ITOH, T. KÖDAI MATH. SEM. REP. 23 (1971), 451–458

MINIMAL SURFACES IN 4-DIMENSIONAL RIEMANNIAN MANIFOLDS OF CONSTANT CURVATURE

By Takehiro Itoh

For surfaces immersed in a Euclidean 4-space E^4 , Little [5] proved the following

THEOREM. Let x: $M \rightarrow E^4$ be an immersion of a compact orientable surface in E^4 . Suppose that K_N , the curvature of the connection in the normal bundle, is everywhere positive (negative), then x is inflection free immersion and furthermore $\chi(N) = -2\chi(M)$ ($\chi(N) = 2\chi(M)$), where $\chi(M)$ and $\chi(N)$ denote the Euler characteristics of M and the normal bundle over M respectively.

Furthermore he brought forward a problem to find examples of immersions with everywhere positive K_N .

In the present paper, for compact surfaces minimally immersed in a 4-dimensional Riemannian manifold of constant curvature, we shall find surfaces with non-zero constant K_N . Our main result is the following

THEOREM A. Let M be a 2-dimensional compact Riemannian manifold which is minimally immersed in a 4-dimensional unit sphere S^4 . If K_N is non-zero constant everywhere on M, then we may regard M as a Veronese surface in S^4 .

Solving directly the differential equations (2.6) or (2.7) of Theorem B in the same way as [4] or [7], we can verify that M may be regarded as a Veronese surface in S^4 .

The author expresses his deep gratitude to Professor T. Otsuki who encouraged him and gave him a lot of valuable suggestions.

§ 1. Preliminaries. Let $\overline{M} = \overline{M}^4(\overline{c})$ be a 4-dimensional Riemannian manifold of constant curvature \overline{c} and $M = M^2$ be a 2-dimensional compact Riemannian manifold immersed in \overline{M} with the induced Riemannian structure through an immersion $x: M \to \overline{M}$. Let F(M) and $F(\overline{M})$ be the orthonormal frame bundles over M and \overline{M} respectively. We denote by F_{ν} the bundle of normal frames. Let B be the set of all element $b = (p, e_1, e_2, e_3, e_4)$ such that $(p, e_1, e_2) \in F(M)$ and $(p, e_1, e_2, e_3, e_4) \in F(\overline{M})$, identifying $p \in M$ with x(p) and e_i with $dx(e_i)$, i=1, 2. Then B is naturally considered as a smooth submanifold of $F(\overline{M})$. Let $\overline{\omega}_A$,

Received September 9, 1971.

 $\overline{\omega}_{AB} = -\overline{\omega}_{BA}$, A, B = 1, 2, 3, 4, be the basic and connection forms of \overline{M} on $F(\overline{M})$ which satisfy the structure equations

(1.1)
$$d\overline{\omega}_{A} = \sum_{B} \overline{\omega}_{AB} \wedge \overline{\omega}_{B}, \quad d\overline{\omega}_{AB} = \sum_{C} \overline{\omega}_{AC} \wedge \overline{\omega}_{CB} - \overline{c} \overline{\omega}_{A} \wedge \overline{\omega}_{B}.$$

Then, deleting the bars of $\overline{\omega}_A$, $\overline{\omega}_{AB}$ on B, we have

(1.2)
$$\omega_{\alpha}=0, \quad \omega_{i\alpha}=\sum_{j}A_{\alpha ij}\omega_{j}, \quad A_{\alpha ij}=A_{\alpha ji},$$

and

(1.3)
$$d\omega_{ij} = \sum_{\alpha} \omega_{i\alpha} \wedge \omega_{\alpha j} - \bar{c} \omega_{i} \wedge \omega_{j},$$
$$d\omega_{ij} = \sum_{\alpha} \omega_{i\alpha} \wedge \omega_{\alpha j} - \bar{c} \omega_{i} \wedge \omega_{j},$$
$$d\omega_{i\alpha} = \omega_{ij} \wedge \omega_{j\alpha} + \omega_{i\beta} \wedge \omega_{\beta\alpha},$$
$$d\omega_{34} = \sum \omega_{3i} \wedge \omega_{i4}, \quad i \neq j, \quad \alpha \neq \beta,$$

where throughout this paper we use the following ranges of indices:

$$1 \leq i, j \leq 2;$$
 $3 \leq \alpha, \beta \leq 4$

Now, ω_{12} and ω_{34} are the connection forms in F(M) and F_{ν} respectively and $d\omega_{12}$ and $d\omega_{34}$ are curvature forms of these bundles respectively. Making use of (1.2) and (1.3), we may write $d\omega_{12}$ and $d\omega_{34}$ as follows:

$$(1.4) d\omega_{12} = -K\omega_1 \wedge \omega_2, d\omega_{34} = -K_N\omega_1 \wedge \omega_2,$$

where K is the Gaussian curvature of M. We regard the second equality as the definition of K_N and call it the curvature of the connection in the normal bundle, or simply the normal scalar curvature of M in this paper.

