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COMPACT HYPERSURFACES IN AN ODD
DIMENSIONAL SPHERE

By Hisao NAKAGAWA AND ICHIRO YOKOTE

Introduction.

As is ‘well known, a (2z+1)-dimensional sphere S?***!(¢) of constant curvature
¢ is naturally endowed with a normal contact metric structure and any hyper-
surface M in S?**!(c) admits also an (f,g, %, v, A)-structure, which is defined by
Yano and Okumura [8], induced from the Sasakian structure in S?***!(¢). For an
(f, g, u, v, A)-structure, the exterior derivatives of the dual 1-form of the vector
field # is equal to twice of the fundamental 2-form induced from f. It might
be interesting to study the manifold structure of the hypersurfaces of an odd-
dimensional sphere, when the exterior derivatives of the dual 1-form of v is
proportional to the fundamental 2-form induced from f. Recently, in this sense,
taking in connection with the paper due to Blair, Ludden and Yano [1], the
present authors [4] have proved the following

THEOREM. Let M be a complete orientable hypersurface with constant scalar
curvature in S*™*Y(1). We assume that, for an (f,g,u,v,R)-structure on M, there
exists a constant ¢ such that

(0.1) Hy' f ¥+ H, =21 1,
or equivalently
0.2) Vivi—Vw,=20f ;s,

where Hj denotes components of the second fundamental tensor in M. Then either
of the following two assertions (a) and (b) is true:

(a) M is isometric to one of the following spaces:
(1) the great sphere S*™(1);
(2) the small sphere S*(c), where c=1+¢%
(3) the product manifold S*(c,) X S¥(cs), where c;=1+¢* and c,=1+1/¢%
(4) the product manifold S™(c,) X S™(c.), where ¢y, =21+ ¢*+ V1 +¢* and
=21+ ¢*—¢VI+g?.
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(b) M has exactly four distinct constant principal curvatures of multiplicities
n—1, n—1, 1 and 1, respectively.

The main purpose of the present paper is to show that this theorem will be
established under some weaker conditions.

In §1, as preliminaries, we recall the definition and some properties of an
(f, g, u,v, 2)-structure on a hypersurface naturally induced from a normal contact
structure of S**1(1). In §2, we prove some lemmas and properties concerning a
hypersurface satisfying the condition (0.1) with a differentiable function ¢. In
§3, we prove a theorem concerning a hypersurface satisfying the condition (0.1)
with a function ¢ (cf. Theorem 3.5) and, in the last §4, another theorem con-
cerning a compact hypersurface without the assumption that the scalar curvature
is constant (cf. Theorem 4.1).

The authors wish to express their sincere gratitude to Prof. S. Ishihara who
gave them many valuable suggestions.

§1. Hypersurfaces in an odd dimensional sphere.

Let M be a 2n-dimensional Riemannian manifold of class C* covered by a
system of local coordinate neighborhoods {U; z"}. Throughout this paper, indices
1,7, -~ run over the range {1,2,---,2un}. Let there be given in M a tensor field
f of type (1,1), vector fields # and », a scalar function 2 satisfying the following
conditions:

[iff= =+ utu 40",

Fluk= 0", [k = —u,
11 unf,f=—,, vef,F=u,,
uut=vt=1-2%, urt=vu* =0,

g/cnf]kfzh =@ji— Ui —V;Vy,

where f,*, u*, v* and ¢, are components of the tensor field f, vector fields #,» and
the Riemannian metric tensor g, and wu,=g;xu* v,=g;w* The set of these tensor
fields is called an (f,g, «, v, A)-structure [8].

Now, let S™(¢) be an m-dimensional sphere of constant curvature ¢ in an
(m + 1)-dimensional Euclidean space £™t!. As is well known, S?*"{(1) admits a
normal contact metric structure (¢,&,7,4), which is induced from the natural
Kaehlerian structure equipped on E?"*%, Let S?"*!(1) be covered by a system of
local coordinate neighborhoods {U; %}, where indices «, 2, - run over the range
{1,2,---,2n+1}. Let M be an orientable and connected hypersurface in S?**!(1).
We put

B, =0y* [,
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then B, is a local vector field with components B, of S$?**1(1) tangent to M for
each j. We choose a unit normal vector C of M such that B, and C give the
positive orientation of S?"7!(1). The transforms ¢,°B,> of B, by ¢ can be ex-
pressed as a linear combination of B, and C, that is,

(1' 2) &ZKB]/I: ]kBk'ﬂL‘ijl}

where §," are components of the tensor field ¢ of type (1,1). Then f, is a
tensor field of type (1,1) and », is a 1-form on M. Similarly, since the trans-
forms ¢,°C* of the normal vector C with components C* by ¢ is tangent to JM, it
is written as

1.3) $,C'=—B, .

