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ON THE NUMBER OF AUTOMORPHISMS OF A COMPACT
BORDERED RIEMANN SURFACE

BY TAKAO KATO

1. Introduction. For nonnegative integers g and k (2g+k—1^2), let N(g,k)
be the order of the largest group of conformal selfmappings (automorphisms) which
a compact bordered Riemann surface of genus g and with k boundary components
can admit. (If k=0 we understand the number N(g, k) for a compact Riemann
surface of genus g.) Hurwitz [4] proved that N(g, 0)^84 (g-1). Accola [1] and
Maclachlan [7] proved independently that N{g, 0)^8 (ςr+1) for all g's. Furthermore,
Macbeath [6] showed that N(g, 0)=84(ςr — l) for infinitely many values of g, Accola
and Maclachlan showed independently that N(g,0)=8(g+l) for infinitely many
values of gy and many other exact estimations for N(g, 0) were given by Accola
[1], Maclachlan [7] and Kiley [5]. The problem seems, however, to remain still open
for nfinitelyi many values of g.

On the other hand, for k^l, Oikawa [8, 9] gave a general estimation such
that N(g, k)^12(g-l)+6k, and he determined N(l, k) completely. Earlier than he,
Heins [3] had determined N(0, k) (in this case naturally k^3) completely. Tsuji
[10] treated hyperelliptic Riemann surfaces, and determined N(2, k) exactly.

In this paper we shall prove the following results.

THEOREM 1. N(g, l)=4g+2,

THEOREM 2. N(g, 2)=8gf

THEOREM 3. N(g, 3)=12g+6,

N(g,3)=6g+3,

and

N(g,3)=4g+2,

for all

for all g^l.

if g=0 or g=lf

if gr̂ =O, g*rl and f+j+l==O

(mod 2g+l) has a solution,

if g=l (mod 9) and p+j+1=0

(mod 2g+l) does not have a solution,

if g=0 (mod 3) and p+j+1=0

(mod 2g + l) does not have a solution,

> V ΰ—£ or g — /,

otherwise.
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Let N'(g, k) be the order of the largest group of automorphisms of a &-times
punctured compact Riemann surface of genus g. Oikawa [8, 9] has proved that
N(g, k)=Nf(g, k), therefore, it is sufficient to prove the theorems for N'(g, k).

2. Before proving these theorems we shall state some preparatory results.
Let W be a Riemann surface and let G be a properly discontinuous group of auto-
morphisms of W. For any subgroup H of G, we can regard W/Has a Riemann surface
having a conformal structure which is induced from the conformal structure of W
[2]. Let π be the natural projection of W onto WjH. Then we have

LEMMA. If H is a normal subgroup of G, then for each element f in G there
is an automorphism h of WjH satisfying π°f=h°π.

Let W be a compact Riemann surface of genus g. We project all the branch
points of W with respect to π into W\H and denote them by plt •••, pr. Noting
that the ramification indices of all the points over pu i=l, •••, r, are the same,
respectively, we denote the corresponding indices by vλ —1, •••, vr—1. Then from
the Riemann-Hurwitz relation [4] we have

ora^tί) - t-Ξi\ vi

where ord (77) denotes the order of H and g0 denotes the genus of W/H. We
shall also use the notation </i,/ 2, •••> to denote the group generated by the
elements /i,/ 2,

3. Proof of theorem 1. Wiman [ l i p proved the following: 4g+2 is the order
of the largest cyclic group of automorphisms which a compact Riemann surface
of genus g can admit. From this fact we can easily conclude theorem 1. We
shall, however, give a proof for the sake of completeness.

Let W be a compact Riemann surface of genus g (^1). We take a point p on
W and let G be the group of automorphisms of W—{p}. It is obvious that G is
a cyclic group of finite order. Then from the formula (1) we have

2g-2

ord(G) ~"yo ^ i

where g0 denotes the genus of W/G, and vlf > ,vr are as in paragraph 2. Without
loss of generality we may assume that vx corresponds to p and is equal to ord (G).