§ 2. Minimal surfaces with constant normal scalar curvature $K_N \neq 0$.

In this section, we assume that M is minimal in \overline{M} , i.e., trace $A_{\alpha}=0$, and K_N is non-zero constant on M. Then, making use of (1.2), (1.3), (1.4) and trace $A_{\alpha}=0$, we obtain

$$(2.1) K_N = 2(A_{311}A_{412} - A_{312}A_{411}).$$

Hence it must be

(2.2)
$$m \operatorname{-index}_p M = 2$$
 at each point $p \in M$.

For any matrices $A, B \in S_2$, we define the inner product of A and B by $\langle A, B \rangle = (1/2)$ trace AB. With respect to this inner product, we denote the square of the length of the system of second fundamental forms by S, i.e.

$$S = \sum_{\alpha=3}^{4} ||A_{\alpha}||^2 = \frac{1}{2} \sum_{\alpha, i, j} A_{\alpha i j} A_{\alpha i j}.$$

LEMMA 1. If M is minimal in \overline{M} , the set $E = \{p \in M | \langle A_3, A_4 \rangle = 0, ||A_3|| = ||A_4||$ at p} coincides with the set $\{p \in M | S^2 - K_N^2 = 0 \text{ at } p\}$.

Proof. Since trace $A_{\alpha}=0$, we have

(2.3)
$$S^{2}-K_{N}^{2}=(||A_{3}||^{2}+||A_{4}||^{2})^{2}-\{2(A_{311}A_{412}-A_{312}A_{411})\}^{2}$$
$$=\{(A_{311}+A_{412})^{2}+(A_{312}-A_{411})^{2}\}\{(A_{311}-A_{412})^{2}+(A_{312}+A_{411})^{2}\}.$$

Hence, if we have $S^2 - K_N^2 = 0$ at p, then we have

$$A_{311} + A_{412} = A_{312} - A_{411} = 0$$
 or $A_{311} - A_{412} = A_{312} + A_{411} = 0$,

which implies that $\langle A_3, A_4 \rangle = 0$ and $||A_3|| = ||A_4||$. It follows easily from the above equations that if $\langle A_3, A_4 \rangle = 0$ and $||A_3|| = ||A_4||$, then we have $S^2 - K_N^2 = 0$. Q.E.D.

Since S and K_N are differentiable functions on M, E is closed in M. Hence M-E is open in M.

LEMMA 2. If M is minimal in \overline{M} and $K_N \neq 0$, then in M-E we can choose locally frames $b \in B$ such that

(2.4)
$$\begin{aligned} \omega_{13} = h_1 \omega_1, \quad \omega_{14} = h_2 \omega_2, \\ \omega_{23} = -h_1 \omega_2, \quad \omega_{24} = h_2 \omega_1, \quad h_1^2 > h_2^2 > 0. \end{aligned}$$

Proof. Putting $\bar{e}_3 = e_3 \cos \theta + e_4 \sin \theta$ and $\bar{e}_4 = -e_3 \sin \theta + e_4 \cos \theta$, we have

$$\langle \bar{A}_3, \bar{A}_4 \rangle = \langle A_3, A_4 \rangle \cos 2\theta + \frac{||A_4||^2 - ||A_3||^2}{2} \sin 2\theta.$$

Since we have

$$\langle A_3, A_4 \rangle^2 + (||A_4||^2 - ||A_3||^2)^2 \neq 0$$
 on $M - E$,

we can choose locally differentiable frame fields e_3 and e_4 such that $\langle A_3, A_4 \rangle = 0$ and may suppose that $||A_3||^2 - ||A_4||^2 > 0$. Therefore we can choose locally frame fields e_1 and e_2 such that $\omega_{13} = h_1\omega_1$ and $\omega_{23} = -h_1\omega_2$, $h_1 \neq 0$. Then it follows from $\langle A_3, A_4 \rangle = 0$ and trace $A_4 = 0$ that we have $\omega_{14} = h_2\omega_2$ and $\omega_{24} = h_2\omega_1$, $h_2 \neq 0$. Since $||A_3||^2 - ||A_4||^2 > 0$, we get $h_1^2 > h_2^2 > 0$. Q.E.D.

