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ON THE NUMBER OF AUTOMORPHISMS OF A COMPACT
BORDERED RIEMANN SURFACE

By Takao Kato

1. Introduction. For nonnegative integers ¢ and k2 (2g+k—1=2), let N(g, k)
be the order of the largest group of conformal selfmappings (automorphisms) which
a compact bordered Riemann surface of genus ¢ and with % boundary components
can admit. (If £#=0 we understand the number MN(g, k) for a compact Riemann
surface of genus ¢.) Hurwitz [4] proved that N(g, 0)<84(¢—1). Accola [1] and
Maclachlan [7] proved independently that N(g, 0)=8 (¢+1) for all ¢g’s. Furthermore,
Macbeath [6] showed that N(g, 0)=84(g—1) for infinitely many values of g, Accola
and Maclachlan showed independently that N(g, 0)=8(¢g+1) for infinitely many
values of g, and many other exact estimations for N(g, 0) were given by Accola
[1}, Maclachlan [7] and Kiley [5]. The problem seems, however, to remain still open
for nfinitelyi many values of g.

On the other hand, for k=1, Oikawa [8, 9] gave a general estimation such
that N(g, k)=<12(9—1)+6k, and he determined N(1, k) completely. Earlier than he,
Heins [3] had determined N(0, k) (in this case naturally 2=3) completely. Tsuji
[10] treated hyperelliptic Riemann surfaces, and determined N(2, k) exactly.

In this paper we shall prove the following results.

THEOREM 1. N(g, 1)=49+2, for all ¢g=1.
THEOREM 2. N(g, 2)=8g, for all g=1.
TrEOREM 3. Mg, 3)=12¢+6, if ¢9=0 or g=1,

MN(g, 3)=6g+3, if ¢%0, gx1 and °+j+1=0
(mod 2¢+1) has a solution,

N(g, 3)=4¢+14, if g=1 (mod9) and j2+j+1=0
(mod 2g+1) does not have a solution,

N(g, 3)=4¢g+6, if ¢=0 (mod 3) and j2+j+1=0
(mod 2¢+1) does not have a solution,
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N(g, 3)= 5 if ¢9=2 or g=7,

and
N(g, 3)=4g+2, otherwise.
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Let N'(g, k) be the order of the largest group of automorphisms of a k-times
punctured compact Riemann surface of genus ¢g. Oikawa [8,9] has proved that
N(g, B)=N'(g, k), therefore, it is sufficient to prove the theorems for N'(g, k).

2. Before proving these theorems we shall state some preparatory results.
Let W be a Riemann surface and let G be a properly discontinuous group of auto-
morphisms of W. For any subgroup H of G, we can regard W/H as a Riemann surface
having a conformal structure which is induced from the conformal structure of W
[2]. Let = be the natural projection of W onto W/H. Then we have

LemmA. If H is a normal subgroup of G, then for each element f in G there
is an automorphism h of W|H satisfying mof=hon.

Let W be a compact Riemann surface of genus g. We project all the branch
points of W with respect to = into W/H and denote them by pi, ---, p,.. Noting
that the ramification indices of all the points over p;, i=1, -+, 7, are the same,
respectively, we denote the corresponding indices by v;—1, .-+, v,—1. Then from
the Riemann-Hurwitz relation [4] we have

29—2 r 1
(1) S —2go—2+§1(1— )

Vi

where ord (H) denotes the order of H and g, denotes the genus of W/H. We
shall also use the notation < fi,fs ---> to denote the group generated by the
elements f3, fs, ++*.

3. Proof of theorem 1. Wiman [11]® proved the following: 4¢g+2 is the order
of the largest cyclic group of automorphisms which a compact Riemann surface
of genus ¢ can admit. From this fact we can easily conclude theorem 1. We
shall, however, give a proof for the sake of completeness.

Let W be a compact Riemann surface of genus g (=1). We take a point p on
W and let G be the group of automorphisms of W—{p}. It is obvious that G is
a cyclic group of finite order. Then from the formula (1) we have

29-2 r 1
ord @) "2t 4 (1 ‘“>

where ¢, denotes the genus of W/G, and v, -+, v, are as in paragraph 2. Without
loss of generality we may assume that v; corresponds to p and is equal to ord (G).
If go=1, then we have ord (G)=2¢—1.
Assume that g,=0 and »=4, then we have

29—2 _ ___1__ T _ 1
ord© -~ M@ +§z<1 +)

1 3

—1- ord (G) +—§—'

1) Unfortunately, the anthor could not see directly his paper,
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This implies that ord (G)=4¢—
Assume that g,=0 and r=3, then we have
29-2 . 1 11
ord (G) ord(G) vz vz~

Noting that ord (G) is the least common multiple of v, and vs, we have ord (G)
=<4g+2.