Moreover the vector field & with components & of S2»+!(1) on M is also a linear
combination of B, and C, and hence we can express £ as follows:

(1.4 & =B, u+C",

where #’ is a vector field on M and 2 is a differentiable function. Then it is
seen that the set (fi/, g, #?,2’,2) satisfies the equation (1.1) and hence it is an
(f, g, #, v, A)-structure. Furthermore, by making use of the property of the normal
contact metric structure on S?**(1), the (f, g, #, v, A)-structure satisfies the follow-
ing conditions:

V) fi" =085 — g " — Hyv" + Hjvs,
(1.5) Vih=fr+2Hr,  Vath=fi"H*—207%,
l]:Uj—ij%k,

where 2,=F;2 and H;* are components of the second fundamental tensor H of
M in S?#+1(1) (cf. [6]). Throughout this paper, we concern with hypersurfaces in
S27+1(1) and with their induced (f, g, %, v, 2)-structures.

We now denote by Kyj*, K;; and K components of the Riemannian curvature
tensor, the Ricci tensor and the scalar curvature of M, respectively. The equa-
tion of Gauss for the hypersurface M is written as

1.6) Kijit=82g js— g+ H" Hji— H, Hy,
where Hj;=H,*gx, and the equation of Codazzi is given by
1.7 ViHj;—ViHy, =0,

where F, means the covariant derivation with respect to the induced Riemannian
connection of M. From (1.6), we have easily

(1.8) K;i=02n—1)g+ He"Hj— HjH.F,
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and

1.9 K=2n2n—1)+(H;7)*— H;;H".

§2. The second fundamental tensor.

In the sequel, we assume that on the hypersurface M in S$?**(1), the linear
transformation f and the second fundamental tensor H satisfy the following con-
dition

2.1 Hif F+fH =291
where ¢ is a certain differentiable function, or equivalently,
(2.2) S i —fi*Hie; =2¢f i,

because f;=f;*gw. is skew-symmetric. Taking account of the third equation of
(1.5), we see that (2.2) is also equivalent to

2.3) Vivi—Vw,=2¢f .

If we now put Ny={xeM|i(x)=0}, N,={reM|*(x)=1} and N=M—N,UN,, then we
have M=NUN,UN,. Then the sets N, and N, are geometrically characterised as
follows: the vector field £, ie. the Sasakian structure & in the ambient space is
tangent to the hypersurface M at any point in the set N, and the vector £ is
orthogonal to M at each point in N; (see (1.2) and (1.4)).

The second equation of (1.5) implies that N, is a bordered set. In fact, if
we suppose that there is an open subset U contained in N;, then we have, in U,
[+t H;=0, because wu*=1—2*=0 in U, and hence #=0 in U. This implies f;
vanishes in U, because f; is skew-symmetric and Hj; is symmetric. This con-
tradicts the fact that f; is of rank 2z—2 or of rank 2x in M. Consequently N,
is a bordered set. Thus we may discuss properties of principal curvatures only
on NUN,, since they are continuous. In the sequel, we consider only hyper-
surfaces in S**+!(1) satisfying the condition (2.1). First we prove

LEMMA 2.1. On the set NUN,, the transforms Hu and Hv of the vector fields
u and v by the linear transformation H are linear combination of w and v, that is,

2.4) Houk=aw + pv’,
(2. 5) kai)k:ﬁ%]-l-]'vf,

where o= H(u,u)|(1—2%), pB=Hu,v)/(1-2%), y=H@,v)[1-2%), H(u,u)=Huu,
H(u, v)=Huuv and H(v,v)=Hpv

Proof. Transvecting f»’ with equation (2.1) and taking account of (2.1) and
the first equation of (1.1), we obtain
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Ht(®un +v*vn) — (06t + o) Hp¥=0.
Transvecting #" and »* with the equation above, we have respectively
(1—-2Hyu*=H(u, w)u + H (u, v)v*
and
A—-2Hyw*=H (u, v)ur+ H (v, v)0?,

from which, equations (2.4) and (2.5) respectively. Thus we conclude the proof.
Differentiating (2.4) covariantly, we get

ViHixu* 4+ Hinl ju* = o jui +aV ju; + B0+ BV jvs,

where a,=V;a and B,=F;8. From this relation and the equation (1.7) of Codazzi,
we have

Hiiju"—HﬂcViu"=ajui—aiuj+a(l7jui—- Viuj)+ﬁjvi—ﬁwj+,8(l7jvi—l7iv,~).

Substituting the second equation of (1.5) and (2.3) into the equation above, we
have

(2.6) (2¢(1— B)—2a} f ji=ajus— it s+ B0 — v,

which implies that vectors Fa and FB are linear combinations of # and », that is,
that «, and §, are expressed in the form

(2. 7) a]=A1uj+sz], ,8,=Bluj+32v,~,

where A,, A;, B, and B, are differentiable functions in NUN,. Consequently, the
equation (2.6) is reduced to

{2¢(1 - ,8) _za}fji =—(As— B1)(u0i—uw;).

