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THE LINEAR OPERATOR METHOD AND

LINEAR @ TOPOLOGIES

BY PAUL A. NICKEL

In 1955, Sario [7] published his basic paper on the Linear Operator Method.
The objective there was the construction of harmonic functions p with the behavior
of a prescribed singularity function s near the ideal boundary. This objective was
described in terms of constructing a harmonic function p for which p—s has a
regular, or normal behavior near the boundary; that is, p—s is itself the image of
an operator L which is reminiscent of a Dirichlet operator and is called normal [1], [6],
and [7]. In this sense, the harmonic function p is thought of as an extension of
the singularity function s, modulo a regular singularity function defined on a
regular boundary neighborhood W of the Riemann surface W. It is shown in [7]
that except for constants, this extension is unique, and furthermore, that if the
difference of two singularity functions is regular, then each will have the same
harmonic extension, except for a constant.

In [5], Rodin and Sario have placed this extension problem in the natural setting
of quotient spaces, wherein they have given an elegant solution phrased in terms
of establishing that the natural mapping p-+s=p\w> will induce an algebraic iso-
morphism. The purpose of the present effort is to seek linear topologies under
which this basic natural mapping will in fact induce a topological isomorphism.

1. Notation. We consider a regular boundary neighborhood W of an open
Riemann surface W. The boundary of W is denoted by a and the closure of W,
a union of bordered Riemann surface with border α, is denoted W. We call the
linear space oί all harmonic functions on W by H(W\ and with a slight abuse of
consistency we define H(W) to be the linear space consisting of all functions which
are harmonic on W, continuous on W', and have vanishing flux on the ideal
boundary β of W.

When C(ά) denotes the linear space of continuous functions on α, we let
L: C(a)-+H(W) be a normal operator in the usual sense ([1], [5], [6], or [7]). The
main existence theorem of Sario [7] phrased in algebraic language, is

THEOREM. [Rodin-Sario, 5]. The natural mapping Φ: H(W)-*H(W) defined by
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P-*P\W induces an isomorphism

Φ: H(W}IK-*H(W'}LC(a)

in the respective quotient spaces. Here, K is the set of all constant functions of
H(W).

Since we wish to study the continuity of Φ and Φ~l in terms of topologies that
will be given in no. 2, we shall construct Ψ: H(W)-*H(W], such that f=Φ~1, and
study its continuity. This construction is carried out in detail in the manner of
[5] with the exception that Ψ here will be defined on all of H(W\ rather than
only on a set of representatives mod L[C(α)]. That is, in terms of a regular region
Ω DW-W, we define, for ssH(W'}

Df on Ω,

LDf+s-Ls on W-W,

where D is the Dirichlet operator applied to 3Ω and / satisfies (I—LD)f=s—Ls on
dΩ in a Banach space of C(ά) where ||L£>||<1, again as in [5], Certainly the
mapping Ψ here and that of [5] will agree when 5=0 on a, and hence these will
induce the same quotient homomorphism.

2. The linear topologies. In this investigation, we are interested in two
topologies and their quotients as well as the associated weak topologies. In the
notation of [3] and [4], we let @ be a collection of sets of W, and for each S€©,
we define M(S, [-e, e]) as {peH(W); \p(z)\^ε for all zeS). As a neighborhood
system of 0 in H(W\ we consider {M(S, [—e, ε]); S€@ and ε>0}. A necessary and
sufficient condition that this system generate a system of neighboorhoods of θ for
a linear topology is that p(S) be bounded in R for each p$H(W} and each Se@
([4] and [8]). Important examples of such linear topologies are obtained by con-
sidering <S as

(a) the collection of all compact sets of W,
(b) the collection of all finite sets of W.

The topology of (a) is the usual ^-topology of uniform convergence on compact
sets, and the topology of (b) is called the topology p of simple convergence. Obvious
analogies occur when W is replaced by W.

We record some elementary properties of the topological linear spaces H(W)τ
and H(W)T' which result from furnishing the linear spaces H(W] and H(W] with
the linear topologies T and T', when T (or Γ') is taken as either the k- or p~
topology.

( i ) The spaces H(W}τ and H(W'}τ' are Hausdorff locally convex linear
spaces.