Summing up these estimations we obtain N(g, 1)=<4g+2.

To show that N(g,1)=4¢+2 we shall give an example of a once-punctured
compact Riemann surface of genus ¢ which admits 4g+2 automorphisms. Let W
be the compact Riemann surface of genus g defined by the algebraic equation

yr=a(z20+—1).
Let p be the point on W which corresponds to x=0. Then
I (m, y) — (¥ @D g gm/ @0+

is an automorphism of W—{p}. We conclude that ord ({f))=4¢g+2. Therefore, we
have N(g, 1)=4g+2.

4. Proof of theorem 2. Let W be a compact Riemann surface of genus
g (=1). We distiguish two points p; and p, on W. Let G be the group of auto-
morphisms of W—{p, p.}, and let H be the group of automorphisms of W each of
which fixes the points p; and p,. Obviously we have ord (G)=2ord (H). From
the formula (1) we have

29—2 _ 1)
ord (1) 200 2+§1<1 o

where g, denotes the genus of W/H. Hence H is a cyclic group, we may assume
that v;=v.= ord (H) which correspond to p, and p. respectively.

If go=1 then ord (H)=g.

If go,=0 and r=2, then we have

2g2

7 = 2+2(1

ordl(H ) )

This implies that ¢=0 which is a contradiction.
Therefore, if g,=0, then r=3. In this case we have

;?%?—HZ)‘="2+2<1 ord(H)) é;( ’}i)
=>— 2 'l'L
= ord(H)

This implies that ord (H)=4g. Therefore, we have ord (G)=2 ord ()=8y. Conse-
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quently, we conclude that N(g, 2)=<8g.
An example shows that N(g, 2)=8g. Let W be the compact Riemann surface
of genus ¢ which is defined by the algebraic equation

Y =x(x*—1).

Let p: and p. be the points on W which correspond to £=0 and xz=oco respectively.
Then

fr (&, y) —> (€, ety)
and
I (@, y) — (L, iy/2z?*?)

are automorphisms of W—{p,, ps}, and we see that ord ({fi, fop)=8g. Therefore,
we conclude that N(g, 2)=8g.

5. Proof of theorem 3. In the first place for each g (=1) we shall show an
example which assures that N(g, 3) is greater than or equal to 4g+2. Let W be
the compact Riemann surface of genus ¢ defined by the equation

Y=+ —1).

Let p; be the point on W which corresponds to =0, and p,, p; the points corres-
ponding to x=oco. From the proof of theorem 1 we conclude that ord ({f))=4¢g+2
which assures that N(g, 3)=4¢9+2. For ¢g=0 Heins [3] showed that N(0, 3)=6.
Henceforth, we shall omit the case ¢=0 from our consideration.

6. Let W be a compact Riemann surface of genus ¢ and we distinguish three
points pi, p. and p; on W. Let G be the group of automorphisms of W—{pi, pe, ps}.
Hence, every member of G can be extended to an automorphism of W, we also
denote the group which consists of them by G. Let f; denote a generator of the
cyclic subgroup of G which consists of all the elements of G that fix the points
b1, P2 and ps. For simplicity’s sake we shall denote ord ((fi)) by 7. Let f» denote
an element of G such that fu(p1)=p, fo(p2)=ps and fo(ps)=p: and let f; denote an
element of G such that fi(p:)=p, fo(p:)=ps and fs(ps)=ps.

It is easy to see that ord (G) does not exceed 6n regardless of the existence of
f2 or fi. More precisely, ord (G)=6n if G={J1, fs, fsp, ord (G)=3n if G={f1, 2,
ord (G)=2n if G={f1, f3), ord (G)=n if G={f1) and ord (G)=<6 otherwise.

If the genus of W/{f1), denoted by g, is positive, then by the formula (1) we
have

ord (G)=6n=4g+2.

Indeed, without loss of generality we may assume that v;=v,=vs;=#, and therefore
we have
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Therefore, we may assume that g, is equal to zero. In this case from the formula
(1) we have

n=2g+1.
Hence, 2n=4g+2, it is to be observed only when G=<{f3, fz, fsy and G={f1, f2).

7. We shall observe the following five cases. During the discussion of these
cases we assume that y;=y,=v;=# in the formula (1).

Case (A): r=3 in the formula (1).

In this case we have

20-2 _ 9.3 (1— i).
n n
Then we see that ord (G)=<12g+6 if G={f1, f+, fsp and ord (G)=6g+3 if G={f1, fa).
We shall discuss this case in detail in the following paragraph.
Case (B): r=4 in (1).