If g o ^l, then we have ord(G)^2g—1.
Assume that go=O and r^4, then we have

ord(G) ord(G) ι

>_i___L_ A.
= ord(G) 2

1) Unfortunately, the anthor could not see directly his paper.
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This implies that ord(G)^4#-2.
Assume that go=O and r = 3 , then we have

2<7-2 = 1 _ 1 1

ord(G) ord(G) v2 vs

Noting that ord (G) is the least common multiple of v2 and v3t we have ord (G)

Summing up these estimations we obtain N(g, l ) ^
To show that N(g, l )=4g+2 we shall give an example of a once-punctured

compact Riemann surface of genus g which admits 4g+2 automorphisms. Let W
be the compact Riemann surface of genus g defined by the algebraic equation

Let p be the point on W which corresponds to x=0. Then

/ : O, y)

is an automorphism of W—{p). We conclude that ord « / » = 4 g + 2 . Therefore, we
have N(g, l)=4gr+2.

4. Proof of theorem 2. Let W be a compact Riemann surface of genus
0(^1) . We distiguish two points px and p2 on W. Let G be the group of auto-
morphisms of W—{pi,p2], and let H be the group of automorphisms of W each of
which fixes the points pi and p2. Obviously we have ord (G)^ 2 ord (H). From
the formula (1) we have

2g-2 _^

ord(tf) " y υ " ' tί

where gr0 denotes the genus of W/ϋ. Hence H is a cyclic group, we may assume
that vi=v2= orά(H) which correspond to pi and p2 respectively.

If 0o^l then ord {H)tkg.
If go=O and r=2, then we have

- 0 , 0 / 1

ord CEΓ) \ ord (H)J'

This implies that g=0 which is a contradiction.
Therefore, if go=O, then r ^ 3 . In this case we have

+4-.- ord(tf) ' 2

This implies that ord(i7)^4£. Therefore, we have ord(G)^2 orά(H)^Sg. Conse-
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quently, we conclude that N(gf 2)^Sg.
An example shows that N(g, 2)=Sg. Let W be the compact Riemann surface

of genus g which is defined by the algebraic equation

Let pi and p2 be the points on W which correspond to # = 0 and #=oo respectively.
Then

U (x, y) —
and

U (x, y) — • (llx, iy/xg+1)

are automorphisms of W—{pι,p2}, and we see that ord «/i,/ 2»^8g. Therefore,
we conclude that N(g,2)=8g.

5. Proof of theorem 3. In the first place for each g (^1) we shall show an
example which assures that N(g, 3) is greater than or equal to 4g+2. Let W be
the compact Riemann surface of genus g defined by the equation

Let pi be the point on W which corresponds to x=0, and p2, p3 the points corres-
ponding to #=oo. From the proof of theorem 1 we conclude that o r d « / » = 4 g + 2
which assures that N(g, 3)^4g+2. For g=0 Heins [3] showed that JV(O, 3) = 6.
Henceforth, we shall omit the case g=0 from our consideration.

6. Let W be a compact Riemann surface of genus g and we distinguish three
points pi,p2 and pz on W. Let G be the group of automorphisms of W—{pi,p2,pa}
Hence, every member of G can be extended to an automorphism of W, we also
denote the group which consists of them by G. Let fλ denote a generator of the
cyclic subgroup of G which consists of all the elements of G that fix the points
pu p2 and p3. For simplicity's sake we shall denote ord «/ i» by n. Let / 2 denote
an element of G such that fz(pi) =p2, fzipz) —pz and f2{pz) —pi and let fs denote an
element of G such that f3(ρ1)=ρ1,f3(ρ2)=ρ3 and f*(pz)=p2.

It is easy to see that ord (G) does not exceed 6n regardless of the existence of
/ 2 or /3. More precisely, ord(G)^β^ if G = </i,/2,/3>, ord(G)^3/z if G = </i,/a>,
orά(G)^2n if G=</i,/ 8>, ord(G)=^ if G = </i> and ord(G)^6 otherwise.

If the genus of TF/</i>, denoted by g0, is positive, then by the formula (1) we
have

Indeed, without loss of generality we may assume that vι=v2=vs=ny and therefore
we have
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Therefore, we may assume that g0 is equal to zero. In this case from the formula
(1) we have

Hence, 2n^4g+2, it is to be observed only when G = </i,/2,/3> and G = </i,/2>.