( i i ) The linear spaces H( W\ and H( W\ have a countable neighborhood
base at the origin because the neighborhood base at θ for this topology may be
replaced by the countable collection of neighborhoods {M(Wn,[—r,r])}, where (Wn)
exhausts W and r is rational.
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(iii) The quotient space H(W)/K furnished with the quotient topology
q(T) is again a locally convex topological linear space. The same is true for
H(W'}ILC(a} equipped with q(T'\

(iv) The linear mapping Φ: H(W)r+H(W)τ of no. 1 is continuous. The
elementary proof follows from the observation that, when H(W) and H(W} have
the same @ topology, H(W}τ is a subspace (topologically) of H(W)τ 9 and Φ is
only the identity.

( v ) The quotient space H(W}τdK is Hausdorff, for according to [8, p. 20], it
suffices to show that K is ^-closed. For this, let h(x)>h(y\ and observe that the
neighborhood h+M({x, y], [— ε, e]) contains no constant functions when

(vi) The quotient space H(Wf}k>ILC(a) is a Hausdorff space, because by virtue
of (ii), Γeach singularity function ssLC(a) is obtained as s=limnsn, uniformly on
compact sets of W', where sn=Lgn, with gnsC(a). If we call s\a=g, we have that
gn-+g uniformly on a, and by virtue of the definition of the normal operator L,
this means that Lgn-^Lg uniformly on Wf. Hence it follows that Lg=s. This
means that LC(ά) is ^-closed, and the quotient space H(W\ΊLC(ά) is Hausdorff.

(vii) Since quotient topologies are final topologies, it follows that Φ

Φ

Φ'
H( W)τlKt-> H( W'}τ>ILC(a)

Φ

is continuous if and only if φoφ=φfoφ is continuous. An analogous condition will
determine the continuity of W.

3. The main theorem. In order to establish that Φ is a topological isomor-
phism, it suffices to establish that Φ~l is continuous, since we have just observed
that the continuity of Φ follows from the continuity of Φ. Now each of the linear
spaces H(W) and H(W'} is complete as well as metric, and the same is true for
their quotients. Hence, according to the Banach Homomorphism Theorem, the
continuity of Φ will imply that Φ is open [8, p. 77], and the main result stated in
Theorem 1 is established. However, it is possible to give a direct proof which is
simpler than the proof of the Theorem cited, and this is now carried out.

THEOREM 1. The isomorphism Φ: H(W}IK-^H(W')ILC(a) is topological when
the domain and range are equipped with the quotient topologies q(k] and q(k'}
induced by uniform convergence on compact sets.

Proof. In order to show that Ψ is continuous, we consider the neighborhood
M(K, [-1,1]) of θ in H(W) and suppose first that KcΩ. It follows from the defini-
tion o f / i n no.l and [9] that H/IU^IK/-!^)-1!! \\s-Ls\\ao^(llδX\\s\\90+\\Ls\\9Ω),
where 5=(1-1\LD\\) and, as usual, ||s||aβ=sup*€βίϊ|s(2)|. Since L is a normal operator
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and dΩ c W, it follows that 1 1 Ls \ \ 9Ω ̂  1 1 Ls \ \ w, = 1 1 s 1 1 β. Then from the definition of Ψ,
we have ||^(5)|U=||P/|U^||Z)/|k = ||/||3^(l/^)(||5||3,+ ||5||J. It follows that

( 1 ) V: MfdΩUa, [- -|-, ~^M(Kf [-1, 1]).

If, on the other hand, Kd W, then Ψ(s}=LDf+s-Ls, where, for the last term,
\\Ls\\κ^\\Ls\\w> = \\Ls\\a = \\s\\a. Since Df is defined on α, this means that \\LDf \\κ

^\\Df\\a. The inclusion acΩ, implies that ||Z>/|U^||/|U but ||/H^(l/d)(||s||w
+ I M U ) is already known. The result is that ||LZy||js:^(l/5X||s||3i,+ ||s||β) and we
have

(2, r. *(«u« [- A A]) n «(S[-|-, -i-])n«(,, [--f-, -1-])

, [-1, 1]).

