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MINIMAL SURFACES IN 4-DIMENSIONAL
RIEMANNIAN MANIFOLDS OF CONSTANT CURVATURE

By TAkKEHIRO ITOH

For surfaces immersed in a Euclidean 4-space FE'¢, Little [5] proved the
following

THEOREM. Let x: M—E* be an immersion of a compact ovientable surface
in E*. Suppose that Ky, the curvature of the connection in the novmal bundle, is
everywhere positive (negative), then x is inflection free immersion and furthermore
UN)==2X(M) (X(N)=2x(M)), where X(M) and X(N) denote the FEuler charac-
teristics of M and the normal bundle over M respectively.

Furthermore he brought forward a problem to find examples of immersions
with everywhere positive Ky.

In the present paper, for compact surfaces minimally immersed in a 4-dimen-
sional Riemannian manifold of constant curvature, we shall find surfaces with
non-zero constant Ky. Our main result is the following

THEOREM A. Let M be a 2-dimensional compact Riemannian manifold which
is minimally immersed in a 4-dimensional unit spheve S*. If Ky is non-zevo con-
stant everywhere on M, then we may regard M as a Veronese surface in S*.

Solving directly the differential equations (2.6) or (2.7) of Theorem B in the
same way as [4] or [7], we can verify that M may be regarded as a Veronese
surface in S*

The author expresses his deep gratitude to Professor T. Otsuki who encouraged
him and gave him a lot of valuable suggestions.

§1. Preliminaries.  Let M =M?*¢) be a 4-dimensional Riemannian manifold
of constant curvature ¢ and M= M? be a 2-dimensional compact Riemannian
manifold immersed in M with the induced Riemannian structure through an
immersion z: M—M. Let F(M) and F(M) be the orthonormal frame bundles
over M and M respectively. We denote by F, the bundle of normal frames.
Let B be the set of all element b=(p,e, e, es5,e) such that (p, e, e.)eF(M)
and (p, ey, e, e, e)eF(M), identifying peM with x(p) and e; with dx(es), i=1,2.
Then B is naturally considered as a smooth submanifold of F(M). Let @y,
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@ap=—dpa, A, B=1,2,3,4, be the basic and connection forms of M on F(M)
which satisfy the structure equations

(1.1) dwys= § @a/\Wp, dwap= %} Do/ \Wecp—CD4/\DB.
Then, deleting the bars of @4, @4z on B, we have
(1. 2) w,=0, W=, Aa’l,jwj; Aaw =Aaji»

J

and
dw;=w;i; Aoy,
dwi; =2, Wia \NWaj—Cw; N0y,
1.3) “
A= 0i;/\ W0+ Oip/\ Opas
dwsi= Y, wsi A\ wis, i%7, axp,
where throughout this paper we use the following ranges of indices:

1=i, j<% 3=a, p=4.

Now, w1z and ws4 are the connection forms in F(M) and F, respectively and
dwy; and dwsy are curvature forms of these bundles respectively. Making use of
(1.2) and (1.3), we may write dw;s and dws, as follows:

1.4) dwiz=— Ko A\ w,, dwss=—Kno1 Ao,

where K is the Gaussian curvature of M. We regard the second equality as the
definition of Ky and call it the curvature of the connection in the normal bundle,
or simply the normal scalar curvature of M in this paper.

§2. Minimal surfaces with constant normal scalar curvature Ky=0.

In this section, we assume that M is minimal in M, ie., trace A,=0, and
Ky is non-zero constant on M. Then, making use of (1.2), (1.3), (1.4) and
trace A,=0, we obtain

(2. 1) KN=2(A811A412_'A812A411)-
Hence it must be
2.2) m-index, M=2 at each point peM.

For any matrices A, BeS,, we define the inner product of A and B by <A, B)
=(1/2) trace AB. With respect to this inner product, we denote the square of the
length of the system of second fundamental forms by S, i.e.

: 1
S= 2 14dlF =5 2 AwsAu,.

at]



MINIMAL SURFACES IN RIEMANNIAN MANIFOLDS 453

LemMA 1. If M is minimal in M, the set E={peM|{As, A>=0, ||As]|=||All
at p} coincides with the set {peM|S*—K%=0 at p}.

