ly 2, 3! ) L(nr p)_l)

n(rn—l)"i_L(n; p)mn,p (un,L(n,p)§r<un+1) .

Then we deduce from (1.1), (1.2) and (1.4) that

(1.6) n(r= {

n(7y-1) (n—1)L(n—1, p)my-,,p . 00
(1.7 )~ < L Bmry 0 (n—o0)
and
(1.8 Wr)=n(Tn-)+L(n, p)m, p,=1+p)ri»(1+0(1))  (n—00).

We next notice that if {,<7=u, 1u,», there is a k such that

un,k§r< un,k+1
namely,

k_g(_urT)Hp <k+1  (1=k=L(n, p))

and then, in view of (1.3) and (1.6),

(L9) () Trtnotntra-d=n) <(=) " maptnracs.
By (1.2), (1.4) and (1.6) we obtain for t,<r<r,
(1.10) () Ttns/ () Map=1t01)  (nc0)

and by (1.4) and (1.8)

(1.11) (—u’n—)””mn,p=n(r,,)(-r:—)“”<1+a(1)) (n—o0).
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Hence, by (1.7) and (1.9)-(1.11)
7 \1+P
(L12) nn=n(r)(-)  (A+oD)  (n—eo)

for t,=r<r,.
We now set

_ (" n®
N(H= fo -t
We deduce from (1.6) and (1.7) that if s,=r=r,,
N=N(t)+ [0 gt
in

=N(t)+(1+o(D)n(r,) (r_fn)””%

— (Ta) (7T \*7
=Nt + (o)1 () (n—o0).

On the other hand, if s,<r=r,,

Net= :"_"t(_tl dt<n(t,) log t,

=(t+on(r)(-=) " (H2) T1ogty  (n—c0)

=0(n(7’,,)<—rr7)l+p> (n—o0)

by (1.2) and (1.12).
Hence we obtain

(L13) NA=(+oE ()™ (o)
for s,=r=r,

and

(1.14) N =(+o(1)-Hml (4 _.c0).

1+p
Finally we notice that both n() and N(r) have the same order A.
2. Proof of Theorem 2. Let g(=1) be an integer. Put
. u® u?
E(u, ¢)=(1—u) exp (u+—2—+ +—q—> .

Let 2A(=1) be a positive number and choose the integer ¢ satisfying ¢+1>1=q.
We consider the canonical product

oo L(n,p) z My,
@1) oI E(-—%-q) =12,
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where p is a positive constant and L(n, p), u,,, and m,,, are the ones defined
in Section 1. By the construction of n(r) we have

o L(n,p) mn,p _ oo dn(r)
ully Yo T

n=1 k=1

7
_(q+1)f r§+2 dr<oo
and, since Uy, 1,0 ="n,

L(n,») m m
> Dwr > L(n, p)—rmr

=1 Ui u?z.L(n.p)
Ate
= AEDA™ (14 o0)  (nsco).
In view of (1.1) these inequalities show that the product in (2.1) converges

absolutely and uniformly in any bounded part of the plane to an integral func-
tion f(z) having the order A and the genus g. Further f(2) satisfies an inequality

@2) tog| f2)| S(a+D A+ D{re[ G dtt-ren |2 ar}

where A(g+1)=2(2+log (¢+1)) and |z|=r [2].
We now put p=2¢ in (1.4) and |z|=r=7, in (2.2). To estimate the first
integral part of (2.2) we set

r;gjo "—;’%Z— dt=r3{ 0 "—;lq—(;t% dt—l—rgL: ;g“z dt.
By (1.12) we find

r,‘,lf:n n(l‘) dt= (1+o(1))rqn(rn)j‘ (_—)luq ;ﬁl

24

=1+ (n—o0).