Since the rank of the linear transformation f is equal to or greater than 2z—2
and since M is finite dimensional, we have

LemmaA 2.2, We have in NUN,
(2.8) a=¢(1—-p), A;=B.
By the similar method, we obtain from (2.5)
2.9 2Hi f1*H,* =2(B+ 1) f ji+ Bjtwi— ity + 7 i~ 105

where y,=VF;r. This means that the vector /y is also a linear combination of
vector # and v and hence 7, is expressed in the form

7,=C1uj+sz],

where C, and C. are differentiable functions in NUN,. Furthermore, we can prove
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LEmMMA 2.3. The second fundamental temsor satisfies the followwng conditions
in NUNy:

2ijHik - 4¢Hji + 2(/3 + ¢T)gji

210 = {R+A(Bo—C)ljus+ P+ 10 ,) +(Q+ 2By —Co)v s
and

@.11) AP=0, 2Q=aR=(B,—C)(1—2),

where

P=2(a+y)—44p,
Q=2(p"+7"+p—¢7),
R=2(a®+ 2 —2¢a+B+¢7).
Proof. By means of (2.1), the equation (2.9) becomes
2.12) (2HiuHy* —4¢ Hon +2(B+ ¢7)gin} 5" = (Ba— Co)(u0: — uw ).

Transvecting #’ (resp. v/) with the equation above, we get three relations in (2. 10).
On the other hand, applying fi’ to (2.12) and interchanging indices / and 7,
we obtain the equation (2.10). Thus, this lemma is proved.

If we take account of (2.4) and (2.5), then we see that there exist, at an
arbitrary point of NUMN,, two eigenvectors of the second fundamental tensor of
M belonging to the plane section P(w,v) spanned by # and ». Let z; and z
be eigenvalues corresponding to these two eigenvectors, respectively. Then the
eigenvalues satisfy the quadratic equation

(2.13) 2 —(a+7)c+ar—F2=0.

Moreover, (2.10) shows that NUN, has at most two distinct principal curvatures,
say o; and s, associated with eigenvectors orthogonal to the plane section P(x,v).
First we prove

PrOPOSITION 2.4. N has at most four distinct principal curvatuves oy, o, 71, Ts
such that

=g+ V=pI+¢),  a=g—V-pl+g),
a=¢+VEI+ %, n=¢—VEL+4).
Proof. Transvecting #’v; with (2.1) and making use of (1.1), we get
MH (u, w)+H (v, v)—2¢(1—2%)} =0,

from which,
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(2.14) a+r=2¢ in N.

According to (2.8) and the equation above, we have

(2.15) r=¢(1+p) in N.

By making use of (2.8) and (2.15), we see that (2.13) implies

=g+t VEI+),  n=¢—VE1+e).
On the other hand, the equation (2.10) is reduced to
HijuHi* — 20 Hji+ (B4 ¢7)g 0= (a® + > — 2pa+ B+ ¢y ) (w jus +v,0:)(1— 2),

because P is equal to zero in N. Therefore, eliminating « and y from the equa-
tion above, we have

(2.10)  HpHF —=2¢Hji+{p+¢*(L+Blgsi= P+ )L+ (usui+v50:)/(1—22).

Thus, for an eigenvalue ¢ associated with an eigenvector orthogonal to the plane
section P(u#,v) spanned by # and », we have the quadratic equation

(2.16) o*= 240+ {p+¢*(1+8)} =0.
Thus we conclude the proof.

Since principal curvatures are real, Proposition 2.4 implies that g is non-
positive. This fact plays an important role not only in the proof of the following
lemma but also in the later discussions.

Lemma 2.5. The function ¢ is constant in N.
Proof. Differentiating the second equation of (2.7) covariantly, we have
VB, =V;Bw;+ BiViu;+ Vi Bw;+ BV,
from which, taking the skew-symmetric part,
ViByu;—V;Bitti+ Vi Bovj— Vi By = Bi(V juus— Ve ) + Bo(Vj0:— Viv ;) =2(B1+ ¢ Bs) f js.

Since f is of rank 2x—2 or of rank 2=, the coefficient 2(B;+¢B,) vanishes iden-
tically in NUN,, ie.,

2.17) Bi+¢B:=0 in NUN,.

In a similar way, we obtain

(2.18) Ci+¢C:=0 in NUN,.
Differentiating the first equation of (2.8) covariantly, we also have

a;=¢;(1—=p)—¢p,-
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Thus, putting @,=wu’¢;/(1—2%) and @,=0v'¢;/(1—2?), we have
@:(1—p)=As+pBs.
By means of this relation, (2.17) and the second one of (2.8), we obtain
(1-p)@,=0.
Since B is non-positive in N, @, vanishes identically in N and hence
¢,=Du,.

Differentiating the equation above covariantly and taking the skew-symmetric
part, we get

Vi@u;i— V@114 20, f ;=0,
from which,
@,=0.
Therefore the function ¢ is constant in N. This completes the proof.

Suppose that there exists a connected component of the set N,, which has a
non-empty open kernel W.

LEMMA 2.6. The open kernel W has at most four distinct principal curvatures
=+ VFE—gr—1, a=p—Vei-dr-1,
a=G+VETDR,  w=G-Vr+D2,
where the multiplicities of o1, 05, v1 and 2 ave n—1, n—1, 1 and 1, respectively.

