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A CONVEXITY IN METRIC SPACE AND NONEXPANSIVE
MAPPINGS, I

BY WATARU TAKAHASHI

1. Introduction.

In this paper, we shall discuss convexity and fixed point theorems in certain
metric space which are described in an abstract form. At first we shall introduce
a concept of convexity in a metric space and study the properties of the space
which we call a convex metric space. Futhermore, we formulate some fixed point
theorems for nonexpansive mappings (i.e. mappings which do not increase dis-
tances) in the space. Consequently, these generalize fixed point theorems which
have been previously proved by Browder [1], Kirk [6] and the author [7] in a
Banach space.

The author wishes to express his hearty thanks to Professor H. Umegaki and
Professor T. Shimogaki for many kind suggestions and advices.

2. Definitions and propositions.

Throughout this paper, we consider a metric space X with a convex structure
such that there exists a mapping W from XxXx[Q, 1] to X (i.e. W(x, y λ) defined
for all pairs x, y$X and λ (O^Λ^l)) and valued in X satisfying

(*) d(u, W(χ, y, λ))^λd(u, χ)+(l-λ)d(u, y)

for all usX and call this space X a convex metric space. A Banach space and
each of its convex subsets are, of course, convex metric spaces. But a Frechet
space is not necessary a convex metric space. There are many examples of
convex metric spaces which are not imbedded in any Banach space. We give two
preliminary examples here.

EXAMPLE 1. Let / be the unit interval [0,1] and X be the family of closed
intervals [at,bi] such that Q^a^bi^l. For Il=[ai, h], Ij=[aJ9bJl and λ (O^^l),
we define a mapping W by W(Ii, If, Z)=[toi+(l—λ)aj9 λbi+(l—λ)bj\ and define a
metric d in X by the Hausdorff distance, i.e.

rf(4 /,)= sup {| inf {\a-b\}- inf {\a-c\}\}.
a£l δe/£ cςij

EXAMPLE 2. We consider a linear space L which is also a metric space with
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the following properties:
( 1 ) For x, yeL, d(x, y)=d(x~yf 0);
(2) For x,yeL and λ (O^^l),

d(λx+(l-λ)y, ϋ)^λd(x, ΰ)+(l-X)d(y, 0).

A subset K of a convex metric space J^Γis said to be convex if W(x, y]λ)€K for
all x,y€K and λ (O^Λ^l). The following three Propositions are easy.

PROPOSITION 1. Let {Ka: a€A] be a family of convex subsets of X, then
Π aGAKa is also a convex subset of X.

PROPOSITION 2. The open spheres S(x,r) and the closed spheres S(x,r) in X
are convex subsets of X.

Proof. For y,zsS(x,r) and λ (O^^l), there exists W(y,z ,λ)sX. Since X is
a convex metric space,

d(x, W(y, z\ λ}}^λd(x, y)+(l-X)d(x, z)

<λr+(l-λ)r=r.

Therefore W(y,z;X)£S(x,r). Similarly, S(x,r) is a convex subset of X.

PROPOSITION 3. For x,y$X and λ (O^Λ^l),

d(x, y)=d(x, W(x, y; X»+d(W(x, y; X), y).

Proof. Since X is a convex metric space, we obtain

d(x, y)^d(x, W(x, y] Xft+d(W(x, y, X), y)

^λd(x, x) + (l-X)d(x, y)+λd(x, y)+(l-λ)d(y, y)

=λd(x, y)+(l—}()d(x, y)=d(x, y)

for x,y$X and λ. Therefore,

d(x, y} = d(x, W(x, y] Xj)+d(W(x, y; X), y)

for x, y€X and λ.

For EcX, we denote

Rx(E)=sup{d(x,y): y<=E},

R(E)=mί {RX(E): xsE],

Ec={xsE: RX(E)=R(E)}

and denote the diameter of E by
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δ(E)=svp{d(x,y): x,yζE}.

