ITOH, T. KODAI MATH. SEM. REP. 23 (1971), 451-458

MINIMAL SURFACES IN 4-DIMENSIONAL RIEMANNIAN MANIFOLDS OF CONSTANT CURVATURE

BY TAKEHIRO ITOH

For surfaces immersed in a Euclidean 4-space *E⁴ ,* Little [5] proved the following

THEOREM. Let x: $M \rightarrow E^4$ be an immersion of a compact orientable surface *in* $E⁴$. Suppose that K_N , the curvature of the connection in the normal bundle, is *everywhere positive (negative), then x is inflection free immersion and furthermore* $\chi(N) = -2\chi(M)$ ($\chi(N) = 2\chi(M)$), where $\chi(M)$ and $\chi(N)$ denote the Euler charac*teristics of M and the normal bundle over M respectively.*

Furthermore he brought forward a problem to find examples of immersions with everywhere positive *K^N .*

In the present paper, for compact surfaces minimally immersed in a 4-dimensional Riemannian manifold of constant curvature, we shall find surfaces with non-zero constant K_N . Our main result is the following

THEOREM A. *Let M be a 2-dimensional compact Riemannian manifold which* is minimally immersed in a 4-dimensional unit sphere S^4 . If K_N is non-zero con*stant everywhere on M, then we may regard M as a Veronese surface in S⁴ .*

Solving directly the differential equations (2.6) or (2.7) of Theorem B in the same way as [4] or [7], we can verify that *M* may be regarded as a Veronese surface in $S⁴$.

The author expresses his deep gratitude to Professor T. Otsuki who encouraged him and gave him a lot of valuable suggestions.

§ **1. Preliminaries.** Let $\overline{M} = \overline{M}^4(\overline{c})$ be a 4-dimensional Riemannian manifold of constant curvature \bar{c} and $M = M^2$ be a 2-dimensional compact Riemannian manifold immersed in \overline{M} with the induced Riemannian structure through an immersion x: $M \rightarrow \overline{M}$. Let $F(M)$ and $F(M)$ be the orthonormal frame bundles over M and \overline{M} respectively. We denote by F_ν the bundle of normal frames. Let *B* be the set of all element $b=(p,e_1,e_2,e_3,e_4)$ such that $(p,e_1,e_2)\in F(M)$ and $(p, e_1, e_2, e_3, e_4) \in F(\bar{M})$, identifying $p \in M$ with $x(p)$ and e_i with $dx(e_i)$, $i=1,2$. Then *B* is naturally considered as a smooth submanifold of $F(M)$. Let $\bar{\omega}_A$,

Received September 9, 1971.

 $\overline{\omega}_{AB}=-\overline{\omega}_{BA}$, A, B=1, 2, 3, 4, be the basic and connection forms of \overline{M} on $F(\overline{M})$ which satisfy the structure equations

(1.1)
$$
d\bar{\omega}_A = \sum_B \bar{\omega}_{AB} \wedge \bar{\omega}_B, \qquad d\bar{\omega}_{AB} = \sum_C \bar{\omega}_{AC} \wedge \bar{\omega}_{CB} - \bar{c} \bar{\omega}_A \wedge \bar{\omega}_B.
$$

Then, deleting the bars of $\bar{\omega}_A$, $\bar{\omega}_{AB}$ on *B*, we have

$$
(1,2) \t\t\t \t\t\t \omega_a=0, \t\t\t \omega_{ia}=\sum_j A_{aij}\omega_j, \t\t\t A_{aij}=A_{aji},
$$

and

(1.3)
\n
$$
d\omega_i = \omega_{ij} \wedge \omega_j,
$$
\n
$$
d\omega_{ij} = \sum_{\alpha} \omega_{i\alpha} \wedge \omega_{\alpha j} - \bar{c}\omega_i \wedge \omega_j,
$$
\n
$$
d\omega_{i\alpha} = \omega_{ij} \wedge \omega_{j\alpha} + \omega_{i\beta} \wedge \omega_{\beta\alpha},
$$
\n
$$
d\omega_{34} = \sum_{i} \omega_{3i} \wedge \omega_{i4}, \qquad i \neq j, \qquad \alpha \neq \beta,
$$