Now, making use of the above two Lemmas, we shall prove the following

THEOREM B. Let M be a 2-dimensional compact Riemannian manifold which is minimally immersed in a 4-dimensional Riemannian manifold \overline{M} of constant curvature \overline{c} . If K_N is non-zero constant on M, then we have

(2.5)
$$S = \frac{2\overline{c}}{3} > 0$$
 and $K = \text{constant} > 0$.

TAKEHIRO ITOH

Furthermore, the Frenet formulas of M are given by the following:

(I)
$$K_N > 0$$
:
 $dx = R((e_1 + ie_2)(\omega_1 - i\omega_2)),$
(2.6) $\overline{D}(e_1 + ie_2) = -i(e_1 + ie_2)\omega_{12} + h(e_3 + ie_4)(\omega_1 - i\omega_2),$
 $\overline{D}(e_3 + ie_4) = -2i(e_3 + ie_4)\omega_{12} - h(e_1 + ie_2)(\omega_1 + i\omega_2),$

where we may put $K_N = 2h^2$ and \overline{D} denotes the covariant differentiation of \overline{M} .

(II)
$$K_N < 0$$

(2.7)
$$dx = R((e_1 + ie_2)(\omega_1 - i\omega_2)),$$
$$\overline{D}(e_1 + ie_2) = -i(e_1 + ie_2)\omega_{12} + h(e_3 - ie_4)(\omega_1 - i\omega_2),$$
$$\overline{D}(e_3 - ie_4) = -2i(e_3 - ie_4)\omega_{12} - h(e_1 + ie_2)(\omega_1 + i\omega_2),$$

where we may put $K_N = -2h^2$.

Proof. In the first place we shall prove that M=E, namely, $S^2=K_N^2$ on M. Supposing that the open subset M-E of M is not empty, the continuous function $S^2-K_N^2$ is positive there from (2.3). Hence the function $S^2-K_N^2$ takes its positive maximum at some point p_0 in M-E. We choose a neighbourhood U of p_0 in M-E such that we have frames $b \in B$ over U which satisfy (2.4). Then, making use of (2.4) and (1.3), we obtain

(2.8)
$$dh_{1} \wedge \omega_{1} + (2h_{1}\omega_{12} - h_{2}\omega_{34}) \wedge \omega_{2} = 0, \quad \dots \quad (1)$$
$$dh_{1} \wedge \omega_{2} - (2h_{1}\omega_{12} - h_{2}\omega_{34}) \wedge \omega_{1} = 0, \quad \dots \quad (2)$$
$$dh_{2} \wedge \omega_{1} + (2h_{2}\omega_{12} - h_{1}\omega_{34}) \wedge \omega_{2} = 0, \quad \dots \quad (3)$$

(2.9)
$$dh_2 \wedge \omega_2 - (2h_2\omega_{12} - h_1\omega_{34}) \wedge \omega_1 = 0, \dots$$

and

$$K_N = 2h_1h_2$$
.

Since K_N is non-zero constant, making $(1 \times h_2 + (3 \times h_1) \times h_2 + (4 \times h_1))$, we obtain

$$(2.10) 2K_N \omega_{12} = S \omega_{34}.$$

From (2.10), we get

$$(2.11) 2K_N d\omega_{12} = dS \wedge \omega_{34} - K_N S \omega_1 \wedge \omega_2.$$

Also, making $(1) \times h_1 + (3) \times h_2$ and $(2) \times h_1 + (4) \times h_2$, we have

MINIMAL SURFACES IN RIEMANNIAN MANIFOLDS

$$dS \wedge \omega_1 + \frac{4(S^2 - K_N^2)}{S} \omega_{12} \wedge \omega_2 = 0,$$

$$dS \wedge \omega_2 - \frac{4(S^2 - K_N^2)}{S} \omega_{12} \wedge \omega_1 = 0.$$

(2.12)