A point xzE is a diametral point of E provided

sup{d(x,y):

A convex metric space X will be said to have Property (C) if every bounded
decreasing net of nonempty closed convex subsets of X has a nonempty intersec-
tion. By Smulian's theorem, every weakly compact convex subset of a Banach
space has Property (C) [cf. 5, p. 433]. We obtain the following Proposition from
the definition of Property (C), Propositions 1 and 2.

PROPOSITION 4. If X has Property (C), then Ec is nonempty, closed and convex.

Proof. Let En(x)={yeE: d(x9y)^R(E)+l/n} for «=1,2, 3, — and xsX. It is
easily seen that the sets Cn= Γ\xeχEn(x) form a decreasing sequence of nonempty
closed convex sets, and hence Γ(n-ιCn is nonempty, closed and convex. Since
Ec= Πn-iCn, it satisfies the conclusion.

PROPOSITION 5. Let M be a nonempty compact subset of X and let K be the
least closed convex set containing M. If the diameter δ(M) is positive, then there
exists an element u$K such that §up{d(x, u}\ x€M}<δ(M).

Proof. Since M is compact, we may find xι,x2€M such that d(xlf x2)=δ(M).
Let M0cM be maximal so that MQ"D{x^x2} and d(x,y)=Q or δ(M) for all x,y^MQ.
It is obvious that M0 is finite. Let us assume MQ={xι,x2, ',xn} Since X is a
convex metric space, we can define

y2=W(xB,yi;l/3),

" ' )

yn-z= W(χn-ι, yn-3, l/n—1),

yn-ι= W(χn, yn-2\ l/ri)=u.

Since M is compact, we can find y^M such that

d(y0,u)=sup{d(x, u)\ x^M}.

Now, by using the condition (*) of convex metric space, we obtain

, 1 ,, , , n-l .. .
d(y<>, u)^ —a(yo, xn)-\ d(yo, Un-z)

n n

1 7/ N , n—l I 1 τ/ N , n—2 ,. N\
^ — d(y<>, Xn) H ( τ d(y0, a?n-i)H r d(yQ, yn-*) I

n n \nx n x /
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-—d(yo, xn)-i d(yθ9 a?n-ι)H d(y*, yn-*)

Therefore if d(y0, u)=δ(M), then we must have d(yQ, #fc)=<5(M)>0 for all &=1, 2, •••, n,
which means that y0€M0 by definition of M0. But, then we must have yQ=xk for
some &=1, 2, •••,#. This is a contradiction. Therefore

The above Proposition gives us the following definition. A convex metric
space is said to have normal structure if for each closed bounded convex subset E
of X which contains at least two points, there exists x&E which is not a dia-
metral point of E. It is obvious that a compact convex metric space has normal
structure. Every bounded closed convex subset of uniformly convex Banach space
has normal structure, too. As an extension of the case in Banach space, we in-
troduce a concept of strict convexity in a convex metric space. A convex metric
space X is said to be strictly convex if for any x,y$X and λ (O^U^l), there exists
a unique element zzX such that λd(x,y)=d(z,y) and (l—λ)d(x,y)=d(x,z). We
have seen from Proposition 3 that

d(x, y)=d(x, W(χ, y; Xft+d(W(χ, y] X), y)

for each pair of elements x and y of a convex metric space and all real number
λ (O^^l). Futhermore, from

d(x, W(x, y; λ))^λd(x, x)+(l-λ}d(x, y)

= (l-X)d(x,y)

and d(W(x,y',X),y)^λd(x,y), it is obvious that W(x,y,X) is an element of X such
that satisfies

(l-X)d(x, y}=d(x, W(x, y; λ}} and M(x, y)=d(W(χ, y; X), y).

3. Fixed point theorems.

Let X be a metric space and K be a subset of X. A mapping T of K into X
is said to be nonexpαnsive (cf. Browder [1]) if for each pair of elements x and y
of K, we have d(Tx,Ty)^d(x,y). Now, we will prove fixed point theorems for
nonexpansive mappings in convex metric spaces. The following Theorem can be
proved by a modification of the method of Kirk [6].