Suppose that

raf "
0

D) gy rsf. ) dt+er "D drrf "0 g
tn

=11+Iz+13, say .
Then, we have

U Up— Un
L=rgf" ?ﬁ) at=rsf " 2D arrg[" TG ar

Up-1

(25)
=o(n(ry))  (n—o0)

in view of (1.1) and (1.8). Similarly, by (1.12)
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i)

tn p(t
L=rsf " POrdt=n(t)r
n

(2.6)
=o(n(r,))  (n—oo)
and
Iszrgjtn ;qu disn(s)ri— (e
2.7)

=0(n(r,))  (n—o0).
Hence we deduce from (2.4)-(2.7) that

raf "B dt= (o) 2 (nco).

We find next that, since the order of n(r) is 4, for all sufficiently large n

s u oo
rn [0 grpgn [ O g pygn [T 2D 4
n

Tn Up+1

n(r,) g
R B RS B V)

where ¢ (<¢+1—2) is a positive constant. Hence, (1.1) yields

" e =L o) (neo).

We now obtain from (2.2), (2.8), (2.9) and (1.14)
log M(r,, F)=(g+1)A(g+1DA+o(D) N(rn) 29+ 1) —+ q+1 (n—o0)

which leads to

m N, 1/f) 1
e log M(R, f) = 2(2¢+1)A(g+1) *

The assertion of Theorem 2 now follows from this inequality.

\

3. Proof of Theorem 3. We shall adopt the functions and the notations
of Section 2. For m sufficiently large we consider R such that

3.1) 7m 108 T S RZ7,(108 7))  <Upys .
Let
L<n ) 2 q
A
0 (¢=1)
and
F(R, 6)= E m,,,p -~ cos 0\— cos 0}
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Since, by (1.1), R/u,+;<1/2 for sufficiently large R, we have

E L(ﬂz.,p) Re“’ |<2 2 L(njp) R q+1
" =2z mes 2 (57)
n-m P k= un,k H9)= n_m P k=1 u'n,k

=1

log E(—

§4n(7’m) ’
which yields
R

o'
un,k

)

J(n,p) Retrr
+n§nmn’p kgx lOglE(-— Un,p ,(])I

m L(n,p)
log| (Re™) | = 5 ma,y 35 log|E(—

3.2)

= F(R, m)+G(R)—4n(r,)  (R>R,)
and
(3.3) log| f(Re?”)| F(R, 6)+Gy(R)+4n(rn)  (R>R,).

Now the construction of n(r) implies that

GuR= 2R dt+ ntr) (-2}
and hence, by (2.4)-(2.7)
(3.4) Gl RI=n(ra)1+0D) & (g T () (R—o0).

On the other hand, since

m L(n,p)
F(R, 0)= % my, 35 {l0g uf ;, +—%—10g‘1 s (5 cos 04+t
R
" cos 0},

we have
|P(R, 0)—(f log -an(y—R cos 0f 41 ) <n(Ry10g 2 (R>R0)

which implies that

35) |F(R, 6)—{N(R)—cos 6(Rf "L dt-+n(ra)-E) )

<n(ry) log 2 (R>R,).
If ¢=2, by (3.2), (3.4), (3.5) and (2.4)-(2.7) we obtain

(36)  logl AR ZNRI+Gy(R+(1+o)(nlrm)s+Rf "Edi)  (R—co).
Similarily (3.3) and (3.5) yield
(37)  10g| (Re*)| SN(R)+Go( R)—(cos 0-+o(D)((rw)-2+ R[ "L dt) (R—co)



By (3.4)
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n(r,n)—f;—/cqm) —>0  (R—w)

and hence, from (3.6) and (3.7) we deduce that

where

108 ARED 1 14 cos f-+0(1))C(R)  (R—oo)

log| f(Re™)]
Rform nt(? a’t+n(rm)—r}g—
=" mre® <"

This inequality holds for each R satisfying (3.1) if m is sufficiently large and
the assertions of Theorem 3 become obvious for ¢g=2.
If g=1, G/(R)=o0 in (3.6) and (3.7), and hence, since

NR)/n(r) e —> 0 (R—c0),

we obtain

log| f(Re™)|
—IB-é—L—f('R?ﬁ)"—é —cos 0+0(1) (R—0) .

This completes the proof of Theorem 3.
The author is grateful to Professor M. Ozawa for his remarks during the

preparation of manuscript.
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