
KODAI MATH. SEM. REP.

21 (1969), 281—289

ON GENERALIZED |F,Jl | SUMM ABILITY FACTORS
OF INFINITE SERIES

BY R. G. VARSHNEY

1. Let Σ an be a given infinite series with partial sum sn and let λ={λn] be
a monotone non-decreasing sequence of natural numbers with λn+ι~ Λi^l and Λι=l.

The sequence-to-sequence transformation

defines generalized de la Vallee Poussin means of the sequence {sn} generated by
the sequence {λn}.

The series Σ an is said to be summable \V,λ\, if the sequence {Fn(Λ)} is of
bounded variation, that is to say

Σ l
n=l

[1].

The series Σ an will be said to be summable \V, λ\t, k^l, if the series

For λn=n it reduces to |C,1|* and for k=l it is the same as summability \V,λ\. If

then Σ ^w is said to be strongly bounded by logarthmic means with index 1 or
simply bounded [R, logn, 1].

A sequence {εn} is said to be convex when

J2e»^0, Λ=l,2,3, ,

with the notation

^e»=en— en+ι, Δhn=Δ(Δεn\

2. Concerning |C, 1| summability factors of infinite series.
Prasad and Bhatt proved the following theorem:

THEOREM A [7]. // {εn} is a convex sequence such that Σ n~1εn<ooί and
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Σ\s>-s\=0{n(logn)*},
v=l

as n-*oo, then the series Σ {log (n+ϊ)}~kεnan is summable |C, 1|.

In 1962 Pati proved another theorem of |C, 1| summability factors of infinite
series. His theorem is as following:

THEOREM B [6]. Let {εn} be a convex sequence such that Σ^~1εw<oo. If Σ an

is bounded [R, logn, 1], then Σ anεn is summable |C, 1|.

Very recently the author has generalized the above theorem of Pati by proving
the following:

THEOREM C [9]. Let {εn} be a convex sequence such that Σ ^ή1£w<00 If

where μn=Σ'ϊ'=ιfc1, then Σβnεn is summable \V,λ\.

Mazhar15 established the following theorem which generalizes Theorem B.

THEOREM D [3]. If {εn} is a convex sequence such that Σ n~1εn<oo)

v=l V

then Σ<Znεn is summable |C, 1U

These theorems were subsequently generalized by the author in the following
form.

THEOREM E [11]. If {εn} is a convex sequence such that ΣAΰ1εn<°°> and

where μn—Σ"**1 fc1, then Σ<znεn is summable \V, λ\t.

Niranjan Singh has established the following theorem which generalizes Theo-
rem A and Theorem B.

THEOREM F [5]. If {εn} is a convex sequence such that Σ n~^n<oo, and

Σ — =0(\vgnγn\ n-^oo
v=l y

where {γn} is a positive non-decreasing sequence such that

n γn log n Δ ( — ) = O(l), n— >oo
\ f n I

then Σβnεnlγn is summable |C, 1|.

1) The same theorem has also been obtained by Misra [4],



SUMMABILITY FACTORS OF INFINITE SERIES 283

In his thesis for Ph. D. Umar has extended Theorem F as following:

THEOREM G [8]. If {εn} is a convex sequence such that Σ n~1εn<oo and

Λ \sv\
k

 nn .
Σ J—— =O(log nrn)
v=ι v

where {γn} is a positive non-decreasing sequence such that {l/βn} is a convex sequence
and

nγn log nΔ — =O(1), n-*oo
fn

then Σanεnlγn is summάble |C, 1|*, k^l.

The author has proved a theorem for V,λ\ summability factors which extends
theorem F. His theorem is as following:

THEOREM H [10]. If {εn} is a convex sequence such that Σ Λnlεn<°°, and

L-i

where /*n=2?-i£"1 and {γn} is a positive non-decreasing sequence such that

λnμnγnΔ{ — )=O(1), as n-*oo
\ ϊn /

then Σanεn/γn is summaUe \V,λ\.

The object of this note is to extend our theorem H to summability \V,λ\k.

3. In what follows we establish the following theorem which includes, as
special cases, all the previous theorems stated above.

THEOREM. If {εn} is a convex sequence such that ΣXn1εn<°°, and

n |ς I ft
\-» lύ>Ί

where ^n=Σ?-ι^Γ1 and {γn} is a positive non-deer easing sequence such that

then Σ anεn/γn is summable \V,λ\k

4. We need the following Lemma for the proof of the theorem.

LEMMA. If {εn} is a convex sequence such that Σ ^n1ετι<00, then
( i ) {εn} is a non-negative decreasing sequence and εnμn=o(l) as n-*oo;

(π) mμmΔεm=O(V)'y
m

(iϋ) Σ μnΔεn=0(l);
n=l

and
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(iv) Σ nμnΔhn=0(V)
n-l

as m— >oo.

