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A CONVEXITY IN METRIC SPACE AND NONEXPANSIVE
MAPPINGS, I

By WATARU TAKAHASHI

1. Introduction.

In this paper, we shall discuss convexity and fixed point theorems in certain
metric space which are described in an abstract form. At first we shall introduce
a concept of convexity in a metric space and study the properties of the space
which we call a convex metric space. Futhermore, we formulate some fixed point
theorems for nonexpansive mappings (i.e. mappings which do not increase dis-
tances) in the space. Consequently, these generalize fixed point theorems which
have been previously proved by Browder [1], Kirk [6] and the author [7] in a
Banach space.

The author wishes to express his hearty thanks to Professor H. Umegaki and
Professor T. Shimogaki for many kind suggestions and advices.

2. Definitions and propositions.

Throughout this paper, we consider a metric space X with a convex structure
such that there exists a mapping W from Xx Xx[0,1] to X (i.e. W(x, y; ) defined
for all pairs x,yeX and 2 (0=1=1)) and valued in X satisfying

*) d(u, W (=, y; ) =2d(u, x)-+(L—)d(u, y)
for all uweX and call this space X a convex metric space. A Banach space and
each of its convex subsets are, of course, convex metric spaces. But a Fréchet
space is not necessary a convex metric space. There are many examples of

convex metric spaces which are not imbedded in any Banach space. We give two
preliminary examples here.

ExampLe 1. Let I be the unit interval [0,1] and X be the family of closed
intervals [a;, b;)] such that 0=a;<b;=<1. For L=[a; b, I,=[a,, b;] and 1 (0=1=1),
we define a mapping W by W(L, I;; )=[2a;+(1—Na,, ib;+(1—2)b;] and define a
metric d in X by the Hausdorff distance, i.e.

d(Ii, Ij)= sup {| inf {la—b|}— inf {la—c|}}.
a€l bel; cely

ExampLE 2. We consider a linear space L which is also a metric space with
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the following properties:
( 1 ) For Z, '.(/GL’ d(x) y):d(x—"y) 0);
(2) For z,yeL and 1 (0=<1=1),

dQaz+(1—2)y, 0)=2d(x, 0)+(1—2d(y, 0).

A subset K of a convex metric space X is said to be convex if W(x,y; A)eK for
all z,yeK and 2 (0=<1=<1). The following three Propositions are easy.

ProrosiTiON 1. Let {K,. acA} be a family of convex subsets of X, then
NecaKo is also a convex subset of X.

ProposiTION 2. The open spheres S(x,rv) and the closed spheres §(;c, ) in X
are convex subsets of X.

Proof. For y,zeS(x,7) and 2 (0=1=1), there exists W(y, z;A)eX. Since X is
a convex metric space,

d(z, W(y, z; D)) =2d(z, y)+1—2d(x, 2)
<r+A=r=r.
Therefore W(y, z; )€S(x, 7). Similarly, §(x, 7) is a convex subset of X.
ProprosiTION 3. For x,yeX and 2 (0=1=1),
d(z, y)=d(z, W(z,y; D)+d(W(z, y; 2), v).
Proof. Since X is a convex metric space, we obtain
d(z, y)=d(x, W(x, y; D)+d(W(z, y; 2), )
=2d(z, )+ (1—Dd(=, y)+2d(x, y)+1—d(y, y)
=2d(z, y)+(1—Dd(z, y)=d(z, )
for z,yeX and A. Therefore,
d(x, y)=d(x, W (z, y; D)+d(W(z, y; 2), )
for z,yeX and 2.
For FcX, we denote
Rao(E)=sup {d(x, y): yeE},
R(E)=inf {R(E): z€E},
E.={zeE: R(E)=R(E)}

and denote the diameter of E by
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o(E)=sup {d(x, y): x,yeckE}.
A point xeFE is a diametral point of E provided
sup {d(z, y): yeE}=06(F).

A convex metric space X will be said to have Property (C) if every bounded
decreasing net of nonempty closed convex subsets of X has a nonempty intersec-
tion. By Smulian’s theorem, every weakly compact convex subset of a Banach
space has Property (C) [cf. 5, p. 433]. We obtain the following Proposition from
the definition of Property (C), Propositions 1 and 2.