where throughout this paper we use the following ranges of indices:

$$
1{\leq}i,\,j{\leq}2;\qquad 3{\leq}\alpha,\ \beta{\leq}4
$$

Now, ω_{12} and ω_{34} are the connection forms in $F(M)$ and F_ν respectively and and *dωB4ί* are curvature forms of these bundles respectively. Making use of (1.2) and (1.3), we may write $d\omega_{12}$ and $d\omega_{34}$ as follows:

$$
(1.4) \t\t d\omega_{12} = -K\omega_1 \wedge \omega_2, \t d\omega_{34} = -K_N\omega_1 \wedge \omega_2,
$$

where *K* is the Gaussian curvature of M. We regard the second equality as the definition of *KN* and call it *the curvature of the connection in the normal bundle,* or simply the *normal scalar curvature* of *M* in this paper.

§ 2. Minimal surfaces with constant normal scalar curvature K_N \neq 0

In this section, we assume that M is minimal in \overline{M} , i.e., trace $A_{\alpha}=0$, and K_N is non-zero constant on M. Then, making use of $(1, 2)$, $(1, 3)$, $(1, 4)$ and trace $A_a = 0$, we obtain

$$
(2.1) \t K_N = 2(A_{311}A_{412} - A_{312}A_{411}).
$$

Hence it must be

$$
(2.2) \t\t m\text{-index}_p M=2 \t\t \text{at each point } p\in M.
$$

For any matrices $A, B \in S_2$, we define the inner product of A and B by $\langle A, B \rangle$ $=(1/2)$ trace AB. With respect to this inner product, we denote the square of the length of the system of second fundamental forms by S, i.e.

$$
S = \sum_{\alpha=3}^4 ||A_{\alpha}||^2 = \frac{1}{2} \sum_{\alpha, i, j} A_{\alpha i j} A_{\alpha i j}.
$$

LEMMA 1. If M is minimal in \overline{M} , the set $E = \{p \in M | \langle A_3, A_4 \rangle = 0, ||A_3|| = ||A_4||$ *at p} coincides with the set {p* $\epsilon M|S^2 - K_N^2 = 0$ *at p}.*

Proof. Since trace $A_{\alpha}=0$, we have

$$
S^2 - K_N^2 = (||A_3||^2 + ||A_4||^2)^2 - \{2(A_{311}A_{412} - A_{312}A_{411})\}^2
$$

(2. 3)

$$
= \{(A_{311} + A_{412})^2 + (A_{312} - A_{411})^2\} \{(A_{311} - A_{412})^2 + (A_{312} + A_{411})^2\}.
$$

Hence, if we have $S^2 - K_N^2 = 0$ at p , then we have

$$
A_{311} + A_{412} = A_{312} - A_{411} = 0 \qquad \text{or} \qquad A_{311} - A_{412} = A_{312} + A_{411} = 0,
$$

which implies that $\langle A_3, A_4 \rangle = 0$ and $||A_3|| = ||A_4||$. It follows easily from the above equations that if $\langle A_3, A_4 \rangle = 0$ and $||A_3|| = ||A_4||$, then we have $S^2 - K_N^2 = 0$. Q.E.D.

Since S and K_N are differentiable functions on M , E is closed in M . Hence $M - E$ is open in M.