Proof. Since A,=v;—H;u*=0 in the open kernel W, we get H(w,u)=0 and
H(u,v)=1. Thus (2.4) and (2.5) are reduced to

(2.19) Heuk =i,
(2. 20) H2wt=w+102,

respectively, where y=H(v,v). Consequently, for the coefficients « and p appear-
ing in (2.4), we get a=0 and g=1. Equations (2.19) and (2.20) show that two
eigenvalues, say 7, and 7, corresponding to eigenvectors belonging to the plane
section P(u,v) are distinct and that they satisfy the quadratic equation

?—yr—1=0,
from which, we obtain

a=G+VrE+D)2,  n=G—Viiti)2.
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Since we have obtained a=0 and g=1, (2.10) is simplified as follows:
(2 21) ZHJ,J-L"—4¢Hﬁ+2(1+¢r)gﬁ=Rujui+P(ujvi+uivj) +Ql)ﬂ)i.

For the eigenvalue ¢ associated with an eigenvector perpendicular to P(u,v), we
get by (2.21)

(2.22) 0*—2¢pa+1+ ¢y =0,
from which,
=g+ VE—gr—1,  a=¢—Ve'—gr—1.

Thus there exist at most two distinct principal curvatures, say ¢, and g, at each
point of W.

The equation (2.1) implies H(fX)=(2¢—0,)fX for an eigenvector X cor-
responding to the eigenvalue ¢,. This mean that fX is also an eigenvector with
an eigenvalue g,. Thus the multiplicities of ¢, and ¢. are equal to #—1. This
completes the proof.

LeEmMMA 2.7. On the open kernel W, the function y is constant.
Proof. Substituting =1 into (2.12), we obtain
2{HixHn* =20 Hin+ (1 + ¢7)gin} £t = —Ci(u vs — uw;).
Transvecting #/ with the equation above, we have C,=0. Hence (2.18) implies
¢C,=0 in W.
Suppose that there exists a point p in W such that ¢(p)=0, we have
2HjxH* 429 ;3= Ruju; + P(ujvi+uw) +Quw;  at p,

because of (2.21). This means that there exist principal curvatures ++/—1 at p.
This is a contradiction. Consequently, ¢ vanishes nowhere in W and then the
function y is necessarily constant in W. Thus Lemma 2.7 is proved.

LEMMA 2.8. The function ¢ is constant in the open kernel W, if n=3.

Proof. Since W has at most four distinct principal curvatures g, g2, 7; and
7, with multiplicities #—1, »—1, 1 and 1 respectively, we get, using Lemma 2.6,
by a straightforward computation

2.23) Hy=2(n—Dp+7,
(2.24) Hji H=2(n—1)2¢* — ¢y — 1)+ (724 2).
Differentiating (2. 2) covariantly, we have

Vof #*His +f 1*ViHi+ ViHfvi+ Hi*Vo f o =2¢0f 30+ 2000 f .
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Transvecting this equation with ¢* and making use of (2.23) and the first equa
tion of (1.5), we obtain

2(n—2) g+ 2t — 7 — 2 = Db+ {Hu P+ (— 29) (i —7) — >+ 2n—2)}o, = 0.
Since =3, from (2.23) and (2.24), we get
Fi*oe=0,
that is,
(2.25) ¢, =01u;+ D0,

By means of Lemma 2.3, coefficients P, @ and R in the equation (2.10) are given
by

P=2y—4¢, Q=2(*—¢py+2), R=2¢y+4,

because of a=0 and g=1. Taking account of the second and the third equations
of (1.5), we have

Viur=Vp*=0, w'lVin,=uVw,=vVu,=vVw,=0.

Consequently, applying Fi=g¢“F, to (2.10) and taking account of the relations
above, we have
2V HyHi* + 2H ;1 V H* — Agt H yy — AV H s+ 27 6,
(2.26)
= 27‘(/],‘:1’%]‘%1' — 4¢‘(u]vl + uwj) — 2T¢1'ZJ]‘Z)7;,

where ¢*=g¢¥¢$,. By the equation (1.7) of Codazzi and (2.24), the first term in
the left hand side of (2.26) is given by

2V HypH o=V Hip H*) =2(n—1)(4$ — 1),
Substituting (2.23), (2.25) and this equation into (2.26), we have
2@y —70)u;+ (20, +7®s)v,=0,
from which,
20,—y®,=0,  20,+y0,=0.

Therefore, ®;=®,=0 and hence the function ¢ is constant. This completes the
proof.

Summing up Lemmas 2.5 and 2.8 and taking account of the fact that N, 1s
a bordered set, we have

ProposiTiON 2.9. The function ¢ appearing in (2.1) is constant in M, if
n=3.
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As a direct consequence of Lemmas 2.6, 2.7 and 2.8, we have

ProprosiTioN 2.10. If n=3, then a connected open kernel W of the set N.
has at most four distinct constant principal curvatures

=g+ VF—gr—1, ca=¢—VF—gr—1,
a=+Vri+9)2, n=(—Vr+4)|2,

with multiplicities n—1, n—1, 1 and 1, respectively.

§ 3. Hypersurfaces of constant scalar curvature.

In this section, we shall concern with a hypersurface M of constant scalar
curvature in S?*+!(1) satisfying the condition (2.1). We shall prove the following
theorem, which has been, however, proved in a previous paper [4], provided that
¢ is constant.