ProposiTION 4. If X has Property (C), then E. is nonempty, closed and convex.

Proof. Let Eu(x)={yeE: d(z,y)=R(E)+1/n} for n=1,2,3,--- and zeX. It is
easily seen that the sets Cp= NsexFn(x) form a decreasing sequence of nonempty
closed convex sets, and hence N5_,C, is nonempty, closed and convex. Since
E.=Ng_,C,, it satisfies the conclusion.

ProrosiTiON 5. Let M be a nonempty compact subset of X and let K be the
least closed convex set containing M. If the diameter 6(M) is positive, then therve
exists an element ue K such that sup {d(x, u): xeM}<d(M).

Proof. Since M is compact, we may find x, z.€ M such that d(xi, x.)=6(M).
Let Myc M be maximal so that M,D{z;, x.} and d(x, y)=0 or o6(M) for all z,yeM,.
It is obvious that M, is finite. Let us assume My={wxs, xs, -, 2,}. Since X is a
convex metric space, we can define

y1= W (w1, 22 1/2),
y2=W(@s, y1; 1/3),
Yn-2=W(&n-1, Yn-3; 1/n—1),
Yn-1= W (Zn, Yn-2; 1/n)=u.
Since M is compact, we can find y,€ M such that
d(ye, w)=sup {d(x, u): xeM]}.

Now, by using the condition (%) of convex metric space, we obtain
1 n—1
Ao, W)= ;d(yo, Zn)+ Td(’yo, Yn—2)

n—1
n

1 1 -2
= u Ao, x0)+ (md@/o, ZLn-1)F ‘ZT]_ a(yo, yn—a))
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1 1 -2
= ;d(yo, Zn)+ ;d(yo, ZLn-1)+ ﬁ—n—‘ (Yo, Yn-s)

eooy

=

S

éd(yo, Zx) =0(M).

Therefore if d(y,, #)=06(M), then we must have d(yo, xx)=06(M)>0 for all k=1,2, -, n,
which means that y,e M, by definition of M, But, then we must have yo=ux; for
some k=1,2,-.-,n». This is a contradiction. Therefore

sup {d(z, u): xe M}=d(y,, #) <o(M).

The above Proposition gives us the following definition. A convex metric
space is said to have wmormal structure if for each closed bounded convex subset E
of X which contains at least two points, there exists x€E which is not a dia-
metral point of E. It is obvious that a compact convex metric space has normal
structure. Every bounded closed convex subset of uniformly convex Banach space
has normal structure, too. As an extension of the case in Banach space, we in-
troduce a concept of strict convexity in a convex metric space. A convex metric
space X is said to be strictly convex if for any x,yeX and A (0=2=1), there exists
a unique element zeX such that Ad(z,y)=d(z,v) and (1—2A)d(x,y)=d(z,2). We
have seen from Proposition 3 that

d(@, y)=d(z, W (=, y; D)+d(W (z,y; 2), v)

for each pair of elements x and y of a convex metric space and all real number
2 (0=2=1). Futhermore, from

d(x, Wz, y; ) =2d(z, £)+(1—2d(z, y)
=1—d(x,y)

and d(W(zx, y; A, y)=id(x, y), it is obvious that W(x, y; 2) is an element of X such
that satisfies

A=Dd(w, y)=d(x, W(z,y;2)) and  2d(z, y)=d(W(z,y; 2, y).

3. Fixed point theorems.

Let X be a metric space and K be a subset of X. A mapping T of K into X
is said to be momexpansive (cf. Browder [1]) if for each pair of elements x and y
of K, we have d(Tx, Ty)=d(xz,y). Now, we will prove fixed point theorems for
nonexpansive mappings in convex metric spaces. The following Theorem can be
proved by a modification of the method of Kirk [6].

THEOREM 1. Suppose that X has Property (C). Let K be a nonempty bounded
closed convex subset of X with novmal structure. If T is a nonexpansive mapping
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of K into itself, then T has a fixed point in K.