THEOREM 1. Suppose that X has Property (C). Let K be a nonempty bounded
closed convex subset of X with normal structure. If T is a nonexpansive mapping
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of K into itself, then T has a fixed point in K.

Proof. Let Φ be a family of all nonempty closed and convex subsets of K,
each of which is mapped into itself by T. By Property (C) and Zorn's lemma, Φ
has a minimal element E. We show that E consists of a single point. Let χζEc.
Then d(Tx,Ty)β>d(x,y)^Rx(E) for all yeE, and hence T(E) is contained in the
spherical ball S(T(x), R(E)). Since T(EnS)c:EnS, the minimality of E implies
EdS. Hence RT^(E)^R(E). Since R(E)^RX(E) for all xzE, RTW(E)=R(E).
Hence T(x)sEe and T(EC)(ΣEC. By Proposition 4, EceΦ. If z,w€Ec, then rf(z, w)
^RZ(E)=R(E). Hence, by normal structure, δ(Ec)^R(E)<δ(E). Since this con-
tradicts the minimality of E1, δ(E) = Q and £" consists of a single point.

We prove the following:

THEOREM 2. Suppose X being strictly convex with Property (C). Let K be a
nonempty bounded closed convex subset of X with normal structure. If £F is a
commuting family of nonexpansive mappings of K into itself, then the family has
a common fixed point in K.

Proof. If T1 is a nonexpansive mapping in a strictly convex metric space, the
set F of fixed points of Γis a nonempty closed convex set. In fact, as W(x, y;
for x,yeF and λ (O^Λ^l), by Proposition 3

d(Tx, Ty)^d(Tx, T(W(x,y ,m+d(T(W(x,y ,X», Ty)

^d(x, W(x, y, $)+ d(W(x, y, λ); y)=d(x9 y)

and hence, by strict convexity of the space, T(W(x,y',X))=W(x,ylZ). This implies
that F is convex. Let Fa be the fixed point sets of Γα€£F. If uGFa, then for any
α', TaTa,u=Ta,Tau=-Ta,u i.e., Ta,u lies in Fa and each Ta, maps Fa into itself. If
we are given a finite sequence al9 a2, •••, cχm, and consider Tam as a nonexpansive
mapping of F^nF^Π ••• ΠF«m into itself, it follows from Theorem 1 that n?.ιFσfc^=0.
Hence by Property (C), the family {Fa} has a nonempty intersection, but this con-
sists of the common fixed point.

In the general case, the set of fixed points of nonexpansive mapping is not
necessary convex. However, we will prove the following Theorem by assuming
compactness. Before the proof of Theorem, we define the following: Let K be a
compact convex metric space. Then a family £F of nonexpansive mappings T of
K into itself is said to have invariant property in K if for any compact convex
subset Ec.K such that TE^E for each Γe£F, there exists a compact subset Mc.E
such that ΓM=Mfor each Te£F.

THEOREM 3. Let K be a compact convex metric space. If £F is a family of
nonexpansive mappings with invariant property in K, then the family £F has a
common fixed point.

Proof. By using Zorn's lemma, we can find a minimal nonempty convex
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compact set E<^K such that E is an invariant under each Γ€£F. If E consists of
a single point, then Theorem is proved. By hypothesis, there exists a compact
subset M of E such that M—{T(x)\ xsM] for each T€£F. If M contains more
than one point, by Proposition 5 there exists an element u in the least convex set
containing M such that

p=sup {d(u, x):

where δ(M) is the diameter of M. Let us define

then EO is the nonempty closed convex proper subset of E invariant under each
T in £F. This is a contradiction to the minimality of E.

De Marr [4] showed that a commutative family of nonexpansive mappings of
K into itself has invariant property in K. The following theorem asserts that
this is true even if one considers a left amenable semigroup (cf. Day [2]) of non-
expansive mappings.

THEOREM 4. Let K be a compact convex metric space. If £F is a left amenable
semigroup of nonexpansive mappings T of K into K, then the family £F has invariant
property in K.