LEMMA 2. If M is minimal in \overline{M} and $K_N \neq 0$, then in $M-E$ we can choose *locally frames bεB such that*

(2.4)
$$
\omega_{13} = h_1 \omega_1, \qquad \omega_{14} = h_2 \omega_2, \omega_{23} = -h_1 \omega_2, \qquad \omega_{24} = h_2 \omega_1, \qquad h_1^2 > h_2^2 > 0.
$$

Proof. Putting $\bar{e}_s = e_s \cos \theta + e_4 \sin \theta$ and $\bar{e}_4 = -e_s \sin \theta + e_4 \cos \theta$, we have

$$
\langle \bar{A}_3, \bar{A}_4 \rangle = \langle A_3, A_4 \rangle \cos 2\theta + \frac{||A_4||^2 - ||A_3||^2}{2} \sin 2\theta.
$$

Since we have

$$
\langle A_3, A_4 \rangle^2 + (||A_4||^2 - ||A_3||^2)^2 \neq 0
$$
 on $M - E$,

we can choose locally differentiable frame fields e_3 and e_4 such that $\langle A_3, A_4 \rangle = 0$ and may suppose that $||A_3||^2 - ||A_4||^2 > 0$. Therefore we can choose locally frame fields e_1 and e_2 such that $\omega_{18} = h_1 \omega_1$ and $\omega_{28} = -h_1 \omega_2$, $h_1 \neq 0$. Then it follows from $\langle A_3, A_4 \rangle = 0$ and trace $A_4 = 0$ that we have $\omega_{14} = h_2 \omega_2$ and $\omega_{24} = h_2 \omega_1$, $h_2 \neq 0$. Since $||A_3||^2 - ||A_4||^2 > 0$, we get $h_1^2 > h_2^2 > 0$. Q.E.D.

Now, making use of the above two Lemmas, we shall prove the following

THEOREM B. *Let M be a 2-dimensional compact Riemannian manifold which is minimally immersed in a ^-dimensional Riemannian manifold M of constant curvature* \bar{c} . If K_N is non-zero constant on M, then we have

(2.5)
$$
S = \frac{2\bar{c}}{3} > 0 \quad and \quad K = constant > 0.
$$

454 TAKEHIRO ITOH

Furthermore, the Frenet formulas of M are given by the following:

(1)
$$
K_N > 0
$$
:
\n
$$
dx = R((e_1 + ie_2)(\omega_1 - i\omega_2)),
$$
\n
$$
\bar{D}(e_1 + ie_2) = -i(e_1 + ie_2)\omega_{12} + h(e_3 + ie_4)(\omega_1 - i\omega_2),
$$
\n
$$
\bar{D}(e_3 + ie_4) = -2i(e_3 + ie_4)\omega_{12} - h(e_1 + ie_2)(\omega_1 + i\omega_2),
$$

where we may put $K_N = 2h^2$ and \bar{D} denotes the covariant differentiation of \bar{M} .

(II)
$$
K_N < 0
$$
:

$$
dx = R((e_1 + ie_2)(\omega_1 - i\omega_2)),
$$

(2. 7)
$$
\overline{D}(e_1 + ie_2) = -i(e_1 + ie_2)\omega_{12} + h(e_3 - ie_4)(\omega_1 - i\omega_2),
$$

$$
\overline{D}(e_3 - ie_4) = -2i(e_3 - ie_4)\omega_{12} - h(e_1 + ie_2)(\omega_1 + i\omega_2),
$$

where we may put $K_N = -2h^2$.

Proof. In the first place we shall prove that $M=E$, namely, $S^2 = K_N^2$ on M. Supposing that the open subset $M-E$ of M is not empty, the continuous function $S^2 - K_N^2$ is positive there from (2.3). Hence the function $S^2 - K_N^2$ takes its positive maximum at some point p_0 in $M-E$. We choose a neighbourhood U of p_0 in $M-E$ such that we have frames $b \in B$ over U which satisfy (2.4). Then, making use of (2.4) and (1.3) , we obtain

(2.8)
\n
$$
dh_1 \wedge \omega_1 + (2h_1 \omega_{12} - h_2 \omega_{34}) \wedge \omega_2 = 0, \quad \cdots \quad \textcircled{1}
$$
\n
$$
dh_1 \wedge \omega_2 - (2h_1 \omega_{12} - h_2 \omega_{34}) \wedge \omega_1 = 0, \quad \cdots \quad \textcircled{2}
$$
\n
$$
dh_2 \wedge \omega_1 + (2h_2 \omega_{12} - h_1 \omega_{34}) \wedge \omega_2 = 0, \quad \cdots \quad \textcircled{3}
$$