Proof. Let @ be a family of all nonempty closed and convex subsets of K,
each of which is mapped into itself by 7. By Property (C) and Zorn’s lemma, @
has a minimal element E. We show that E consists of a single point. Let z€E.,.
Then d(Tz, Ty)=d(x,y)=R,(E) for all yeE, and hence T(E) is contained in the
spherical ball S(T'(z), R(E)). Since T(ENS)cENS, the minimality of £ implies
EcS. Hence Rru)(E)=R(E). Since R(E)=R,(FE) for all x€E, Rru(E)=R(E).
Hence T(x)eE. and T(E.)CE.. By Proposition 4, E.e®. If z,weE,, then d(z, w)
=R.(E)=R(E). Hence, by normal structure, 6(E)=<R(E)<d6(E). Since this con-
tradicts the minimality of E, §(£)=0 and E consists of a single point.

We prove the following:

THEOREM 2. Suppose X being strictly convex with Property (C). Let K be a
nonempty bounded closed conmvex subset of X with normal structure. If F is a
commauting family of nonexpansive mappings of K into itself, then the family has
a common fixed point in K.

Proof. If T is a nonexpansive mapping in a strictly convex metric space, the
set F of fixed points of T'is a nonempty closed convex set. In fact, as W(x, y; )eK
for «,yeF and 1 (0=21=1), by Proposition 3

d(Tx, Ty)=d(Tw, T(W(z, y; D) +d(T(W(x, y; 1)), Ty)
=d(z, W(z,y; D)+d(W (2, y, 2); y)=d(z, )

and hence, by strict convexity of the space, T(W(x,y; 2))= W (x, y; 2). This implies
that F is convex. Let F, be the fixed point sets of T,e<%. If ueF,, then for any
o, ToTwu=T.Tau=T,u ie., Tou lies in F, and each T, maps F, into itself. If
we are given a finite sequence aj, a, -, am, and consider 7,, as a nonexpansive
mapping of F.,NF.,N--NF,, into itself, it follows from Theorem 1 that N§.Fu,>¢.
Hence by Property (C), the family {F,} has a nonempty intersection, but this con-
sists of the common fixed point.

In the general case, the set of fixed points of nonexpansive mapping is not
necessary convex. However, we will prove the following Theorem by assuming
compactness. Before the proof of Theorem, we define the following: Let K be a
compact convex metric space. Then a family & of nonexpansive mappings 7" of
K into itself is said to have imvariant property in K if for any compact convex
subset EcK such that TECE for each Te&, there exists a compact subset MCFE
such that TM=M for each Te%.

THEOREM 3. Let K be a compact comvex metric space. If F is a family of
nonexpansive mappings with invariant property in K, then the family F has a
common fixed poini.

Proof. By using Zorn’s lemma, we can find a minimal nonempty convex
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compact set EC K such that F is an invariant under each Te<%. If E consists of
a single point, then Theorem is proved. By hypothesis, there exists a compact
subset M of E such that M={T(x): xeM} for each Te%F. If M contains more
than one point, by Proposition 5 there exists an element # in the least convex set
containing M such that

p=sup {d(#, x): xe M}<é(M),
where 6(M) is the diameter of M. Let us define

Eyv=N {yeE: d(x, y)=p},
TEM

then E, is the nonempty closed convex proper subset of E invariant under each
T in &. This is a contradiction to the minimality of E.

De Marr [4] showed that a commutative family of nonexpansive mappings of
K into itself has invariant property in K. The following theorem asserts that
this is true even if one considers a left amenable semigroup (cf. Day [2]) of non-
expansive mappings.

THEOREM 4. Let K be a compact convex metric space. If F is a left amenable
semigroup of nonexpansive mappings T of K into K, then the family F has invariant
property in K.