To complete the proof for the arbitrary compact set KdW, we need only
observe that K= (Kn Ω) (J (Kn W'\ a pair of compact setsjn Ω and W' respectively,
from which it follows that M(KΓ\Ω, [-1, l])nM(^Π W, [-1, l])=M(/ζ [-1, 1]).
Of course (1) applies to the first of these neighborhoods and (2) applies to the
second. Since 0<<5<1, this means that

-, [-1, 1])

and Ψ is continuous at #, that is, continuous.
The proof is completed with the observation from (vii) of no. 2, that φ°Ψ is

continuous.

4. The weakened topology. In terms of the notation E' for the topological
dual of E=H(W}iclK and F' for the topological dual of F=H(W'h>ILC(α\ we
place the pairs E and E' ', as well as F and F7, in duality [3] by means of the
bilinear form (h, /)-K/z, />=/$). The resulting dualities are written <£, £'> and
<F, F'> respectively. The weakest linear topology on E for which each fsE' is
continuous is denoted by σ(E, E').

THEOREM 2. If the topologies q(k] and q(kf] on E and F of Theorem 1 are
weakened to σ(E, E'} and σ(F, F') respectively, the mapping Φ remains a topological
isomorphism.

The continuity of Φ and Ψ follows immediately from Theorem 1 and Proposi-
tion 6, p. 103 of [4]. But Theorem 2 is only a restatement of Theorem 1 if the
weakened topologies σ are identical with the original quotient topologies. The
following proposition suggested by [3, Chap. IV, § 2, ex. 4 (b)] will help in establi-
shing that these weakened topologies are in fact properly weaker than the original
quotient topologies,



400 PAUL A. NICKEL

PROPOSITION. Let <F, G> be an algebraic duality between the linear spaces F
and G, and suppose that the weak topology σ(F, G) is locally convex with a countable
base at θ. Then G has a countable Hamel base.

Proof. Let (pn)nζN be a countable collection of continuous semi-norms describ-
ing the locally convex topology σ of F. Since σ(F, G) is the weakest topology for
which #-><#, τ/> is continuous for each #eG, it follows that the collection of all
sets of the form {x; |<#, 2/>|^l, ysH], Ha finite set, is a base at θ for this topology.
But each semi-norm is continuous for σ(F, G), and it follows that for each natural
number n, there is a finite subset GncG such that

That is, the countable base for the locally convex topology σ on F can be replaced
by the collection of all finite intersections of the sets of the form (x\ |<#, y>|^l},
where y€\jGn, again a countable collection.

We label this countable collection U Gn of G by (#fc)fce# > and establish that this
collection is in fact a Hamel Base for G. For an arbitrary #0€G, and weak neigh-
borhood {#; |<α?, 2/>|^l} there is a finite set Hd(yk)kζN such that {#; |<#, #>|̂ 1, #€£Γ}
c{#; |O, #o>|^l}. Hence, if <#, #>=0 for each ?/€#", it follows that <#, yo>=0, and
we conclude that yo=ΣvteHλtyt ([4] p. 50 or [8], p. 124); that is, the collection
(yk)k€N is a Hamel base, and the proof is complete.

Alternatively, the proposition follows from a direct application of the exercise
already cited. For suppose that FσζF,G) is metrizable. This means that σ(Fσ, F'α]
=σ(F, G) is metrizable as well, and in fact that σ(Fσ, Fr

σ} — τ(Fσy F£), the associated
Mackey topology. Hence, according to the exercise, we have that F'σ has a count-
able Hamel Base, and the same must hold for G.

Since the topological linear space H(W}ic is already known to be locally convex
with a countable base at θ, the same is true for the quotient space H(W)k/K, and
we can proceed to use the proposition to establish the existence of a new topology
for which the mapping Φ is again a topological isomorphism.

COROLLARY. On the linear space E=H(W)kjK, the weakened quotient topology
σ(E, E'} is properly weaker than the quotient topology q(k).

Proof. As a natural bilinear functional for H(W)!K and its topological dual
(H(W)k/K)', we consider <&/>=/$). Certainly if <Λ,/>=0 for all heH(W)IK,
then / is 0, and if <Λ,/>=0 for all fe(H(W)tlKY, we show that h=θ by consider-
ing the special family of functionals defined for each x€ W by

lx\ h-*h(x)—h(xo).