(2.9)
$$
dh_2 \wedge \omega_2 - (2h_2 \omega_{12} - h_1 \omega_{34}) \wedge \omega_1 = 0, \quad \text{.... (4)}
$$

and

$$
K_N = 2h_1h_2.
$$

Since K_N is non-zero constant, making $\mathbb{Q}\times h_2+\mathbb{Q}\times h_1$ and $\mathbb{Q}\times h_2+\mathbb{Q}\times h_1$, we obtain

$$
(2.10) \t\t 2K_N\omega_{12} = S\omega_{34}.
$$

From (2.10) , we get

$$
(2.11) \t\t 2K_N d\omega_{12}=dS\wedge \omega_{34}-K_N S\omega_1\wedge \omega_2.
$$

Also, making $\left(\mathbb{D}\times h_1 + \mathbb{D}\times h_2\right)$ and $\left(\mathbb{D}\times h_1 + \mathbb{D}\times h_2\right)$, we have

MINIMAL SURFACES IN RIEMANNIAN MANIFOLDS **455**

$$
dS\wedge\omega_1+\frac{4(S^2-K_N^2)}{S}\omega_{12}\wedge\omega_2=0,
$$

$$
dS\wedge\omega_2-\frac{4(S^2-K_N^2)}{S}\omega_{12}\wedge\omega_1=0.
$$

(2.12)

Applying Cartan's Lemma to (2.8), we may put

$$
dh_1 = A\omega_1 + B\omega_2,
$$

$$
2h_1\omega_{12} - h_2\omega_{34} = B\omega_1 - A\omega
$$

which imply, together with (2.10), that

$$
2h_1\omega_{12} - h_2\omega_{34} = B\omega_1 - A\omega_2,
$$

(2. 10), that

$$
\frac{2h_1(h_1^2 - h_2^2)}{S} \omega_{12} = B\omega_1 - A\omega_2.
$$

Since $h_1 \neq 0$ and $h_1^2 - h_2^2 > 0$, we may write $\omega_{12} = A_1 \omega_1 + B_1 \omega_2$ in U, where A_1 and A_2 are differentiable functions in *U.* Then, from (2.10) we obtain

(2.13)
$$
\omega_{34} = \frac{2K_N}{S} \omega_{12} = \frac{2K_N}{S} (A_1 \omega_1 + B_1 \omega_2)
$$

Hence, by means of (2.11) , (2.12) and (2.13) , we obtain

$$
\frac{2K_1}{S}\omega_{12}=B\omega_1-A\omega_2.
$$
\n1 $h_1^2-h_2^2>0$, we may write $\omega_{12}=A_1\omega_1+B_1\omega_2$ in *U*, v
\ne functions in *U*. Then, from (2.10) we obtain
\n
$$
\omega_{24}=\frac{2K_N}{S}\omega_{12}=\frac{2K_N}{S}(A_1\omega_1+B_1\omega_2).
$$
\nso of (2.11), (2.12) and (2.13), we obtain
\n
$$
2K_Nd\omega_{12}=-\left\{\frac{8K_N(S^2-K_N^2)(A_1^2+B_1^2)}{S^2}+SK_N\right\}\omega_1\wedge\omega_2.
$$
\n
$$
\omega_1\wedge\omega_2, K_N\neq 0 \text{ and } S>0, \text{ we get}
$$

Since $d\omega_{12} = -K\omega_1 \wedge \omega_2$, $K_N \neq 0$ and S>0, we get

$$
2K = \frac{8(S^2 - K_N^2)(A_1^2 + B_1^2)}{S^2} + S > 0,
$$

that is, we get

$$
(2.14) \t\t K>0 \t\t in U.
$$

On the other hand, making $\mathbb{Q} \times h_1 - \mathbb{Q} \times h_2$ and $\mathbb{Q} \times h_1 - \mathbb{Q} \times h_2$, we have