Proof. Let E1 be a compact convex subset of K such that E is invariant under
each T in £F. By using Zorn's lemma, we can find a minimal nonempty compact
set MdE such that M is invariant under each T in £F. Let C(M) be the space
of bounded continuous real valued functions on M and C(M)* be the dual space
of C(M) and

where e denotes the constant 1 function on M. Since the semigroup of re-
strictions of mappings T to M is left amenable, by [3] there exists an element
LeK[C(M)] such that L(Uτf)=L(f) for all /€C(M) and T€£F where Uτf denotes
an element in C(M) such that (Uτf)(x)=f(Tx) for each x in M The Riesz's
theorem asserts that to the element L, there corresponds a unique probability
measure m on M such that

L(f)=( fώ
JM

'm

for each / in C(M) and m is invariant under each TefΞF. Therefore it is obvious
that m(TM)=m(T-1TM)=m(M)=l. Let F(cM) be the support of the measure
m. Then F, TF and Γ^Fare closed and contained in M. Since l=m(F)=m(T-1F)ί

it is obvious that F is contained in T~1F for each T in £F. Therefore F is in-
variant under each T in £F. This implies TM=M for each T in £F.
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4. Application.

Let K be a compact convex subset of a Banach space and X be the set of all
nonexpansive mappings of K into itself. Then for each pair of elements A and B
of X, define a metric d by d(A, Z?)=sup{||Ac— Bx\\\ xsK] whence X is a metric
space with d. Define a mapping W from J£x J£"x [0, 1] to X by

, B\λ)(x)=λAx+(l-X)Bx

for εe^ and

LEMMA. The set X is a compact convex metric space with respect to metric d
and the convex, structure W.

Proof. For A, B, CsX and real number Λ€[0, 1],

d(A, W(B, C; ;i))=sup {\\Ax- W(B, C; ^)Λ?||: x

and hence W is a convex structure in X. We will show that the set X with
metric d is compact. If ε>0 is given, a subset E of K is called an ε-net if E is
finite and K= \JaςES(a, ε). Let {£7W} be a sequence of nonexpansive mappings of X.
Then we show that there exists a subsequence {[/*} of {£/«} such that Uk con-
verges to a point of X Let Nn be a 1/w-net of K and N=\J{Nn: n=l,2, ~}.
Then it is obvious that there exists a subsequence {£/&} of {Un} such that £/&# for
every x in JV converges to a point of X". We show that Ukz converges to a point
for every z of K. Let 0 any point of K and ε be any given positive number,
then there exists xsN such that \\z— #||^e/3. Now, since Ukx converges, there
exists a positive integer k0 such that

ll̂ ^

if k1,k2>ko. Hence t/^ converges to a point of K Let us define Uz=\im UjcZ
for every z of K Then it is obvious that U is a nonexpansive mapping. We
will show that the convergence is uniform. Let ε be any positive number and
choose HQ such that l/^0^ε/3<ε, then NnQ contains a point x such that \\x— z||^ε/3.
Now k0 exists such that \\Uklx— Uk2x\\^ε/3 for all x in NnQ when k1,k2>kQ. Thus
&o is independent of z and HZ/^z— Ukzz\\^ε when klίk2>k0. This shows uniformity
of the convergence. Therefore, there exists a subsequence {17*} of {Un} such that
£7fc converges. This completes the proof.
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From Theorem 3 and Lemma, we obtain the following:

THEOREM 5. Let K be a compact convex subset of a Banach space and X be
the compact convex metric space of all nonexpansive mappings of K into itself and
£F be a family of nonexpansive mappings of X into X. If £F has invariant pro-
perty in X, then £F has a common fixed nonexpansive mapping in X.

REMARK. Let T be an element of X. Then T defines a nonexpansive mapp-
ing of X into itself. Therefore if £Fc.X" has invariant property in X, there exists
UsX such that TU=U for each T in £f. Fixed points of U are common fixed
points of the family £?cX
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