7. We shall observe the following five cases. During the discussion of these
cases we assume that vι=v2=vz=n in the formula (1).

Case (A): r=3 in the formula (1).

In this case we have

Then we see that ord(G)^12g+6 if G = </i,/a,/8> and ord(G)^βg+3 if G=</i,/2>.
We shall discuss this case in detail in the following paragraph.

Case (B): r=4 in (1).

In this case we have

Therefore, we obtain »^(4g+2)/3. In this case G=</i,/2,/3> cannot occur by
virtue of lemma. If G = </i,/2>, we have ord(G)^4g+2. In the case (B) there is
nothing more to do.

Case (C): r=5 in (1).

In this case we have

If G = </i,/a>, we obtain ord(G)^3(2g+l)/2<4g+2. This may be omitted. If
G = </i,/2,/3> occurs, we have v4=v5=m by lemma, and m divides n. Then we
obtain

m

This case shall be treated in detail later on.

Case (D): r=β in (1).

In this case we have
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If G = </i,/2>, we have ord(G)^β(2g-f-l)/5<4g+2. There is nothing more to do.
If G = (flyf2,f3y occurs, by lemma we have y4 = v 5=y 6=w, and m divides n. If
m=2, we have ^=(4g+2)/5. Therefore, g must satisfy 2 g + l = 0 (mod 5) and ord(G)
^(24g+12)/5. This is to be treated later on. If m^3, we have
This may be omitted.

Case (E): r ^ 7 in (1).

In this case we have

Therefore, we obtain o r d ( G ) ^ β ^ 4 g + 2 . In this case there is nothing to do.

8. The case (A). In this case we may assume that f\ is equal to the identity
and that f\ is equal to the identity, where f3 denotes the i-th iteration of /. Fur-
thermore, we may assume that f2 has a fixed point which we denote by #i. Let
π be the natural projection mapping of W onto WKfi) and let γλ be a simple curve
starting and ending at q=π(q1), which is freely homotopic in WKfi> — {π(pi)f π(^2),
π(Ps)}> to an arbitrary small circle centered at π(pi). Let γ2=τιof2oπ-\γ1) and let
γ3==πofloπ-

1(γ1)m By lemma these are uniquely determined regardless of a choice
of a branch of π'1. Let qi+1 be the terminal point of the lift of γi starting at qt

( ί=l, •••, 2g+T). Henceforth, we consider the suffixes of #'s by mod2g + l. If we
set q1+J the terminal point of the lift of γ2 starting at ql9 then by the monodromy
theorem we establish that q1+%J is the terminal point of the lift of γ2 starting at
ίi+α-Dj (f=l, •••, 2gf+l). This assures that f2(qi+ι)=qi+v> Then we have

Therefore we have

> 8 - 1 Ξ 0 (mod2g+l).

If there exists / s, we may also assume that / 8 has a fixed point which is dif-
ferent from plf and we denote it by q[. Let γί be a simple curve starting and
ending at q'=π(q[), which is freely homotopic in WKfiy — {π(pi), π(pz), π(ps)}, to a
small circle centered at π(p2), and let γ/

3 = πofsoπ'1(γ2). Let q'i+1 be the terminal
point of the lift of γ'2 starting at q[ (/=1, •••, 2g+l), and set qί+J the terminal point
of the lift of γ's starting at q[. Then we have

Therefore, we have
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y 2 - l = 0 (mod2<7+l).

Consequently, if the case G = </i,/2,/3> occurs, p—1=0 (mod 2g+l) and j2—1
=0 (mod2gr+l) has a common solution, i.e. j=l. Then we continue a branch of
π~\q) along γlt γ2 and γ3 successively. Hence, there is no branch point in W but
pi, p2 and p3t we have 2^+1=3. Therefore, this case does not occur except for

(7=1.
If the case G = </i,/2> occurs, j2+j+1=0 (mod2g+l) has a solution.

9. The case (C) and the case (D). In these cases we consider an intermediate
covering surface TF/</?/nι> of PF/</i>. The natural projection mapping TF/</f/m>
onto WKfi} does not ramify but π(/>i), π(p2) and π(pB). Hence, we can apply the
discussion in paragraph 8 to PF/</f/77l>, we may conclude that if the case G
= </i,/2,/3> occurs, n—m or n=3nz. The former corresponds to gf=0 and the
latter to g'=l, where gf denotes the genus of WKfψm}.