Proof. Since trace A,=0, we have
S?— K& =(lAs|*+| A4l |*)* — {2(As 11 As1a— AsisAan))’
={(As11+ Au2)* + (As1e— A1) H{(As11— Asiz)® + (Asiz+ Aunn)?)

2.3)

Hence, if we have S?—K%=0 at p, then we have
A311+A412=As12—A411=0 or A311—A412=As12+A411=0,

which implies that {(As;, A:)=0 and ||4s||=]|A4||. It follows easily from the above
equations that if (A4; A =0 and [|4;||=]||A4||, then we have S?—K%=0. Q.E.D.

Since S and Ky are differentiable functions on M, E is closed in M. Hence
M~—FE is open in M.

LeMMA 2. If M is minimal in M and Ky=0, then in M—E we can choose
locally frames beB such that

0)13=}l1€01, 01u=hws,
@2.4)
Wog = ‘—hl(Dz, a)24=;l2(01, h§>h§> 0.

Proof. Putting é;=e; cos f+e,sin § and é,= —e; sin §+e, cos §, we have

Al 1A

<As, IZI4> = <A3, A4> cos 20 + n 26.

Since we have
{As, A%+ (|| AP — | As] %)% 20 on M-E,

we can choose locally differentiable frame fields e; and e, such that {4, A,)=0
and may suppose that ||As||*—]|A4?>>0. Therefore we can choose locally frame
fields e; and e, such that wis=Aw; and wx;s=—/%i0s, #:50. Then it follows from
{4, AD=0 and trace A,=0 that we have wi =hw; and wy=rhw1, #:%0. Since
[14s]*—]|Ad>0, we get 4>73>0. QED.

Now, making use of the above two Lemmas, we shall prove the following

TueOREM B. Let M be a 2-dimensional compact Riemannian manifold which
is minimally immersed in a 4-dimensional Riemannian manifold M of constant
curvature ¢. If Ky is non-zero constant on M, then we have

2.5) S= —23—6 >0 and K=constant>0.
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Furthermore, the Frenet formulas of M are given by the following:
(I) Kx>0:
dz=R((e1+ies)(01—iws)),
2.6) D(ei-+ies)= —i(es+iea)wiz+h(es+ies)(w1—~iws),
D(es+ies) = —2i(es+ies)wis—h(es +ies) (w1 +iws),
where we may put Kn=2h* and D denotes the covariant differentiation of M.
(II) Ky<O0:
dx = R((e1+ies)(w1—iw,)),
2.7 D(es+ies) = —i(e1+ies)wia+ hles—ies)(w; —iws),
D(es—ies) = —2i(es—ie)w1s— h(es+ies) (@i +iws),
where we may put Ky=—2h.

Proof. In the first place we shall prove that M=E, namely, S?=K% on M.
Supposing that the open subset M—FE of M is not empty, the continuous function
S?— K% 1is positive there from (2.3). Hence the function S?—K% takes its posi-
tive maximum at some point p, in M—E. We choose a neighbourhood U of p, in
M—FE such that we have frames beB over U which satisfy (2.4). Then, making
use of (2.4) and (1.3), we obtain

s N+ @soss—hars) Awg=0, -+ @
&9 Aty Aws— sz haws) Aan=0, -+ @

Aha A\ w1+ (2haw1z— Mwss) A @z =0, «++evt ®
@9 s s — @hasa— s A0r=0, -+ @
and

KN =2h1h2.

Since Ky is non-zero constant, making @ Xk4.+@ X4 and @ Xhs+@ Xk, we
obtain

(2.10) 2Knw12=Swss.
From (2.10), we get
(2. 11) 2KNdw12=dS/\(U34"KNS&)1/\a)2.

Also, making @ XA, +®@ Xk, and @ XA, +@ X ks, we have
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45— K%)

dSNAw; + 5 w1 N\w2=0,

2.12)
A(S*—K%)

dS/\Q)z'—' S

wpN\o1=0.

Applying Cartan’s Lemma to (2.8), we may put
dhy=Aw,+ Bw,,
281012 — hawss=Bw,— Aws,
which imply, together with (2.10), that

27, (W— 1)
S

Wi1a= B(I)] — sz.

Since £,%0 and A2—72>0, we may write w;s=A,0:+Bww, in U, where A; and A,
are differentiable functions in U. Then, from (2.10) we obtain

2K, 2K
TN w1 = TN(AWH + Biws).