(2. 15)
\n
$$
d(h_1^2-h_2^2)\wedge\omega_1+4(h_1^2-h_2^2)\omega_{12}\wedge\omega_2=0,
$$
\n
$$
d(h_1^2-h_2^2)\wedge\omega_2-4(h_1^2-h_2^2)\omega_{12}\wedge\omega_1=0.
$$

which imply that there exists a neighbourhood V of p_0 with isothermal coordinates *(u,v)* such that

$$
(2.16) \qquad ds^2 = \lambda \{du^2 + dv^2\}, \qquad \omega_1 = \sqrt{\lambda} du, \qquad \omega_2 = \sqrt{\lambda} dv, \qquad \sqrt{h_1^2 - h_2^2} \lambda = 1,
$$

where $\lambda = \lambda$ (u, v) is a positive function in V. With respect to the isothermal coordinates, as is well known, the Gaussian curvature *K* is given by the following equation

456 TAKEHIRO ITOH

$$
K = -\frac{1}{2\lambda} \Delta \log \lambda.
$$

Since $\sqrt{h_1^2 - h_2^2} \lambda = 1$ and $(h_1^2 - h_2^2)^2 = S^2 - K_N^2$, we get

(2.17)
$$
K = \frac{\sqrt{h_1^2 - h_2^2}}{8} \Delta \log (S^2 - K_N^2).
$$

From (2.14) and (2.17) , we obtain the inequality

$$
\Delta \log \left(S^2 - K_N^2 \right) > 0 \quad \text{in} \quad V,
$$

which implies that the function $\log(S^2 - K_N^2)$ is a subharmonic function in V. On the other hand, by the assumption the function $S^2 - K_N^2$ takes its positive maximum at p_0 , and hence $\log(S^2 - K_N^2)$ takes also its maximum at p_0 . By a well-known theorem on subharmonic functions it must be constant in V , which implies, together with (2.17),

$$
K=0 \qquad \text{in} \quad V.
$$

This contradicts (2.14). Thus it must be $M-E=0$, that is $M=E$. Hence we get

$$
(2.18) \t\t S2=KN2 \t on M.
$$

Since K_N is constant, *S* is also so. As stated in Lemma 1, on $E=M$ we have $\langle A_3, A_4 \rangle = 0$ and $||A_3|| = ||A_4||$ for any frames $b \in B$. Hence we can choose frames $b \in B$ in a neighbourhood of a point of M such that

(2. 19)
$$
\omega_{13} = h_1 \omega_1, \qquad \omega_{14} = h_2 \omega_2, \qquad h_1^2 = h_2^2 \div 0, \omega_{23} = -h_1 \omega_2, \qquad \omega_{24} = h_2 \omega_1,
$$

where h_1 and h_2 are local differentiable functions in M. In this case, we have $S=h_1^2+h_2^2$ and $K_N=2h_1h_2$, so that h_1 and h_2 are constant, because S and K_N are constant. Making use of (2.19) and (1.3) , we obtain

(2. 20)
$$
2h_1\omega_{12} - h_2\omega_{34} = 0,
$$

$$
2h_2\omega_{12} - h_1\omega_{34} = 0,
$$

from which we get

 $2K_{N}\omega_{12} = S\omega_{34}$ (2.21)

Then we have

$$
2K_N d\omega_{12} = S d\omega_{34} = -S K_N \omega_1 \wedge \omega_2
$$

which implies

$$
K = \frac{S}{2} > 0.
$$

On the other hand, making use of $(1,3)$, we get

$$
d\omega_{12} = -(\bar{c} - S)\omega_1 \wedge \omega_2,
$$

which implies

$$
K{=}\bar{c}-S.
$$

Thus we get

$$
(2.22)\t\t\t\t\t S = \frac{2\bar{c}}{3},
$$

hence \bar{c} is a positive constant. Since K_N is non-zero, we can consider the following two cases:

Case (I) $K_N > 0$; In this case, we have $h_1 = h_2$. From (2.21) we obtain

 $\omega_{34} = 2\omega_{12}$

Also we may write $K_N = 2h^2$, where $h_1 = h_2 = h$. Then we get the following Frenet formulas of *M:*

$$
dx = e_1\omega_1 + e_2\omega_2,
$$

\n
$$
\overline{D}e_1 = \omega_{12}e_2 + h\omega_1e_3 + h\omega_2e_4,
$$

\n
$$
\overline{D}e_2 = -\omega_{12}e_1 - h\omega_2e_3 + h\omega_1e_4,
$$

\n
$$
\overline{D}e_3 = 2\omega_{12}e_4 - h\omega_1e_1 + h\omega_2e_2,
$$

\n
$$
\overline{D}e_4 = -2\omega_{12}e_3 - h\omega_2e_1 - h\omega_1e_2,
$$

which are reduced to (2.6).

Case (II) $K_N < 0$. Since we have $h_1 = -h_2$, from (2.21) we get

$$
\omega_{34} = -2\omega_{12}
$$

and we may set $h=h_1=-h_2$, i.e., $K_N=-2h^2$. Then we get the following Frenet formulas of *M:*

> $dx = e_1 \omega_1 + e_2 \omega_2$ $\bar{D}e_1 = \omega_{12}e_2 + h\omega_1e_3 - h\omega_2e_4$ $\overline{D}e_2=-\omega_{12}e_2-h\omega_{2}e_3-h\omega_{1}e_4,$ $\bar{D}e_3 = -2\omega_{12}e_4 - h\omega_1e_1 + h\omega_2e_2$ $\overline{D}e_4 = 2\omega_{12}e_3 + h\omega_2e_1 + h\omega_1e_2,$

458 TAKEHIRO ITOH

which are reduced to (2.7) . $Q.E.D.$

Since $\bar{c} > 0$, we may put $\bar{c} = 1$. Then we may regard as $\bar{M}^4 = S^4$ (unit sphere) and have

$$
S = \frac{2}{3}
$$
, $K = \frac{1}{3}$ and $K_N = \pm \frac{2}{3}$.

Hence we can solve the differential equations $(2, 6)$ and $(2, 7)$ in the same way as [4] or [7] and verify that M may be regarded as a Veronese surface in $S⁴$.

We remark that Theorem A also follows from Theorem B and the fact that S of [1] is identically $4/3$ on M.

REFERENCES

- [1] CHERN, S. S., M. Do CARM, AND S. KOBAYASHI, Minimal submanifolds of a sphere with second fundamental form of constant length. Functional Analysis and Related Fields, Springer-Verlag, (1970), 59-75.
- [2] Iтон, T., Complete surfaces in $E⁴$ with constant mean curvature. Kōdai Math. Sem. Rep. 22 (1970) 150-158.
- [3] \longrightarrow , A note on minimal submanifolds with *M*-index 2. Kōdai Math. Sem. Rep. **23** (1971) 204-207.
- [4] \longrightarrow , Minimal surfaces with *M*-index 2, T₁-index 2 and T₂-index 2. Kōdai Math. Sem. Rep. **24** (1972) 1-16.
- [5] LITTLE, J. A., On singularities of submanifolds of higher dimensional Euclidean spaces. Annli Math., (1969), 261-336.
- [6] \bar{O} TSUKI, T., On minimal submanifolds with *M*-index 2. J. Differential Geometry, 6 (1971), 193-211.
- [7] ______, Minimal submanifolds with M-index 2 in Riemannian Manifolds of constant curvature. Tόhoku Math. J. *23* (1971), 371-402.

DEPARTMENT OF THE FOUNDATIONS OF MATHEMATICAL SCIENCES, TOKYO UNIVERSITY OF EDUCATION.