Such lx is well-defined, for if hι=h2, then ίx(h1)=hι(x)—hι(xo)=h2(x)—h2(xQ)=lx(hz).
To see that each lx belongs to the topological dual, it suffices to show that the
composition lx°φ: h^h(x)—h(x0) is a continuous mapping of H(W)k-+R But this
mapping is essentially an evaluation and is continuous for the topology of simple
convergence and hence is continuous for the topology of compact convergence as
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well. The condition <&,/>=0 for all / in the dual then means that Q=lx(ti)=h(x)
—h(xo) for all xzW\ that is, h(x) is identically constant. The bilinear functional
$,/)-><Λ,/> is then a duality (algebraic) between E=H(W}*IK and Er.

To use the Proposition, we need only observe that for f—lx in the dual, the
mapping A-*</i,/> is continuous. Certainly the weakened topology σ is no finer
than the original quotient topology q. Furthermore, if these were equal, then the
dual E' would have a countable Hamel Base. To see that this is a contradiction,
we choose x0 outside the disc A, and observe that the subset S={ίx' x£Δ}<Σ.Er

contains uncountably many elements, and is a linearly independent set, since it is
possible to interpolate on each finite set of points of W [2]. Hence the set S can
have no countable Hamel Base, and this contradiction completes the proof of the
corollary.

COROLLARY. The weakened topology σ(F, F') is properly weaker than the
quotient q(k'} induced on F=H(W'}k,ILC(a).

5. The p-topology of simple convergence. Since the conclusion of Theorem
2 is that the isomorphism Φ remains topological when the quotient for the k-
topology is weakened in both the domain and range, it is certainly reasonable to
ask about a further weakening of each of these topologies to the quotients induced
by the />-topology of simple convergence. We assert that the answer to this
question is

THEOREM 3. Let (S be the collection of all finite sets of an open Riemann
surface W, and & be the reduction of @ to W. The mapping Φ: H(W}IK
-+H(W')IL[C(<x)] fails to be topological in the quotients of the resulting p-topologies.

Proof. To show first that Ψ fails to be continuous, it is sufficient to find
{zo, z'Q}c.W so that Ψ:M({zl9 •••, zn}, [-e, ε])^M({z0, zβ, [-1, l])_for no pair ε>0 and
finite set fa, —, zn}c:W'. With {z0, z'Q] taken as fixed in W—W, we let {zlt •••, zn}
be an arbitrary finite set of W', and choose, with [2], h(z)zH(W} so that h(z0)
=A(zι) = —=A(zn)=0 and A(«ί)=l. If we take h\w, as the singularity function s(z),
then we will have the relation p—s=L(p—s), where p=Ψ(s). But s is defined on
all of W, as is p, and it then follows that 5 and Ψ(s) differ by a constant possibly
depending on s itself, that is Ψ(s) = s+k.

It follows from the construction of 5 that λsςM({zι, •••, zn}. [—e, e]) for each
ε>0 and all λ. Now, if ί(z0)=A(*o), then p(zβ*Q, and λp=Ψ(λs)$M({z<>. zβ, [-1,1])
for sufficiently large \λ\. On the other hand, the assumption p(zj)*?h(zj) yields the
same result, for then ^(^0)^0. Hence the mapping Ψ fails to be continuous in the
^-topologies, and in particular, ψ-lM({zQί z'0}> [—1,1]) fails to be a neighborhood in
H(W). Furthermore, ψ-l[M({z*, }̂, [-1, !])+#] fails to be a neighborhood, as well.

We complete the proof by observing that the continuity of Ψ will lead to a
contradiction. For according to the diagram of no. 2, the continuity of Ψ will
imply the same for φ°Ψ. Since φ is open, it then follows that Ψ~l°φ~l(φM)
=Ψ~l (M+K) is a neighborhood in H(W) for each neighborhood M of H(W).
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This is a contradiction when the neighborhood M is taken as M({zQ, zβ, [—1,1]) as
in the paragraph above.
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