In the case (C), if the case n=m occurs, we establish that 3n=2g+3 which
implies that g=0 (mod 3) and if the case n=3m occurs, we establish that 9m=2g
+7 which implies that g=l (mod 9).

In the case (D), if n=m=2 then g=2 and if n=3m=6 then g=7.

10. Examples. To show the exactness it is sufficient to construct some
examples.

EXAMPLE 1. For g=l, let W be the Riemann surface defined by the equation

Let^i,^ 2 and ps be the points corresponding to x=l, e2πί/z and eiH/3 respectively.
Set

/i \X, y) ^ \X, β y),

f2. (x, y) • (e2πί/3x, y)

and

/3: (a?, y) — • 0-1 x, —y/x).

Then we have

N(g, 3)=12g+6.

EXAMPLE 2. For g such that f+j+l~0 (mod 2g+l) has a solution and
let W be the Riemann surface defined by the equation

where j is a solution of / 2 + / + l = 0 (mod 2#+l). Let plf p2 and p3 be the points
corresponding to x=l, e2πi/3 and eAπi/3 respectively. Set
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and

U (x, y) —

Then we have

AΓ(g,3) =

EXAMPLE 3. For g such that / 2 + i + l = 0 (mod 2g+l) does not have a solution
and g=l (mod 9), let W be the Riemann surface defined by the equation

Let pi,p2 and pz be the points corresponding to x=l, e2πί/3 and #47ri/3 respectively.
Set

U (x, v) —> {x, e^'wiy),

U (x, y) > (e^'x, y)

and

/ 3 : (a?, ̂ /) • (l/x, -yjx)

Then we have

iV(flr,3)=4flf+14.

EXAMPLE 4. For g such that j 2 + i + l = 0 (mod 2g+l) does not have a solution
and 0=0 (mod 3), let W be the Riemann surface denned by the equation

Let />i, />2 and pz be the points corresponding to x=l, e2πi/i and <?4πί/s respectively.
Set

U (x, y) —> (a?, έ>?'<to+*>y),

U (x, y) — • (^ ί / s^, eiπί/>y)

and

Λ: fe y) — • 0-1 x, -vlχ)

Then we have

EXAMPLE 5. For g=2 or 7, let W be the Riemann surface defined by the
equation

Let/>i,/>2 and/>3 be the points corresponding to x=l, e2πί/3 and eiπί/3 respectively.

Set
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U (a, y) > (a, e^'w+

/ , : (x, y) — • (*«**, y)

and

/ 3 : (ar, y) • (I/a?,

Then we have

Summing up, we have concluded our theorem 3.

11. Some criteria for the solubility of the congruence j2+j+1=0 (moά2g+l).
If p is a prime number, then the following congruence holds for every integer j
(Fermat's theorem):

jp-j=O (mod/>)

Suppose that g=0 (mod 3) and that 2g+l is prime, we have

where P(j) is a polynomial of degree 2g—1 with integral coefficients. The con-
gruence P(j)=0 (mod2g+l) has at most 2g—1 solutions while the congruence
j2g+i—j==0 (mOc[ 2g+l) has 2g+l solutions, and consequently, the congruence p+j+1
=0 (mod2g+l) has two solutions.

Suppose that g=2 (mod 3) and that 2g+l is prime, we have

where P(j) is a polynomial of degree 2g—1 with integral coefficients. If the
congruence i 2 + i + 1 = 0 (mod 2g+l) has a solution, then the congruence 2 y + l = 0
(mod 2g+l) must have the same solution. This is impossible.

It is obvious that if the congruence j 2 + i + l = 0 (mod^>) is unsoluble then for
every multiple of p, denoted by q, the congruence J2+J+1ΞΞ0 (mod q) is unsoluble,
and it is easily seen that every number of the form 6m+5 is divisible by a prime
number of the form 6m' + 5.

Thus we conclude that if g=2 (mod 3) then the congruence j2+j+l=0 (mod
2(7+1) is unsoluble.
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