THEOREM 3.1. Let M be a hypersurface wm S*™+(1) satisfying (2.1) and being
of constant scalar curvature. If n=3, then one of the following assertions (1), (2),
3) and (4) is true:
(1) M is totally umbilic;
(2) M has exactly two distinct constant principal curvatures ¢+ V1 + 2,
¢—VI1+¢* with the same multiplicity n;
(3) M has exactly two distinct constant principal curvatuves ¢ with multi-
plicity 2n—1 and —1|¢ with multiplicity 1;
(4) M has exactly four distinct constant principal curvatures ¢+~ ¢*—gr—1,
d—NGP—gr—1, (=1+VI15¢>[p, (—1—V1+¢?)|p with multiplicities n—1,
n—1, 1 and 1, vespectively.
We shall give outlines of the proof of Theorem 3.1 for completeness. To
prove this theorem, we need Lemmas 3.2, 3.3 and 3.4 which will be stated later.

By Lemma 2.1, the transforms Hux and Hv of the vectors # and » by the
second fundamental tensor H are linear combinations of # and v, that is,

3.1 Hyu*=aw? + o,
(3. 2) kavkz‘guj_{_rv]

in NUN,, where the set N consists of points x such that 1>2%z)>0 and the set
N, consists of points x such that 2(z)=0. First, we prove

Lemma 3.2, The functions a, B and 1 are constant in N.

Proof. By taking account of equations (3.1) and (3.2), there exist two eigen-
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values r; and ¢, of the second fundamental tensor corresponding to eigenvectors
belonging to the plane section P(w,v), and 7, 7. satisfy the quadratic equation

3.3) ?—(a+7)c+ay—p2=0.

Consequently we find 7, + 7, =2¢, because of (2.14). Let ¢ be an eigenvalue
associated with an eigenvector X perpendicular to P(#,v). Then the condition
(2.1) shows that 2¢—¢ is also an eigenvalue associated with the transforms fX of
X by the linear transformation f. On the other hand, since (2.10)" is reduced to

3.4 HijHi*—2¢Hji+{B+ ¢*(L+ B)}gss=B(L+ B)L + ¢*)(wj0: +v0:) [(1— A7),
the eigenvalue ¢ satisfies
(3.5) a*—2¢o+ p+¢*(1+p)=0.

Thus there exist at most two distinct eigenvalues, say ¢ and 2¢—o, associated
with eigenvectors perpendicular to the plane section P(w,v). Their multiplicities
are all equal to n—1. Hence we have

Hiy=n—1)o+n—1)2¢—0)+71+1s,
from which,
(3.6) Hy =2ng.

Thus, the mean curvature is constant in N.
Now, transvecting ¢7* to (3.4), we get

HyH— 28 Hy +2n(+ (L + P =281+ B)(L+4?).
Thus, by (1.9), (3.6) and the equation above, the scalar curvature K is given by
3.7 K==2(1+¢"{p—(Cn—1)}+n).

Since K is constant and ¢ is also constant in N by Lemma 2.5, so is g in N.
Thus, by (2.8) and (2.14), a and 7 are constant in N. Thus, Lemma 3.2 is proved.

LemMmA 3.3. Each point in N is umbilic or N has two distinct constant prin-
cipal curvatures ¢+ V1+¢*, ¢—VI+§ with the same multiplicity n.

Proof. Making use of the second equation of (2.11) and (2.14), we have
3.8 28+ 2B+ —ay=0.
from which,
(B+g7)—ar =) = (28" +26+7*—ap)|2=0,

that is,
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3.9 B+gr=ar—p"

Consequently, equation (3.3) coincides with equation (3.5), and therefore there
exist at most two distinct principal curvatures r, and z, at each point in N, where

a=¢+VBEA+¢Y), t=¢—VEA+e).
Substituting (2. 8) and (2.15) into (3.9), we have
B+ p)(1+¢*)=0.

This implies that =0 or g=—1. Thus it is evident that, in the case where =0
in N, each point in N is umbilic and that, in the case where f=—1 in N, N has
distinct constant principal curvature ¢+(1+¢%"? and ¢—(14¢*"* with the same
multiplicity #. This completes the proof.

LemMma 3.4, If ¢*—¢r—1>0 in a connected open kernel W of N, then W
has exactly four distinct constant principal curvatures

P+ Vo' —gr—1, p— Vo' —gr—1,
(=14+VT+)g,  (—=1=-VT+@)/sp

with multiplicities n—1, n—1, 1 and 1, respectively.
If ¢*—¢y—1=0 in a connected open kernel W of N,, then W has exactly two
distinct constant principal curvatures

¢’ _1/¢
with multiplicities 2n—1 and 1, respectively.

Proof. The eigenvalue ¢ associated with an eigenvector orthogonal to the
plane section P(u,v) satisfies the equation (2.22). This implies that

*—gyr—1=0.