This Lemma is a special case of certain more general results due to Mazhar [2].

5. Proof of the theorem. Let

where F»U; εn) is the ^-th de la Vallee Poussin means of the series Σ anεn/Tn.
Then to prove the theorem it is sufficient to show that

Let Σ7 be the summation over all n satisfying Λ n f ι=Λ w ; and Σ" the summation
over all n where λn+ι>λn. We have

1 n+l /r *

when Λn+ι=λι, then we have

1 n+l π -
T — V " "
^71 "T / i

Λn+1 ι»=n-^n+s 7v

1 Γ yi A! gy \ . Sn+ιεn + l Sn-λn+l£n-λn+2 j

An+l \_v=n-λn+2 \1fvJ Tn+1 Ί"n-ln+2, J

./ 1 \ . ^Ti+lβTi+l 5Λ-jw+ιSro_^n

+ιZ/l — )~i~~5 -3
\ϊv/ An+lfn+l Λn-λn+\j['n-λn

Jey

ΛTI v=n->?n+2 T'υ ΛΠ v=n-λn+2

=L{n)+Lίn)+Lίn)+Lίn), say.

By Minkowski's inequality it is therefore, sufficient to prove that

Σ/4~1|^rn)lfc<°° for r=l,2,3,4.

V / 3*-llΓ(n)|*_ V / _

^Σ'\ Σ W
/w U=n-Jln+2

=θ(i)Σ'-f- Σ l
/W ι;=n-Jln+2

_JW'

= 0(1) Σ l
v=l

Σ



Now,

m+l |£ I f c

Σ ~T
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m+l

v=l
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=0(1)

as m— »oo, by virtue of the Lemma. Hence

1 ί n

:/i-L£L Σ

- - Σ

[ oo
Σ
y=l

0(1)ΓΣ l
Lv=l

I \v+^-i ι η
-f) Σ -f

/ υ / ?z=y ΛW J

Now,

m + l l o I f c

Σ l ^ v l
3

V=l Λy v=l \r=l

0(1>ΓΣ
Lv=l

[ m

Σ
v=l

Λp m / 1 \Ί

-f + Σj".r.β^ι4 —
^/ v iί=l \ PV/V / J

ϊm+l

oα)ΓΣ
Lv=ι

[ m

Σv=ι

λw^-- + Σ w*
/v^v \ ̂  / v=i

- m / 1 \Ί

^+Σ M-Γ)/v^v v=ι \ μv I J
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by hypotheses and by virtue of the following

=0(1)

as m—»oo. Therefore,

ί°|*+ Σ'4"1 |L?'|*=oα) Σ Jτ- —
71 = 1 ATI 7*71

Now,

m+l | c l * c m / n

Σ M. . j-. = Σ ( Σ
τι=l /n T'n n=l \v=l

Γ m Δε m / 1 \ Π
= O(1) Σ A*»7» - - + Σ μnTnen+l^l - I +εm+l^m+l

I 71=1 fn 7i=l \lfn / J

[ m m g / 1 \ "1

Σ μnΔsn+ Σ ̂ Γ-^^r ί̂ - I +£m+lj"m+ι
w=l τι=l ΛW \ Tn / J

=0(1)

as m— »oo, by hypotheses and by virtue of the Lemma. Hence,

Therefore,

When Λ+ λn, then we have

1

1

1

n+1

Σ

Σ
v=n—λ~

say.
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By Minkowski's inequality it is therefore, sufficient to prove that

Σ//^~ΊMin)*<oo, for r=l,2,3.

Since

we have

Σ

287

say.

. / o / ι \ v / / . •*•
-^Λ-UZj jik+i

-<om v .

/_l \bv\Λv ί

»-ίn + 2 f" J

f ^ ,HM fa1 1 / | | Oj, 1 Λμ

W /if

V I c 1 * 3 Jε".

Σ

Σ

=0(i) Σ

=0(1)

as proved earlier.

1 t » j£g I*

=0(1) Σ " - Σ

)Σ"4-
^v / W ^ υ ΛΠ

=0(1)

as already proved.
Hence,

Σί'=0(l)[Σίl'+Σί2

/]=0(l),

*/*'
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v k/k'

Σ kr-MI Σ —

w —fc/p
jn—λn+2

0(D Σ" 4- Σ !*.!* —
-ΛTI v=n—λn+2 Jv

V=l Λ» T

=0(1).

Therefore,

Also,

as proved in the previous case for L2

=0(1).

This completes the proof of the theorem.

The author would like to express his warmest thanks to Dr. S. M. Mazhar for
his kind encouragement and helpful suggestions.
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