(2.13) W31 =
Hence, by means of (2.11), (2.12) and (2.13), we obtain

ZKNdw12 =

1 8Kn(S?—K})(Ai+BY)

P +SKN}w1/\wz-

Since dwiz=—Kwi1Aws:, Kyx0 and S>0, we get

_ 8(S*—K3)(A1+BY)

2K Y

+S5>0,

that is, we get

2.14) K>0 in U

On the other hand, making @ X/4;—® X4, and @ XA —@ XA, we have
d(l— ) Aoy +4H— w1 A w2 =0,
AW — B Aw2—4(h2— B wia Aw1=0.

(2.15)

which imply that there exists a neighbourhood V of p, with isothermal coordinates
(u, v) such that

(2.16) dst=du?+dv?}, wi=~2du, w:=+/2dv, V=R A=1,

where A=A (u,v) is a positive function in V. With respect to the isothermal
coordinates, as is well known, the Gaussian curvature K is given by the follow-
ing equation
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K=—-24logz

DR R

Since VA—H =1 and (B—Mr=S'—K%, we get
@.17) K= __V’g—”?znog (S*—K%).

From (2.14) and (2.17), we obtain the inequality
dlog (S*—K3)>0 in V,

which implies that the function log (S?—K%) is a subharmonic function in V.
On the other hand, by the assumption the function S?—K?% takes its positive
maximum at po,, and hence log (S?*—K%) takes also its maximum at p,. By a
well-known theorem on subharmonic functions it must be constant in V, which
implies, together with (2.17),

K=0 in V.
This contradicts (2.14). Thus it must be M—E=0, that is M=FE. Hence we get
(2.18) S*=K% on M.

Since Ky is constant, S is also so. As stated in Lemma 1, on E=M we have
(A, AY=0 and ||As||=]||A4| for any frames beB. Hence we can choose frames
beB in a neighbourhood of a point of M such that

013=Noy, 014="h2ws, ;=Mx0,
(2.19

W23= —hm)z, wz4=h20)1,

where %, and 4, are local differentiable functions in M. In this case, we have
S=r+7n and Ky=2hh, so that #, and %, are constant, because S and Ky are
constant. Making use of (2.19) and (1.3), we obtain

21015 — hawss= 0,
(2. 20)

2h2w12 - l’hwu = 0,
from which we get
(2. 21) 2KN(012=S(1)34.
Then we have

ZKNdwm = Sd(!);;.; = —SKNU)I A\ w2,

which implies
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S
K_T>O'

On the other hand, making use of (1.3), we get
d(D12= —(E—S)w;/\wz,

which implies

Thus we get

(2.22) S==

hence ¢ is a positive constant. Since Ky is non-zero, we can consider the follow-
ing two cases:
Case (I) Ky>0; In this case, we have A#;=#4,. From (2.21) we obtain

(034:2(1)12-

Also we may write Ky=24? where hy=h,=h. Then we get the following Frenet
formulas of M:

dz=e101+ w2,
ﬁel =128+ hwies +hwes,
Bez = — w1 —hwes+hoe,,
Des=2w154—hw 101+ hase,,
l_7e4 = — 201263 — hw:e;— hw,e,,

which are reduced to (2.6).
Case (II) K»<0. Since we have 4,=—h,, from (2.21) we get

W34 = —2(012

and we may set A=/h=—h,, i.e,, Ky=—2h* Then we get the following Frenet
formulas of M:

dr=e w0+ ew;,

De;=wi1z6;+ hwies — hosey,

I

Cy= — wlzez—hwzea "‘hwle4,
Des = —2(012@4 —ha)181 +}l0)2€2,

De,= 20193+ hwze1+haw;es,
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which are reduced to (2.7). _ Q.E.D.
Since ¢>0, we may put ¢=1. Then we may regard as M*=S* (unit sphere)

and have

2 1 2

S=§, K=—3- and KN‘—‘ig.
Hence we can solve the differential equations (2.6) and (2.7) in the same way as
[4] or [7] and verify that M may be regarded as a Veronese surface in S*.

We remark that Theorem A also follows from Theorem B and the fact that

S of [1] is identically 4/3 on M.
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