In this case we have

20-2 =—2+3(1— i>+<1—i>
n n

Therefore, we obtain #=(4¢g+2)/3. In this case G={fi,fs f3) cannot occur by
virtue of lemma. If G={f1, f>), we have ord (G)=4¢+2. In the case (B) there is
nothing more to do.

Case (C): r=5in (1).
In this case we have
2—"_-3=—2+3(1——1—>+<1— L)+<1—i>.
n n V4 Vs

If G={f1, fzp, we obtain ord(G)=3(29+1)/2<4¢g+2. This may be omitted. If
G={f1, fe, f3p occurs, we have v,=v;=m by lemma, and » divides #». Then we
obtain

ord (G)=6rn=49+2+ f:_n’f .

This case shall be treated in detail later on.
Case (D): =6 in (1).

In this case we have
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— 6
29—2 =—2+3<1——1—>+Z<1— L >
n n 1=4

Vi

If G={f1, 2>, we have ord(G)=6(2g+1)/5<4g-+2. There is nothing more to do.
If G={f1, f, fs> occurs, by lemma we have vs=vs;=vs=m, and m divides n. If
m=2, we have n=(4g+2)/5. Therefore, ¢ must satisfy 29+1=0 (mod 5) and ord (G)
=(24¢g+12)/5. This is to be treated later on. If m=3, we have ord (G)=6n=4g+2.
This may be omitted.

Case (E): r=7 in (1).

In this case we have

29-2 1 r _1_)
_—2+3<1— 7)+1zj=4<1 -
=1- 3 4o,
7

Therefore, we obtain ord (G)=6n=4¢+2. In this case there is nothing to do.

8. The case (A). In this case we may assume that f} is equal to the identity
and that f2 is equal to the identity, where f? denotes the j-th iteration of f. Fur-
thermore, we may assume that f, has a fixed point which we denote by g:. Let
7 be the natural projection mapping of W onto W/{f:> and let y; be a simple curve
starting and ending at g=n(q:), which is freely homotopic in W/{f1)—{z(p1), n(p2),
n(ps)}, to an arbitrary small circle centered at =(p:). Let pa=mofzon~'(y:) and let
rs=mofton~(y;). By lemma these are uniquely determined regardless of a choice
of a branch of z~'. Let ¢;,; be the terminal point of the lift of y, starting at ¢;
(#=1, ---, 29+1). Henceforth, we consider the suffixes of ¢’s by mod 2g+1. If we
set ¢1,, the terminal point of the lift of y, starting at ¢, then by the monodromy
theorem we establish that ¢i,,, is the terminal point of the lift of 7. starting at
Qiia-vy; (@=1, -, 29+1). This assures that fa(qi.)=¢14,;- Then we have

=1 (q2) =S 3(qr+7) =S2(q1+ 12) =14 5.
Therefore we have
74—1=0 (mod 2¢g+1).

If there exists f;, we may also assume that f; has a fixed point which is dif-
ferent from p,, and we denote it by ¢{. Let y; be a simple curve starting and
ending at ¢’=x=(g{), which is freely homotopic in W/{f1>—{z(py), (p2), n(ps)}, to a
small circle centered at z(p,), and let yi=nmofsen*(yj). Let g¢j., be the terminal
point of the lift of y; starting at ¢/ (i=1, ---, 29-+1), and set ¢{,; the terminal point
of the lift of y{ starting at ¢{. Then we have

=A@ =Ss(qi+) =i+ 2
Therefore, we have
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72—1=0 (mod 2g+1).

Consequently, if the case G={f1, fs, fsp occurs, 7°—1=0 (mod 2¢g+1) and j2—1
=0 (mod 2¢g+1) has a common solution, i.e. j=1. Then we continue a branch of
n~Y(q) along 7y, y» and y; successively. Hence, there is no branch point in W but
D1, P2 and ps;, we have 2g+1=3. Therefore, this case does not occur except for
g=1.

If the case G={f1, fo) occurs, j2+j+1=0 (mod 2¢g+1) has a solution.

9. The case (C) and the case (D). In these cases we consider an intermediate
covering surface W/{f?™y of W/{fip. The natural projection mapping W/{f% ™)
onto W/{f:) does not ramify but z(p,), =(p.) and =(p;). Hence, we can apply the
discussion in paragraph 8 to W/{f?™>, we may conclude that if the case G
={f1, f2, f3p occurs, n=m or n=3m. The former corresponds to ¢’=0 and the
latter to ¢’=1, where ¢’ denotes the genus of W/{frm™.