By proposition 2.10, for eigenvalues oy, o3, 71 and ¢, obtained in Lemma 2.6,
we have

”1=02=¢) Tl=¢) TZ=_]-/¢’
or
0'1=0'2=¢, 1'1:“1/{[5, Tz=q,),

if ¢*—gy—1=0.
Next, we consider the case where ¢*—¢y—1>0. In this case, assuming o,=1,,
we obtain

VAV g —gr —1=0,

which contradicts ¢*—¢y—1>0. Thus we have s,%7,. In a similar way, we have
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0157y, oa%7y and gty if ¢*—¢y—1>0. This implies that W has four distinct
constant principal curvatures, if ¢*—¢y—1>0. By Lemma 2.6, the multiplicities
of o, and o, are equal to #—1. On the other hand, by virtue of a formula due
to Cartan [2] for the hypersurface with constant principal curvatures in a sphere,
we get

1+70, n 14750, +—1) 14090, =0,

T1—01 To—O0; J9—01

from which,
(97 +2)(0:2—yo1—1)=0.
Since 7; and 7, are different from ¢,, we get
dr+2=0,

from which,

a=(—1+VI+¢d/e, ta=(—1—V14¢)/p.
This completes the proof.

Proof of Theorem 3.1. The function f=H(u,v)/(1—4%) is defined and differ-
entiable in NUN,. We now see, from Proposition 2.4 and Lemma 3.2, that 3 is
non-positive constant in N. On the other hand, (2.19) implies that j is equal to
1 in W. Therefore, W is necessarily empty or identical with M itself.

When W is empty, as consequences of Lemma 3.3, the assertions (1) and (2)
stated in Theorem 3.1 are true. When W=DM, as consequences of Lemma 3.4,
the assertions (3) and (4) in Theorem 3.1 are true. Thus, Theorem 3.1 is proved
completely.

Following Theorem 3.1, we now prove

TuEOREM 3.5. Let M be a complete hypersurface in S*+(1) satisfying (2.1)
and being of comstant scalar curvatuve. If n=3, then one of the following two
assertions (a) and (b) is true:

(a) M is isometric to one of the following spaces:

(1) the great sphere S*™(1);

(2) the small spheve S*™(c), where c=1+¢%

(3) the product manifold S* *(c,)XS*(cs), where ci=1+¢* and c,=1+1/¢%

(4) the product manifold S™(c,) X S™(cz), where ¢, =21+ ¢*+ ¢N1+ ¢ and

=21+ —pVI1+¢?;
(b) M has exactly four distinct constant principal curvatures ¢+ V14 ¢?,

(—1EVI+¢d/¢ of multiplicities n—1, n—1, 1 and 1, respectively.
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Proof. Suppose that the open kernel of any connected component of the set
N, consisting of points x such that i(x)=0 is empty. Then, Lemma 3.3 implies
that each point in N is umbilic or that N has two distinct principal curvatures
=9+ (1+¢)V% ro=0—(1+¢*"? with the same multiplicity ». Thus, the prin-
cipal curvatures of A itself has the same property as that stated above, because
of continuity of principal curvatures. In the case where there exist two distinct
ones, we have two distinct distributions D; and D, on M which assign the eigen-
spaces D(x) and D,(z) to each point x in M, where Di(x) and D,(x) are eigen-
spaces of 7, and r; respectively. The distributions D, and D, are of the same
dimension #, and mutually orthogonal. Since each eigenvalue 1s constant, each
distribution is involutive and parallel with respect to the Riemannian connection
in M. Let M; (i=1,2) be a maximal integral manifold of D;. Then A, is totally
geodesic, and M is locally Riemannian product of M, and M,. Thus, integrating
the equations of Gauss and Weingarten, we can verify that M is isometric to the
product space S™(c:)XS™cz), where ¢;=1+[p+1+¢*?* and c,=14[p—(14+¢*)" %%
Thus, in the present case, only the case (4) of the assertion (a) occurs. In the
other case, where each point in N is umbilic, only the cases (1) and (2) of the
assertion (a) occur.

Next, suppose that there exists a connected component of N, which contains
an interior point. Then it was proved in Theorem 3.1 that an open kernel is
the hypersurface M itself. In the case where there are exactly two distinct con-
stant principal curvatures, using similar divices as those developed above, we can
verify that the case (3) of the assertion (a) occurs, if ¢*—¢y —1=0, and the assertion
(b) is true, if ¢p*—¢y—1>0. Thus Theorem 3.5 is proved.

§4. Compact hypersurfaces.
We prove in this section the following

THEOREM 4.1. Let M be a compact hypersurface in S* (1) satisfying (2.1).
If n=3, then one of the following two assertions (a) and (b) is true:
(a) M is isometric to one of the following spaces:
(1) the great sphere S*™(1);
(2) the small sphere S*(c), where c=1+¢%
(3) the product manifold S*™'(c,) X S'(cs), where ci=1+¢* and cy=1-+1/p%
(4) the product manifold S™(c.) X S™(cs), where ¢, =2(1+ ¢*+ ¢V1+ 6% and
=21+ ¢*—pV1+g?;
(b) M has exactly four distinct constant principal curvatures ¢+ V1+ @2,
(=1+VI+¢¥¢ with multiplicities n—1, n—1, 1 and 1, respectively.

