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SOME PROPERTIES OF EXTREMAL POLYNOMIALS
FOR THE ILIEFF CONJECTURE

BY DEAN PHELPS AND RENE S. RODRIGUEZ

Let Pn denote the family of complex polynomials each of degree n, with
leading coefficient 1, and having all of its roots in J9(0,1), the closed unit disc with
center at 0 and radius 1. Let p€Pn have roots zly •••, zn and have roots wu •••, wn-ι.
For such p we use I(zj), I(p), and I(Pn) to denote the numbers min {|z$—wk\:
l^k^n—l},m3x{I(Zj):l^j^n}, and sup {/(/>): psPn} respectively. Then p€Pn

is called an extremal polynomial for the Ilieff conjecture if I(p)=I(Pn). With this
notation the Gauss-Lucas theorem implies that I(Pn)^2 and the conjecture of Ilieff
is that I(p)^l for all psPn- We show that there exist extremal polynomials, that
an extremal 'polynomial must have at least one root on each subarc of the unit
circle of length i^π, and we find the extremal polynomials for n—Z and 4.

We begin with a

LEMMA. Pn is a compact normal family in the open plane C.

Proof. Let R>0. lfp£Pn then |/>(z)| = |(*-zi) ••• (z-zn)\^(R+l)n when \z\^R
so that by the theorem of Stieltjes and Osgood Pn is a normal family in C. Next
if {pj} is a sequence in pn converging almost uniformly, i.e., uniformly on compact
sets, to a limit p then the Weierstrass convergence theorem implies that p is a
polynomial of degree n with leading coefficient 1 and Hurwitz's theorem implies
that all the roots of p lie in 25(0,1).

THEOREM 1. There exists an extremal polynomial.

Proof. Let {pk} be a sequence in Pn such that lim I(pk) = I(Pn). We may
assume that {pk} converges almost uniformly to a limit p€Pn Then I(p)^I(Pn).
If equality does not hold then /(/>)+4e=/(Pn) for some ε>0. Choose δ, 0<<5<ε, so
that p has no roots in 0<\z—Zj\<2δ, j = l, •••, n. If D(zJt δ) denotes the disc with
center z3 and radius δ then [J?D(Zj, δ) contains all the roots of p and each disc
D(Zj, I(p)+ε) contains at least one root of p'. Thus for sufficiently large k all the
roots of pic are contained in \J?D(zJf δ) and each disc D{zJt I(p)+ε) contains at least
one root of p'k, whence I(pk)<I(p)+2ε=I(Pn)—2e for these k which is a contradiction.

T H E O R E M 2. If p£Pn and \ZJ\<X for the roots zu •••, zn of p, then p is not an

extremal polynomial.
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Proof, We may assume that I(p)=I(z1). By the Gauss-Lucas theorem we have
that \wj\<l for the roots wu ~',wn-i of p'\ also |zλ—Wj\^I(zι) for y=l , ~-,n—l.
Therefore for each w3 there is a sequence {si}%=1 of points in D(0,1) converging to
Wj and such that \zi—s{\>I(zi). Consider the functions

)=n[' "Uiw-pk(z)=n\ Π (w—sfydw, k=l,2,~ .

They are polynomials of degree n and leading coefficient 1, and the sequence {pk}
converges almost uniformly on C to p. Since the roots of p are in the open disc
D(0,1), Hurwitz's theorem implies there is an integer K such that for k>K,p, has
all its roots in D(0,1). Thus pk£Pn for &>iΓand by construction I(pk)>I(z1) = I(p).
Hence

Thus an extremal polynomial in Pn has at least one root on the unit circle
C(0,1). An improvement of this result is given in

THEOREM 3. If pzPn is an extremal polynomial then every closed subarc of
C(0,1) of length greater than or equal to π contains a root of p.

