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MINIMAL SURFACES IN 4-DIMENSIONAL

RIEMANNIAN MANIFOLDS OF CONSTANT CURVATURE

BY TAKEHIRO ITOH

For surfaces immersed in a Euclidean 4-space E4, Little [5] proved the
following

THEOREM. Let x\ M-^E* be an immersion of a compact orientable surface
in E4. Suppose that KN, the curvature of the connection in the normal bundle, is
everywhere positive (negative), then x is inflection free immersion and furthermore
χ(N)=-2l(M) (*(AO=2*(M)), where 7L(M) and I(N) denote the Euler charac-
teristics of M and the normal bundle over M respectively.

Furthermore he brought forward a problem to find examples of immersions
with everywhere positive KN.

In the present paper, for compact surfaces minimally immersed in a 4-dimen-
sional Riemannian manifold of constant curvature, we shall find surfaces with
non-zero constant KN. Our main result is the following

THEOREM A. Let M be a 2-dimensional compact Riemannian manifold which
is minimally immersed in a ^-dimensional unit sphere S4. If KN is non-zero con-
stant everywhere on M, then we may regard M as a Veronese surface in S4.

Solving directly the differential equations (2. 6) or (2. 7) of Theorem B in the
same way as [4] or [7], we can verify that M may be regarded as a Veronese

surface in S4.

The author expresses his deep gratitude to Professor T. Otsuki who encouraged
him and gave him a lot of valuable suggestions.

§ 1. Preliminaries. Let M = M\c] be a 4-dimensional Riemannian manifold
of constant curvature c and M=M2 be a 2-dimensional compact Riemannian
manifold immersed in M with the induced Riemannian structure through an
immersion x: M-+M. Let F(M) and F(M) be the orthonormal frame bundles
over M and M respectively. We denote by Fv the bundle of normal frames.
Let B be the set of_ all element b=^(p,el,e^e^e^) such that (p)elle2)^F(M)
and (p, βi, e2, β8, e4)€F(M), identifying pzM with x(p) and et with dx(et\ i=l,2.
Then B is naturally considered as a smooth submanifold of F(M). Let ωA,
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a)AB=—a>BA, A,B=1, 2, 3, 4, be the basic and connection forms of M on F(M)
which satisfy the structure equations

(1. 1) dωA=Σί^AB/\^By dδ)AB=
B C

Then, deleting the bars of ω^ WAB on B, we have

(1.2) ωa=Q, o)ia = Σ Aalj a)j,
3

and

(1.3)
dωia = Wij Λ ωja -f cύiβ Λ ω/sα,

where throughout this paper we use the following ranges of indices:

Now, ωi2 and <y34 are the connection forms in F(M) and Fv respectively and
and dωB4ί are curvature forms of these bundles respectively. Making use of

(1.2) and (1.3), we may write dωiz and dωu as follows:

(1.4) d(t)i2= — Ka)i/\0)2, d(i)34i=—KN(i)i/\a)2,

where K is the Gaussian curvature of M. We regard the second equality as the
definition of KN and call it the curvature of the connection in the normal bundle,
or simply the normal scalar curvature of M in this paper.

§2. Minimal surfaces with constant normal scalar curvature KN^

In this section, we assume that M is minimal in M, i.e., trace Aa=Q, and
KN is non-zero constant on M Then, making use of (1.2), (1.3), (1.4) and
trace Aa=Q, we obtain

(2. 1) jSΓΛr

Hence it must be

(2.2) w-indeXpM=2 at each point

For any matrices A, BeS2, we define the inner product of A and B by {A, B}
= (1/2) trace AB. With respect to this inner product, we denote the square of the
length of the system of second fundamental forms by S, i.e.
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LEMMA 1. // M is minimal in M, the set £={/>€Af|<A, A>=0, ||A|| = HA||
at p] coincides with the set {p€M\S2—K2

N=Q at p}.

Proof. Since trace Ar=0, we have

Sβ

(2.3)
= {(Am + A412)

2 + ( A» - An)a}{( Aii - A»)a

Hence, if we have S2— K2

N=0 at p, then we have

Aπ4~ Ai2= =Ai2 — An — 0 OΓ ASH — A12 — Ai2~l~ An — 0,

which implies that <A, A>=0 and ||A|| = ||A|| It follows easily from the above
equations that if <A, A>=0 and ||A|| = ||A||, then we have S2-K2

N=Q. Q.E.D.

Since S and KN are differentiable functions on M, E is closed in M. Hence
M— E is open in M.

LEMMA 2. If M is minimal in M and KN^ΰ, then in M—E we can choose
locally frames bεB such that

(2.4)
ft>23—

Proof. Putting e^=e^cosθ+e^smΘ and ^4=— es smθ+e4cosθ, we have

< 3̂, A> - <^s, ̂ 4> cos 2θ + ll^ll'-ll^ll' sin 2 .̂
z

Since we have

<A,̂ 4>a+(||AIΓ-||A||2)a^O on M-£,

we can choose locally differentiable frame fields ez and e± such that <^43, At>— 0
and may suppose that ||A||a-||A||a>0. Therefore we can choose locally frame
fields e\ and ez such that ωίB=hιωι and ω^——hιω^ Λι^=0. Then it follows from
<A, A>=0 and trace At =0 that we have ωu=h2ω2 and ω2i=h2ωι, hz^Q. Since
||AIΓ-||AIΓ>0, we get «>«>0. Q.E.D.