As is already seen in §2 and §3, a connected open kernel W of N, is empty
or is identical with M itself and, when W=M, W has exactly two distinct con-
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stant principal curvatures ¢, —1/¢ or exactly four distinct constant principal curva-
tures ¢+ (14+¢%"% [—1+(1+¢%)"%)/4. Consequently, by the proof of Theorem 3.5,
in order to prove this theorem, it suffices to show that the function 8 is equal to
0 or —1 in the case where W is empty.

Now, in the sequel, suppose that W is empty. Thus in the following Lemmas
4.2, 4.3 and 4.4, we restrict ourselves to the case where W is empty. When the
assumptions stated in Theorem 4.1 are satisfied, the function ¢ in the condition
(2.1) must be constant by means of Lemmas 2.5 and 2.8. From Lemma 2.1, we
see that the transforms Hu and Hp of # and v by the transformation H are linear
combinations of # and v, i.e., in NUN,

4.1 Hyoub=au? + v’

4.2) Hyovk=pu? + v,
Moreover, we have already obtained in (2. 8)

4.3) a=¢(1—p), A:=B; in NUN,.

The functions «, 8 and 7 are defined and differentiable in NUN,. We have also
obtained in (2.15)

r=¢(1+p8) in N
However, this equation is satisfied also in NU N,, that 1s,
4. 4) 7=¢(1+p) in NUN,,

since N, is a bordered set. By means of Proposition 2.4, we get at most four
distinct principal curvatures o, g2, 7; and 7, such that

4.5) a=¢+ vV —pA+¢%, sr=p—V =B+ Y,
. T1:(/)+'\/W5: Tzz(ﬁ_\/m’zj

at each point in N, and hence, N, being a bordered set, also in NUN, because
of the continuity of principal curvatures. Under the condition (2.1), the multi-
plicities of ¢, and ¢, are —1 and those of r; and ¢, are 1. Thus, the mean curva-
ture is equal to 2n¢, which is constant. By means of (3.7), it follows from this
fact that the scalar curvature K satisfies

4. 6) K=—21+¢){—Cn—1}B+n) in NUN,

Since g is non-positive, solving the quadratic equation above, we have
B=n—1—V1)2 in NUN,,

where

A=n—1—4K2(1+¢)—nCn—1)}=0 in NUN..
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We have 4>0 in M, because N, is a bordered set. Hence we can define a func-
tion § in M by

“.7) B=(n—1—~1)2.

Then, the function § thus defined is an extension of the function g which is
defined only in NUN, Without fear of confusion, we denote the extended func-
tion by the same letter 3. Thus we prove

LemMA 4.2. The function B is differentiable in M.

On the set NUN,, differentiating equation (4. 4) covariantly and taking account
of constantness of ¢, we get 7,=¢p3,, and hence

4.8) Ci=¢B.
By Lemma 2.3, we have
AR =(B;—C)(1—22)=2{2(a*+ %) — 4pa +2(8+ ¢7)}
from which,
4.9) B,=22p(1+p)/(1—2%) in NUN,
because of (2.17), (4.3), (4.4) and (4.8). Taking account of (4.9), we prove
LemMma 4.3. B(x) is equal to 0 or —1 at each point x in Ni.

Proof. Since N, is also a bordered set, for an arbitrary but fixed point x in
N,, we can choose a sequence {z;} of points belonging to N such that z, con-
verges to x. Substituting (4.9) into the equation pjv/=B(1—2%), we have

(4.10) Bw'=228(1+p) in NUN..

Since the functions 5, v and 2 are differentiable in M and »=0 in N, from (4. 10),
we see that

lim 228(1+ §)()= +26(1 + §)(z) =0.

This completes the proof.

Next, we shall show that g is equal to 0 or —1 in M. As is already shown,
there exist at most four distinct principal curvatures oy, 0., 7, and z; at each point
in M. Using (4.5), we obtain

(L +0103)(01—02)" +(1+0171)(01—71)* + (L +7102) (71— 02)?
+ (1 + 2'20'1)(1'2 —0'1)2 + (1 +0"2T2)(0'2 - T2)2 + (1 + Tlfz)(fl - 72)2
=—4(1+¢*)*81+ (L —B)(2—p).
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Denoting by &y, &2, -+, k2 all of principal curvatures of M, we see that the equa-
tion above is equivalent to

(4.11) 2. (Lt ki) (wi— ) = —4(1+ %) p(1+ B)1— B)(2— B).

1<

By a formula of Simon’s type for the hypersurface of constant mean curvature
in a sphere [5], we obtain

‘%A(H”HJL)—_—V]CH]LV’CH“'F Z (1+I€ilfj)(lii—lij)2,

1<y

where 4 is denoted the Laplacian, i.e., Beltrami operator. Thus we have
1 y -

4.12) o ACH;H ) =P *H 5 —4(L+ gL+ §)(1 = )2 — 6).

On the other hand, by (2.17) we get B:+¢B,=0 and hence

ﬂ]:Bz(_¢uj+Uj),
2, =1 —pB)(—gu;+v;y).

