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DEFICIENCIES OF AN ENTIRE ALGEBROID FUNCTION, II

By Kivosur NiiNo AND MiTsuru OzAWA

§1. It is well known that there is a big gap between two notions of excep-
tional values in Picard’s sense and in Nevanlinna’s. This is still true for an
algebroid case in general. The authors [2], however, have obtained some curious
results for a two- or three-valued entire algebroid function. A typical one is the
following:

Let f(2) be a two-valued entive transcendental algebroid function and ai,a,
and a; be different finite numbers satisfying

z 8 f)>2.

Then at least one of {a;} is a Picard exceptional value of f.

Here the curiosity lies in the fact that the condition only on the deficiencies
implies the existence of a Picard exceptional value in the two-valued case.

In this paper we shall prove the following results.

THEOREM 1. Let f(2) be a four-valued entire transcendental algebroid function
defined by an irreducible equation

Fiz A=+ A+ A 24 A f+ A=0,

where A, are entire. Let a,, j=1,---, 6 be different finite numbers satisfying
25=100a,, ) >5, where d(a,, f) indicates the Nevanlinna-Selberg deficiency of f at a,.
Further assume that any two of {F(z,a;)} are not proportional. Then two of {a;}
are Picard exceptional values of f.

In this theorem the non-proportionality condition for every pair of {F(z, @;)}
cannot be omitted. We shall give a counter example showing this fact in §4.

THEOREM 2. Let f(z) be the same as in the above Theorem 1. Let {a;}}-, be
different finite complex numbers satisfying

g 3 £)>6.

Then at least three of {aj}, say a., a: and as, are Picard exceptional values of f.
Further then &(as, f)=0(as, f)=0(aes, f)=0(a, f)>3/4 and if there is another deficiency
of f at as, then
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1
5(¢8:f)§1_5(07:f)< Z'

§2. Proof of Theorem 1. We put
0;&)=F(za;), j=1,-86,

and assume that all g4(z), j=1, ---, 6 are transcendental.
We firstly have

(1) 300, >4

and

(2) @101+ @3>+ asgs+augatasgs =1,
where

5
a.7'=1/ n (a]_alc), j:]-’ “tty 5.

k=1,k3y

Applying the method in the proof of Theorem 1 in [2] to our case, we have the
linear dependency of {g,}5-,, that is

(3) g1+’ gaF-as’ 95+ an’ g+ as’9s =0

with constants {«,’} not all zero. Here at least two of {a,’} are not zero. Hence
we may assume that a/as’30 and as’=as. Eliminating ¢; from (2) and (3) we
have

(afl—a1')91+(az—az’)gz-l-(as—as’)gs+(a4—a4’)g4 =1.

Since any three of {a;—a,’} are not zero simultaneously, it is sufficient to study
the following subcases:

Case 1). alﬂval', a’z#az', a’a#as', mﬂFoa’.

Case 2). a1#a1,, a’z:\:azl, a’si\:a’s,, af4=a4’,

(i) a’ =ay =ay’ =0,

(ii) a’=ay’ =0, a0,

(iii) a’=0, a0, as’=0, aa)’—asas=0,

(iv) a’=0, a’*0, ay’=x0, aa’—aay =0,

(v) a’ =0, a’=x0, a0, aa’—ai’=aza—aiay’ =0,
(vi) a’ %0, a0, a0, aa/—aia)’ =0, aa)—aias’ =0,

(vii) a’ %0, a’*x0, as’x0, a’—aaa’x0, asa)’—aas’ 0.
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Case 3). alﬂFal’, azia'z,, a3=a3’, a4=a4’,

(i) a =ay’ =0,

(ii) a’=0, a0,

(iii) a’x0, a)’=0, aa)—a)’a;=0,
(iv) a’ %0, a0, aa)’—aya;0.