Applying Cartan's Lemma to (2.8), we may put

$$dh_1 = A\omega_1 + B\omega_2,$$

$$2h_1\omega_{12} - h_2\omega_{34} = B\omega_1 - A\omega_2,$$

which imply, together with (2.10), that

$$\frac{2h_1(h_1^2-h_2^2)}{S}\omega_{12}=B\omega_1-A\omega_2.$$

Since $h_1 \neq 0$ and $h_1^2 - h_2^2 > 0$, we may write $\omega_{12} = A_1 \omega_1 + B_1 \omega_2$ in U, where A_1 and A_2 are differentiable functions in U. Then, from (2.10) we obtain

(2.13)
$$\omega_{34} = \frac{2K_N}{S} \omega_{12} = \frac{2K_N}{S} (A_1 \omega_1 + B_1 \omega_2)$$

Hence, by means of (2.11), (2.12) and (2.13), we obtain

$$2K_N d\omega_{12} = -\left\{\frac{8K_N(S^2 - K_N^2)(A_1^2 + B_1^2)}{S^2} + SK_N\right\}\omega_1 \wedge \omega_2.$$

Since $d\omega_{12} = -K\omega_1 \wedge \omega_2$, $K_N \neq 0$ and S > 0, we get

$$2K = \frac{8(S^2 - K_N^2)(A_1^2 + B_1^2)}{S^2} + S > 0,$$

that is, we get

$$(2.14)$$
 $K > 0$ in U .

On the other hand, making $(1 \times h_1 - (3 \times h_2)) \times h_2$ and $(2 \times h_1 - (4 \times h_2)) \times h_2$, we have

(2.15)
$$d(h_1^2 - h_2^2) \wedge \omega_1 + 4(h_1^2 - h_2^2) \omega_{12} \wedge \omega_2 = 0,$$
$$d(h_1^2 - h_2^2) \wedge \omega_2 - 4(h_1^2 - h_2^2) \omega_{12} \wedge \omega_1 = 0.$$

which imply that there exists a neighbourhood V of p_0 with isothermal coordinates (u, v) such that

$$(2.16) \qquad ds^2 = \lambda \{ du^2 + dv^2 \}, \qquad \omega_1 = \sqrt{\lambda} du, \qquad \omega_2 = \sqrt{\lambda} dv, \qquad \sqrt{h_1^2 - h_2^2} \lambda = 1,$$

where $\lambda = \lambda$ (u, v) is a positive function in V. With respect to the isothermal coordinates, as is well known, the Gaussian curvature K is given by the following equation

TAKEHIRO ITOH

$$K = -\frac{1}{2\lambda} \Delta \log \lambda.$$

Since $\sqrt{h_1^2 - h_2^2} \lambda = 1$ and $(h_1^2 - h_2^2)^2 = S^2 - K_N^2$, we get

(2.17)
$$K = \frac{\sqrt{h_1^2 - h_2^2}}{8} \Delta \log (S^2 - K_N^2).$$

From (2.14) and (2.17), we obtain the inequality

$$\Delta \log \left(S^2 - K_N^2 \right) > 0 \quad \text{in } V,$$

which implies that the function $\log (S^2 - K_N^2)$ is a subharmonic function in V. On the other hand, by the assumption the function $S^2 - K_N^2$ takes its positive maximum at p_0 , and hence $\log (S^2 - K_N^2)$ takes also its maximum at p_0 . By a well-known theorem on subharmonic functions it must be constant in V, which implies, together with (2.17),

$$K=0$$
 in V .

This contradicts (2.14). Thus it must be $M-E=\emptyset$, that is M=E. Hence we get

(2.18)
$$S^2 = K_N^2$$
 on M .

Since K_N is constant, S is also so. As stated in Lemma 1, on E=M we have $\langle A_3, A_4 \rangle = 0$ and $||A_3|| = ||A_4||$ for any frames $b \in B$. Hence we can choose frames $b \in B$ in a neighbourhood of a point of M such that

(2.19)
$$\begin{aligned} \omega_{13} = h_1 \omega_1, & \omega_{14} = h_2 \omega_2, & h_1^2 = h_2^2 \neq 0, \\ \omega_{23} = -h_1 \omega_2, & \omega_{24} = h_2 \omega_1, \end{aligned}$$

where h_1 and h_2 are local differentiable functions in M. In this case, we have $S=h_1^2+h_2^2$ and $K_N=2h_1h_2$, so that h_1 and h_2 are constant, because S and K_N are constant. Making use of (2.19) and (1.3), we obtain

(2.20)
$$2h_1\omega_{12} - h_2\omega_{34} = 0,$$
$$2h_2\omega_{12} - h_1\omega_{34} = 0,$$

from which we get

(2.21) $2K_N\omega_{12}=S\omega_{34}$.