(4.13)

Differentiating (4.9) covariantly and making use of the above equations, we have

@14 7By ECLE. B2+ )+ (L= PN~ gus o),

from which, by simple computations,

_ 2(1+¢9BL+H)

(4.15) 48 "

{2%(34+38—2n)+(1—p)}.
Since the mean curvature is constant, using (1.9) and (4.6), we get by a straight-
forward calculation,

M HuH7)=— 4K

= AEIVEIYD) (95t 1)i22%5—n-+2)+ (1 - H)1— ) +4RH(L+ ).

Combining (4.12) and the equation above, we find

214960 +5).

VH P e H = e

2248 = Bn—T)p+(n—1)(n—2))
(4.16)
—(n—=51-2)(1-p)l

Making use of (4.16), we prove the following lemma which is required to
prove Theorem 4. 1.
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LEMMA 4.4. B is equal to 0 or —1 in M.

Proof. In the case where #=6, since the left hand side of (4.16) is non-
negative in M, so is the right hand side in M and hence in N,. This implies

—2(n—5)1+¢%2p(1+B)(1—p)(x)=0 at xeN,,
from which, we get
—1=p(x)=0 at zeN,,

because the function g is non-positive. Since M is compact, the function g has
the minimum at a point p in M. Supposing A(p)<—1, we see by Lemma 4.3
that p belongs to N. Let U be a suitable neighbourhood of p in N such that
B(x)<—1 for any point z in U. Since A(p) is the minimum and g(1+p) is posi-
tive in U, (4.9) shows that 2=0 at p, that is, p belongs to N,. This is a con-
tradiction. Thus we have

-1=8=0 in M.

Then the right hand side of (4.12) is non-negative and hence, by the well-known
theorem of Green (cf. [8]), we have

41+¢*2p1+pA-p)R2—-p=0 in M.

This implies that p(1+p) vanishes identically in M. Consequently, in the case
where #=6, the assertion of Lemma 4.4 is true.

When 5=#=3, since the quadratic polynomial 48>°—@Bn—7)8+m—1)(n—2) is
non-negative, taking account of the right hand side of (4.15), we see that

p1+8)=0.

By the continuity of g, it follows that B vanishes identically or that § is not
greater than —1.

Suppose that § is not greater than —1. Since M is compact, there exists a
point ¢ in M such that p(g) is the maximal value on #. Furthermore, suppose
that ¢ is the point in the set NUN,. We now define a linear and elliptic differ-
ential operator L of the second order in NU N, defined by

0 . 0
L=g” 0x/ox® +h Bx*

{xz*} being local coordinates of M, where

2 3k1-)-3VD—4n ﬁ‘ k }
T2 rl-——~D—4 il

D=FY(1— 2% —dk(1—22),

k=
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and {,%;} is the Christoffel’s symbol formed with the Riemannian metric tensor ¢
in M, k is a non-positive constant as will be stated later. Then the function p
satisfies the equation

(4.17) L(p)= 3(113/;1 BA+p)L—p).

In fact, using (4.9) and (4.13), we get the differential equation

4.18) (1—f)p,= %Q, in NUMN,
from which,
(4.19) (L+pP=k1—2) 1 NUN.

By the definition of %%, we see that the first and the last terms of L(g) is reduced
to 4p5. Next, we consider the second term of L(g). By (4.19), we may suppose
that & is a negative constant, because g is equal to —1 if %k is assumed to be
zero. Then, it follows from (4.19) that

3k(1—22)—3VD—4n __ 3(1+p)—2n
Rl——~D—4 -5

Thus we have

A 3(1 -2

Since (4.18) implies, together with (1.5), 2*8;=B,1—p)(1+¢*(1—2%), the equation
above becomes

21 +¢%)

L(p)y=dp— ——5~ Zp(1L+p)3+3p—2n).
By virtue of this equation and (4.15), we have (4.17).

Combining g<—1 and (4.17), we get
L(p=0 in U.

By a theorem due to Hopf [3,7] this means that g is constant in U, so that 5 1s
equal to 0 in U. By (4.9), we get

281+ 8)=0.

Hence, in the case where ¢ is a point in NUN,, 5 must be equal to —1, because
the set N, has no interior points.

Next, suppose that ¢ is a point belonging to N;. Then, taking account of the
fact that N, is a bordered set, we can choose a sequence {z;} of points belonging
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to N such that z, converges to the point ¢g. We may treat the subject in the
case where f(z;)<<—1 for arbitrary points z,. By (4.14), we obtain

40+¢%)

PiBIBy =

B+ 83241+ p)+1—p)*,

Combining the equation above with (4.19), we have

4RY(1+¢)
S+

On the other hand, (V;B.V’B.)(x;) converges to (V;B:F/B,)(q), because g is dif-
ferentiable. Thus the right hand side of the equation above should converge.
Therefore, because of g(g)=—1 given in Lemma 4.3, we obtain

(7,BoVi Bo)(2s) = 2 BB+ B) +(1— B)FA(o).

lli_'m A 3221+ B)+ (1 — B)y*(w:) =0,

from which,
—4k*=0.

This implies that g8 must be equal to —1 in M, because of (4.19). We now con-
clude the proof of Theorem 4.1 completely.
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