In the case (C), if the case m=m occurs, we establish that 3z=2¢+3 which
implies that g=0 (mod 3) and if the case #=3m occurs, we establish that 9m=2¢g
+7 which implies that g=1 (mod 9).

In the case (D), if #=m=2 then g=2 and if #=3m=6 then ¢=7.

10. Examples. To show the exactness it is sufficient to construct some
examples.

ExampLE 1. For ¢g=1, let W be the Riemann surface defined by the equation
yi=ax—1.

Let p1, p» and p; be the points corresponding to x=1, ¢*** and e**” respectively.
Set

fI: (.’L‘, '!/) —> (-77’ ezxi/a,y)’

fa (x, y) —> (€, y)
and
s (z, ) — Uz, —y/=).
Then we have
N(g, 3)=12¢+6.

ExampLE 2. For ¢ such that j2+j7+1=0 (mod 2g+1) has a solution and ¢=1,
let W be the Riemann surface defined by the equation

y2g+1 — (x__ 1) (x_ ezn:/s)j(x_ et Ia)jz

where j is a solution of j2+j+1=0 (mod 2¢g+1). Let pi;, p» and p; be the points
corresponding to x=1, ¢*¥* and e**? respectively. Set

Ji (@ y) — (@, €400 0y)
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and

Pratel j+j2)t/3(20+1)y]
. 271 /3
ot (@, y) —> <e £ (x__eui/s)(ﬂ—l)/(zgﬂ) )

Then we have
N(g, 3)=6g+3.

ExampLE 3. For ¢ such that j2+j7+1=0 (mod 2g+1) does not have a solution
and g=1 (mod 9), let W be the Riemann surface defined by the equation
y(29+7)/8=x(g—1)/3(x8_1)‘

Let p1, 2 and p; be the points corresponding to z=1, ¢*¥® and ¢ respectively.
Set

Jii (@, y) —> (=, 4/ @0 0y),

fai (%, y) —> (&, y)
and
fa (@, y) — (z, —y[z)
Then we have
N(g, 3)=4¢g+14.

ExampLE 4. For ¢ such that j2+7+1=0 (mod 2g+1) does not have a solution
and ¢=0 (mod 3), let W be the Riemann surface defined by the equation

RO/ = g G-D/3(g8 1),

Let pi, p. and p; be the points corresponding to x=1, ¢*¥* and e**/* respectively.
Set

fii (@, y) — (&, &7/ @0HDy),

fa (m, y) —> (¢"m, "y)
and

fo (2, y) — U=z, —y/x).
Then we have

N(g, 3)=4¢+6.
ExampLE 5. For g=2 or 7, let W be the Riemann surface defined by the
equation
y(4g+2)/5=(x8_1)(x3+1)(29+1)/5.

Let p1, p» and p; be the points corresponding to z=1, e*** and e** respectively.
Set
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fi (@, y) — (=, e/ F0Dy),

St (x, y) —> (&7, y)

and
Sai (@, ) —> (1=, e7i2y[x? @D/ CoD),

Then we have

249412

Mg, 3)= 5

Summing up, we have concluded our theorem 3.

11. Some criteria for the solubility of the congruence j*+j+1=0 (mod 2g-+1).
If p is a prime number, then the following congruence holds for every integer j
(Fermat’s theorem):

jP=j=0  (mod p).
Suppose that ¢g=0 (mod 3) and that 2¢+1 is prime, we have
PO == +j+1)P()

where P(j) is a polynomial of degree 2¢g—1 with integral coefficients. The con-
gruence P(7)=0 (mod 2¢g+1) has at most 2g—1 solutions while the congruence
729+1—7=0 (mod 2g+1) has 2¢+1 solutions, and consequently, the congruence j2+j7+1
=0 (mod 2¢+1) has two solutions.

Suppose that g=2 (mod 3) and that 2¢g+1 is prime, we have

J2t —j=(*+j+1) P(j)— (25 +1)

where P(j) is a polynomial of degree 2¢g—1 with integral coefficients. If the
congruence j2+j+1=0 (mod 2g+1) has a solution, then the congruence 2j+1=0
(mod 2¢g+1) must have the same solution. This is impossible.

It is obvious that if the congruence j2+j+1=0 (mod p) is unsoluble then for
every multiple of p, denoted by ¢, the congruence j2+47+1=0 (mod ¢) is unsoluble,
and it is easily seen that every number of the form 6m+5 is divisible by a prime
number of the form 6m’+5.

Thus we conclude that if g=2 (mod 3) then the congruence j2+j+1=0 (mod
2g+1) is unsoluble.
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