Now, making use of the above two Lemmas, we shall prove the following

THEOREM B. Let M be a 2-dimensional compact Riemannian manifold which
is minimally immersed in a ^-dimensional Riemannian manifold M of constant
curvature c. If KN is non-zero constant on M, then we have

(2.5) s = -^->0 and K= constant >0.
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Furthermore, the Frenet formulas of M are given by the following:

(I) KN>0:

dx = R((eι + ie

(2. 6)

where we may put Kχ=2h2 and D denotes the covariant differentiation of M.

(II) KN<0:

dx = R((eι + fea)(α>ι - ία>2)),

(2. 7)

where we may put KN = —W.

Proof. In the first place we shall prove that M=E, namely, S*=K2

N on M.
Supposing that the open subset M-E of M is not empty, the continuous function
S2—K2

N is positive there from (2.3). Hence the function S2—K2

N takes its posi-
tive maximum at some point p0 in M—E. We choose a neighbourhood U of p0 in
M—E such that we have frames bsB over C7 which satisfy (2.4). Then, making
use of (2.4) and (1.3), we obtain

0, ...... φ
(2.8)

(2.9)
ώA2Λω2— (2A2α>ι2—

and

Since X^ is non-zero constant, making ®xA 2+®X/?ι and ®xht+®xhι, we
obtain

(2.10)

From (2. 10), we get

(2.11) 2KNda)

Also, making ©X^ι + (3)x/z2 and ©xAι+®xA 2 , we have



dS/\o>ι 4

(2.12)
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4(S2— K2 )

Applying Cartan's Lemma to (2.8), we may put

which imply, together with (2.10), that

2*ι(#-AS „ Δ- - - 0)12 = £>G>ι — Ao)2.o

Since Ai=^0 and /zξ— Ai>0, we may write ωί2=A1ωι+B1ω2 in £7, where ^Li and A2

are differentiable functions in U. Then, from (2.10) we obtain

O 1 0\
ώ. 10) Cί>34 =

Hence, by means of (2. 11), (2. 12) and (2. 13), we obtain

9 7 Γ Λ f 8 (̂S2-̂ )(̂  + £ZKNaω12 — — j - ̂
I ^

Since Jωι2— — Kωι/\ω2ί KN^Q and S>0, we get

that is, we get

(2.14) K>Q in U.

On the other hand, making ©xAi — (3)xfe and ®xh1 — @xh2, we have

(2.15)

which imply that there exists a neighbourhood F of ^>0 with isothermal coordinates
(u,v) such that

(2.16) dsz=λ{du2+dv2}, ω^Vλdu, ω2=Vλdv, V72Ϊ^hlλ=lf

where λ=λ (u,v) is a positive function in F. With respect to the isothermal
coordinates, as is well known, the Gaussian curvature K is given by the follow-
ing equation
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Since VW^λ=l and (ff1-f^=S2-K1

N, we get

(2.17) K=

From (2. 14) and (2. 17), we obtain the inequality

Jlog(S2-^)>0 in F,

which implies that the function log(S2— K2

N) is a subharmonic function in F
On the other hand, by the assumption the function S2—K2

N takes its positive
maximum at pQ, and hence log(S2— K2

N] takes also its maximum at p0. By a
well-known theorem on subharmonic functions it must be constant in F, which
implies, together with (2.17),

K=0 in F

This contradicts (2.14). Thus it must be M-E=0, that is M=E. Hence we get

(2.18) S2=K2

N on M

Since KN is constant, S is also so. As stated in Lemma 1, on E=M we have
<Aj, At>=0 and ||A8|| = |WI for any frames &€#. Hence we can choose frames

in a neighbourhood of a point of M such that

(2 19)
0)23=—

where Λi and /?2 are local differentiable functions in M. In this case, we have
S=h\+hl and KN=2hιh2, so that /ίi and h2 are constant, because S and KN are
constant. Making use of (2. 19) and (1. 3), we obtain

(2. 20)

from which we get

(2.21)

Then we have

which implies
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*=ΊΓ>°

On the other hand, making use of (1.3), we get

dθ)l2 = — (C — S)(0l/\(i)2,

which implies

K=c-S.

Thus we get

(2.22) S = 1Γ'

hence c is a positive constant. Since KN is non-zero, we can consider the follow-
ing two cases:

Case (I) KN>ty In this case, we have hι=hz. From (2.21) we obtain

Also we may write Kχ=2h2, where hι=h2=h Then we get the following Frenet
formulas of M:

dx= 610)1+620) 2,

De± = —

which are reduced to (2.6).
Case (II) KN<Q. Since we have hι——h^ from (2.21) we get

and we may set h—hι=—h^ i.e., KN=—2h2. Then we get the following Frenet
formulas of M:

Dei — (01262 + hωιeΆ — hω^e^

De2=— 0)1262 — hωiβz — hω\e^

Des=— 2o)i26i — hωiβi + hω2e2,
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which are reduced to (2.7). _ Q.E.D.

Since c>0, we may put c = l. Then we may regard as M4=S4 (unit sphere)
and have

S = -|, ΛΓ=y and A>=± |.

Hence we can solve the differential equations (2.6) and (2.7) in the same way as
[4] or [7] and verify that M may be regarded as a Veronese surface in S4.

We remark that Theorem A also follows from Theorem B and the fact that
S of [1] is identically 4/3 on Λf.
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