Then we have

$$2K_N d\omega_{12} = Sd\omega_{34} = -SK_N \omega_1 \wedge \omega_{23}$$

which implies

$$K = \frac{S}{2} > 0.$$

On the other hand, making use of (1.3), we get

$$d\omega_{12} = -(\bar{c} - S)\omega_1 \wedge \omega_2,$$

which implies

$$K = \bar{c} - S$$

Thus we get

$$(2.22) S = \frac{2\overline{c}}{3},$$

hence \bar{c} is a positive constant. Since K_N is non-zero, we can consider the following two cases:

Case (I) $K_N > 0$; In this case, we have $h_1 = h_2$. From (2.21) we obtain

 $\omega_{34} = 2\omega_{12}$.

Also we may write $K_N = 2h^2$, where $h_1 = h_2 = h$. Then we get the following Frenet formulas of M:

$$dx = e_1\omega_1 + e_2\omega_2,$$

$$\overline{D}e_1 = \omega_{12}e_2 + h\omega_1e_3 + h\omega_2e_4,$$

$$\overline{D}e_2 = -\omega_{12}e_1 - h\omega_2e_3 + h\omega_1e_4,$$

$$\overline{D}e_3 = 2\omega_{12}e_4 - h\omega_1e_1 + h\omega_2e_2,$$

$$\overline{D}e_4 = -2\omega_{12}e_3 - h\omega_2e_1 - h\omega_1e_2,$$

which are reduced to (2.6).

Case (II) $K_N < 0$. Since we have $h_1 = -h_2$, from (2.21) we get

$$\omega_{34} = -2\omega_{12}$$

and we may set $h=h_1=-h_2$, i.e., $K_N=-2h^2$. Then we get the following Frenet formulas of M:

```
dx = e_1\omega_1 + e_2\omega_2,
\overline{D}e_1 = \omega_{12}e_2 + h\omega_1e_3 - h\omega_2e_4,
\overline{D}e_2 = -\omega_{12}e_2 - h\omega_2e_3 - h\omega_1e_4,
\overline{D}e_3 = -2\omega_{12}e_4 - h\omega_1e_1 + h\omega_2e_2,
\overline{D}e_4 = 2\omega_{12}e_3 + h\omega_2e_1 + h\omega_1e_2,
```

TAKEHIRO ITOH

which are reduced to (2.7).

Q.E.D.

Since $\bar{c} > 0$, we may put $\bar{c} = 1$. Then we may regard as $\bar{M}^4 = S^4$ (unit sphere) and have

$$S = \frac{2}{3}, \quad K = \frac{1}{3} \quad \text{and} \quad K_N = \pm \frac{2}{3}.$$

Hence we can solve the differential equations (2.6) and (2.7) in the same way as [4] or [7] and verify that M may be regarded as a Veronese surface in S^4 .

We remark that Theorem A also follows from Theorem B and the fact that S of [1] is identically 4/3 on M.

References

- [1] CHERN, S. S., M. DO CARM, AND S. KOBAYASHI, Minimal submanifolds of a sphere with second fundamental form of constant length. Functional Analysis and Related Fields, Springer-Verlag, (1970), 59-75.
- [2] Ітон, Т., Complete surfaces in E⁴ with constant mean curvature. Ködaı Math. Sem. Rep. 22 (1970) 150-158.
- [3] , A note on minimal submanifolds with *M*-index 2. Kōdai Math. Sem. Rep. 23 (1971) 204-207.
- [4] —, Minimal surfaces with *M*-index 2, *T*₁-index 2 and *T*₂-index 2. Kōdai Math. Sem. Rep. 24 (1972) 1-16.
- [5] LITTLE, J. A., On singularities of submanifolds of higher dimensional Euclidean spaces. Annli Math., (1969), 261-336.
- [6] ŌTSUKI, T., On minimal submanifolds with M-index 2. J. Differential Geometry, 6 (1971), 193-211.
- [7] ——, Minimal submanifolds with *M*-index 2 in Riemannian Manifolds of constant curvature. Tohoku Math. J. 23 (1971), 371-402.

Department of the Foundations of Mathematical Sciences, Tokyo University of Education.