Proof. Let E be a compact convex subset of K such that E is invariant under
each T in &. By using Zorn’s lemma, we can find a minimal nonempty compact
set MCE such that M is invariant under each T in &. Let C()M) be the space
of bounded continuous real valued functions on M and C(M)* be the dual space
of C(M) and

K[C(M)]={LeC(M)*: L(e)=||Ll|=1}

where e denotes the constant 1 function on M. Since the semigroup of re-
strictions of mappings T to M is left amenable, by [3] there exists an element
LeK[C(M)] such that L(Urf)=L(f) for all feC(M) and TeF where Urf denotes
an element in C(M) such that (Urf)(x)=sf(Tx) for each z in M. The Riesz’s
theorem asserts that to the element L, there corresponds a unique probability
measure m on M such that

)=\ ram

for each f in C(M) and m is invariant under each Te<%. Therefore it is obvious
that m(TM)=m(T*TM)=m(M)=1. Let F(cM) be the support of the measure
m. Then F, TF and T7'F are closed and contained in M. Since l=m(F)=m(T'F),
it is obvious that F is contained in T-'F for each T in &. Therefore F is in-
variant under each T in &. This implies TM=M for each T in &.
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4. Application.

Let K be a compact convex subset of a Banach space and X be the set of all
nonexpansive mappings of K into itself. Then for each pair of elements A and B
of X, define a metric d by d(A4, B)=sup {||Ax—Bz||: x€¢K} whence X is a metric
space with d. Define a mapping W from XX Xx[0,1] to X by

W (A, B; ))(x)=2Az+(1—2)Bzx
for ze K and 2€[0, 1].

LemMA. The set X is a compact convex metric space with vespect to metric d
and the convex structure W.

Proof. For A, B,CeX and real number 2€]0, 1],
d(A, W(B, C; H))=sup {||Ax— W (B, C; Dx||: xeK}
=sup {1-||Az—Bz||+(1—D||Az—Cz||: zeK}
=2d(A, B)+(1—-2d(A,C)

and hence W is a convex structure in X. We will show that the set X with
metric d is compact. If ¢>0 is given, a subset £ of K is called an e-net if E is
finite and K= U4czS(a,¢). Let {U,} be a sequence of nonexpansive mappings of X.
Then we show that there exists a subsequence {U} of {U,} such that U con-
verges to a point of X. Let N, be a 1/uz-net of K and N=U{N,: #=1,2,---}.
Then it is obvious that there exists a subsequence {U} of {U,} such that Uzzx for
every x in N converges to a point of K. We show that Uiz converges to a point
for every z of K. Let z any point of K and ¢ be any given positive number,
then there exists xeN such that ||z—=z||<e¢/3. Now, since U,z converges, there
exists a positive integer %, such that

” Uklz— Uk22“§” Uklz— Uklle‘” Uklx"‘ Ukzx”"_” Ukzx_ Ukzz”
=llz— ||+ || Ug,x— Uyl +lw—2l|
=<ef3-+ef3-+e[3=¢

if &y, Bo>ko. Hence Upz converges to a point of K. Let us define Uz=lim Uiz
for every z of K. Then it is obvious that U is a nonexpansive mapping. We
will show that the convergence is uniform. Let ¢ be any positive number and
choose 7, such that 1/n,=<¢/3<e¢, then N,, contains a point z such that ||z—z||=<¢/3.
Now k, exists such that ||Ui,a— Us,x||=¢/3 for all x in Nn, when ki, ks>k,. Thus
ko is independent of z and ||Ui,z— Uk,z||<¢ when ki, k.>k,. This shows uniformity
of the convergence. Therefore, there exists a subsequence {Ujy} of {U,} such that
U, converges. This completes the proof.
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From Theorem 3 and Lemma, we obtain the following:

THEOREM 5. Let K be a compact convex subset of a Banach space and X be
the compact comvex metric space of all nonexpansive mappings of K into itself and
F be a family of nonexpansive mappings of X into X. If F has invariant pro-
perty in X, then F has a common fixed nonexpansive mapping in X.

ReEMARK. Let T be an element of X. Then T defines a nonexpansive mapp-
ing of X into itself. Therefore if X has invariant property in X, there exists
UeX such that TU=U for each T in &. Fixed points of U are common fixed
points of the family Fc X,
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