Proof. Suppose first that p has one distinct root, say zu on C(0,1). We may
assume that ^ = 1 . Let r=max {\zj\: m^j^n} where zm, zm+u •••, zn are the roots
of p that lie in D(0,1), and define s=(l—r)/2. Then the polynomial q(z)=p(z+s)
is in Pn, has all of its roots in Z)(0,1) and I(q)=I(p). By theorem 2, however,
I(4)<KPn) = I(P)> Now suppose p has two distinct roots zx and z2 on C(0,1) and
that Zι and ̂ 2 are separated by a subarc of C(0,1) of length greater than TΓ and
containing no root of p. We may assume that for some θ, 0<#<π/2, Zί=exp (iθ), z2

=eχτp(—iθ) and p has no roots on {exp (it): θ<t<2π—θ}. Define r=max {|̂  | :
1̂ 1 <1} if /> has a root in Z>(0,1) and r=0 otherwise. Define s^min {cos θ, (1—r)/2}.
Then as above, the polynomial q(z) —p(z -\-s) is in Pny has all of its roots in Z)(0,1),
and I(p)=I(q)<iI(Pn)=I(p). This contradiction establishes the theorem.

As an application of theorem 3 we have

THEOREM 4. Let pzPn be extremal. If zk is a root of p with \zl\<\ then

T"
Proof. We may assume without loss of generality that £i = l is a root of p on

C(0,1) nearest to zk and that zk = zn=
:r exp (iy) with O^y^π. By theorem 3, p has

a root on the circular arc {exp (it): 0<^τr}, say exp (iύ) = z2. Then writing
p(z) = U7}=1(z—Zj) and p'(z)=nH7Jzl(z—Wj) we have

P'(Zn)= Π (Zn-Zj)=n
3=1 3

so that
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. 7 = 1 3 = 1

Since φ(t) = \zn—exp (it)\ = \r exp (iy) —exp (#)l is a decreasing function of ί for
O^t^y, we have that ^^?/ because 1 is a root of p on C(0,1) nearest to zn. Since
9(ί) is increasing for y^t^π, φ(u)^φ(π). Thus

l)n~8 and the result follows.

We remark here that in [1] it is shown that if psPn has a root zk on C(0,1),
then I(zk)^l. Using this and Theorem 4 we can prove a result of Rubinstein [3].

PROPOSITION. I(pn)=l for n=3 and 4.

Proof. Let pQPn be extremal. If zk is a root of p with | ^ | < 1 , the bound in
theorem 4 gives /(^)<(2/3)1/2 for n=3 and /(**)< 1 for w=4. Thus 7(JP»)^1 for
^ = 3 or 4, and the polynomials zn—l£Pn show that

Further it is shown in [3] that if p£Pn has a root at zk on C(0,1) and p is not
of the form zn—exp {it) for some £, then I(zk)<l. Using this result and theorem
4 we can prove

THEOREM 5. If psPn is extremal, then p(z)=zn—exp (it) for some t if n=2, 3,
and 4.

Proof. This is immediate for n=2. In the proof of the proposition it was
shown that I(zk)<(2β)1/2 and I{zk)<l for n=3 and 4 respectively and |* f c |< l . The
result in [3] quoted above completes the proof.

Based on this result we offer the conjecture: If p€Pn is extremal then
p(z)=zn-exp(it) for some t.

A result not dependent on the above theorems is given in

THEOREM 6. If pQPn has all of its roots on a line segment that is contained
in D(0y 1) then I(p)^l.

Proof We may assume that p has all its roots on the closed real interval
[—1, l],p(ϊ)=0, and p has at least one root less than 1. Let the roots of p be such
that z1=z2 = '"=zm-1<zm^'"^zn=l. Then 7(^)^1 by the result in [1], and if z3

is a root in the half open interval [zm> 1) then p has a root on either side of z3

whence by Rolle's theorem 7(^)^1 . If Zχ——\ then by [1J again, I{zi)^kl. If
then q(z)=p(z+Z!+l) has roots Zj=zj—(z1+l) where —l=z[^-~z'n so that

)=I(zί)^l. Thus I(p)^l.
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