The cases 1); 2) (ii), (iv), (vi), (vii); 3) (ii), (iv) lead to an identity of the follow-
ing type
(A) A191F 220242505404 =1, 142452450,
The cases 2) (v); 3) (iii) lead to the following type
11912292+ 2505=1,
(B)
Auga+2595=1, A1+ 250,

The case 3) (i) leads to

191+ ax9.=1,
©)
asgs+ a9+ asgs=0.
The case 2) (iii) leads to
o191+ (aa—aa’)g2+ %3— (z—a')gs=1,
2
(D)
Ay ’ (243 ’
101+ —~ (' — as)gst —- (@’ —a2)gs =1
(¢4} 42}
The case 2) (i) leads to
g1+ aegs+asgs =1,
(E)
a9+ asgs=0.

By our assumption the case (E) may be omitted.
In the first place we remark that Valiron [3] proved

T(r, f)=pr, A+O0Q),

Where A'—'maXogjé:% (1; lxljl) and
4 7, b= 2”1 d
#( ) A)_ So og Ado.

Further we have
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4p(r, A)=m(r, 9)+0(),

g= max (1, |g;]).
1=sj<4
The case (A). In this case we have
4
Z:la(dj:f)>3
=

and
4T(r, f)=m(r, 9)+01)=m(r, g:*)+-0(1),

where ¢,*=maX;<,<s (1, |g;]). Therefore the reasoning in the proof of Theorem 2
in [2] leads to the following type

N91+2:0:=1,
(4)
2393+ 2494 =0.
Further we have
(5) /9191+,3292+13393+I94g4+/3606=1,

where B,=1/IT}=1 tsys (@j—ax), 1=1,2,3,4,6. Eliminating ¢; and ¢; from (4), (2)
and (5), we have

a

2 i
(az— Tj-al)gﬁ_ (a4— 7:' a's)g4+asg5=1— 711‘:

Since 1—ay/4; and 1—gi/4, are not zero simultaneously, we may assume 1—a;/4;=0.
We consider the following subcases:

. 2 A
( 1 ) Oy _/lj Ay =04— T: 0.’3=O,
.. 2
(it) ay— ﬁ‘a’l:O, 014———4'0’3#0,
A As
A P
(iii) ay— = a; %0, ay— == ay =0,
A A3
. 2 2
(iv) dy— = a0, ay— —4asﬂF0.
A A3

The case (i) gives trivially a contradiction.
The case (ii) leads to
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A191+229:=1.

2
<a'4— 72‘“3)04+a595=1—% .

In this case we have

5(a1yf)+5(02)f)+5(a4}f)+5(057f)>3
and
AT (r, f)=mlr, 9:%)+O0(1),
where g¢.*=max (1, |g1], |]9s|). By the reasoning of the case (B) in the proof of

Theorem 2 in [2] we arrive at a contradiction.
The case (iii) leads to

{algl+a2g2+aﬁgﬁ =1,
asgs+ a0, =0,

which is the type of case (E). Hence this case may be omitted by our assumption.
Consider the case (iv). In this case we have

B(any)_l"a(ah f)+5(a5yf)>2
and
AT (r, f)=m(r, gs)+0Q),

where gs*=max (1, |g.|, |94]). Hence by virtue of the argument in the case (A) in
the proof of Theorem 2 in [2] we arrive at a contradiction.
The case (B). In this case we have

4T (r, f)=m(r, 9)+0(1),

where g,*=max,<;<4(1, |9;]). By virtue of the argument in the case (B) in the
proof of Theorem 2 in [2], we similarly have a contradiction.
The case (C). Eliminating g, from (C) and (5) we have

Bs

ay

1
‘Z(0‘1/92_azﬁl)gz+ﬁsga+ﬁ4g4+ﬁsgs=1— x0

Since (1fe—azf)x0 and 47T(, f)=m(r, 9.¥)+0(1), this case reduces to the case

(A), which is a contradiction.
The case (D). Eliminating ¢; from (D) and (5), we have

{131(“2——C¥2,)—a1ﬁz}02+ {ﬁl%i‘ (az—ay”) —alﬁa}gs-aiﬂwr‘mﬁege =,31— a; 0.

Since the coefficients of g, and ¢; are not zero simultaneously, we consider the
following subcases:
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(1) Ble—ad)—a1fex0, Bras(az—a)—o10585%0,
(ii) Bilaz—ax’)—a1B:=0, aiasfs>aspifs,
(i) flea—a)—fa=0, aasPe=asPifs, Pa(eePr—asfe)F asfa(fi—atr),
(iv)  Bles—a)=afy=0, awasfr=afsfs, Pulaefi—anfo)=aupe(fi—ar),
(V) Bfas(ae—as)—aia2f=0, aiasfsxaspifs,
(Vi) Pas(ae—a)—arafa=0, arafs=aspife, Pulaspi—afs)*aufs(fr—a),
(Vi) fras(aa—as) —aiaafs=0, rfs=asPife, Pu(ctsPr—anfs)=atsBs(fr—ar).

All of these cases reduce to the case (A), which is a contradiction.

Thus we obtain a desired contradiction in every case. Therefore at least one
of {9;}5-, must be a polynomial.

Next we assume that one of {9,}5.,, say ¢;, is a polynomial. Further assume
that the others g, are transcendental. If a;9,=1, then the identity (5) implies

ﬁzgz+ﬁaga+ﬁ4g4+ﬂege=1—‘—5—i' x0,

which is the type of our case (A). This is a contradiction. If ag;=1, then the
identity (2) implies
s+ asfs+augs+asgs =1—aug:.

By the reasoning in the proof of Theorem 1 in [2], this case can be handled in
the same method as our case (A). Hence we have a contradiction. Therefore at
least one of {g;}5., must be a polynomial and the proof of our Theorem 1 is

complete.
§3. Proof of Theorem 2. We set
gj(z)=F(z, dj), j=1) ) 7:

and assume that all g¢,(z), j=1,---,7 are transcendental. Then by the proof of
Theorem 1 X5, 6(e; f)>5 leads to the following type

101+ aags+asgs=1,

(E)
494+ asgs=0.

Further we have

(6) 7191+7’292+7’393+7’404—|—T7Q7=1,

where 7,=1II}_, 4,50 (@—ar), 1=1,2,3,4,7. Firstly eliminating ¢, from (E), (5)
and (6) we have
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(7) (%ﬁz*a’zﬁl)gz'l-(a'1,33—a'sﬁl)gs+a1194g4+a1ﬁsgs=a’1—ﬂb
(8) (017’2—‘“27’1)92‘!‘(%7’3—“37 00+ a; ragstaiyr@r=ar—71.

All the coefficients of these terms are not zero. It is sufficient from (7) and the
argument of our case (A) to consider the following cases:

. (12— 2f1)g2+(a1fs—asPr)gs = a1 — 1,
) {ﬁ4g4+ﬂage=0,

. (a1fe—a2B1)92+ a1 fags= a1 — P,
o {(alﬁs—asﬁl)gs+a1ﬁsgs=0,

{(a1ﬁz—azﬁ1)gz+a1ﬁsge=a1—ﬁh
(iii)

(a1fs—asf)gs+a1B:9.=0,
. {a1,34g4+a1/9606=a1—ﬂ1’
(iv)
(a’lﬁz—azﬂl)gz+(a1ﬁ3—aaﬁl)gs =0.

Assume that the case (i) occurs. Then eliminating g, from (8) and (i) we have

{as(Bars— Pare) — e Bays— Bsr1) +as(Prra— Par1)}gs
+ (alﬁz'— 012191)7’4g4+(011,32 — az,31)7’797 = (mﬁz - 0’2,31) - (%7’2— a’le) + (,3172—.327'1)~

All the coefficients of these terms are not zero. Hence we have a contradiction.
In the cases (ii) and (iii) we have

AT (r, f)=m(r, gs)+01),  gs*=max (1, |gil, |gs]),
191+ a9yt asgs=1
and
¥a, f)+0(as, )+6as, )>2,

which gives similarly a contradiction.

The case (iv) leads to our case (B). Hence we have a contradiction.

Thus we obtain a desired contradiction in every case. Therefore at least one
of {g;}}-, must be a polynomial. We may suppose without loss in generality that
g1 is a polynomial. Further suppose that the others g, are transcendental. Then
we have

202+ as@s+ gt asgs=1—aug1,
ﬁzgz+ﬁsgs+ﬁ4g4+ﬁs§76:1‘—ﬁ1g1,
720273937494+ 7197= 1“T1!71-
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Here we may assume that (1—a9:)(1—p:9:)%0. It is sufficient from the argument
of our case (A) to consider the following two cases:

. asgitasgs=1—aigi, .. asgatasgs=1—ags,
(1) (ii
asgs+ 0593 =0, asgs+asgs=0.

In the case (i) we have

1
;2" (azﬂa“a3ﬁz)ga+ﬁ4g4+ﬁege = 1—/’3101 =0,

which is a contradiction by our standard method.
In the case (ii) we have

(%.33—a3ﬁ2)93+0(2,3494+012/3606 =az—,32—(a2,31—011l32)91,
(szrs—as)’z)g3—|‘az7”4g4+az?’7g7 =Qg— 72— (Olzh— 0(17’2)91.

Since the right hand side terms of the above identities are not zero simultane-
ously, we similarly have a contradiction. Hence at least one of {g;}7-, must be a
polynomial.
We may suppose that ¢, is a polynomial. Further suppose that g,, 7=3,---,7
are transcendental. Then we have
asgs+audstasgs=1—a19: —asgs,
,3393+.34g4+,3606=1—,3191",32!hy
7395+ 7494+ 1191=1—7191—7292.

Since the right hand side terms of the above identities are not zero simultane-
ously, we similarly have a contradiction.

Therefore at least one of {g,}}-;, say ¢s; must be a polynomial. Since f is
transcendental, it clearly follows that all ¢, j=4,5,6,7 are transcendental. And
we have

4T (r, f)=m(r, 99)+-0Q),
and
oas, f)+ola;, /)>1, 7=5,6,7.

Hence by virtue of our standard method we obtain
asgstasgs =1—a191 — @0 —a3gs =0,

(9) .34g4+ﬁsge=1—ﬁ191—ﬂzgz—ﬁ3gs=0,
7’494+T7g7=1—T191—ngz—7‘393=0-

Therefore we obtain a part of the desired result:
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3
&(as, f)=0(as, ) =d(as, f)=0(a ) > 1

Suppose that there is another deficiency d6(as, f) satisfying
@y, ) +0(az, f)+06(as, 1)+06(as, £)+06(as, £)>4.
Then we have
(10) g1+ pafs+ psgs+ pug st psgs =1,

where p;=1/I1§_, .., ;47 (@—ax). Eliminating ¢, ¢» and ¢g; from (9) and (10) we
have

1 a; Ay A3
1 B B Bs
pugst ps9s=— 0,
1 71 T2 T3
1 P M2 Ms
which is a contradiction. Hence we have
o(ay, 1) 4-6(as, )+8(as, £)+(as, f)+dlas, £)=4,
that is

ay 1) S1—0lau, ) =1—3an )<

Thus the proof of Theorem 2 is complete.

§4. A counter-example. We shall give here a counter-example showing that
the non-proportionality condition for every pair of {F(z, ;)} in Theorem 1 cannot

be omitted.
Let g, be a transcendental entire function, whose modulus satisfies

|g:(rei®)| = o(e™®).

Let g4 be the famous Lindelof function f(z; 2, ) with 0<a<1 (cf. [1]). We set
1
gz=—2'01+6, g:=0,—12,

9s=—0s, 96=4 0.
Now we consider a four-valued entire algebroid function y defined by
F(z,9)=y'1+Asy*+ Ay’ + Ay + A, =0,
where Ay=g,, Ai=(1/6)(12—3¢:+29,—95—9g4s), A:=—(1/2) (2429:—9:—gs) and A,
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=—(1/6) (12—3¢:+3g:+9s—9s). Then by virtue of the same argument as §6 in
[2] we have

AT(r, y)=m(r, g)(1+e(@),  lim e(X)=0.

Since F(z,0)=g1, F(z,1)=0., F(2, —1)=gs, F(2,2)=g., F(2, —2)=g¢s and F(z,3)=gs,
we obtain

However there is no Picard exceptional value among {0, 1, —1, 2, —2, 3}.
Further we know that there is no other deficiency of y. In fact, suppose, to
the contrary, that there is another deficiency of y at @;. Then

Hence by Theorem 2 there are at least three Picard exceptional values among
{0,1, —1, 2, —2, 3, a7}, which is a contradiction.
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