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ON GENERALIZED |V, 2| SUMMABILITY FACTORS
OF INFINITE SERIES

By R. G. VARSHNEY

1. Let Y a. be a given infinite series with partial sum s, and let 1={1,} be
a monotone non-decreasing sequence of natural numbers with 4,,;,—2,=<1 and 2,=1.
The sequence-to-sequence transformation

Vid=— 3 s,

/zn v=n—2ip+1

defines generalized de la Vallée Poussin means of the sequence {s.} generated by
the sequence {1}

The series ] a» is said to be summable |V, 21|, if the sequence {V,(1)} is of
bounded variation, that is to say

Z_:ll V1) — Va(A)| < oo [1]
The series Y @, will be said to be summable |V, 4|, £=1, if the series
23 A Vi) — 20D ¥ < o0,
n=1

For 2,=n it reduces to |C,1|r and for k=1 it is the same as summability |V, 1]. If

z 18]

2

y=1 VYV

=0(log »), #—00

then 3 @, is said to be strongly bounded by logarthmic means with index 1 or
simply bounded [R, log #, 1].
A sequence {e,} is said to be convex when

A%, =0, n=1,2,3, -,
with the notation
den=¢tn—eny1, Aep=A(dey).

2. Concerning |C,1| summability factors of infinite series.
Prasad and Bhatt proved the following theorem:

THEOREM A [7]. If {en} is a convex sequence such that 3, n=*e,<co, and
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2 Is,—s|=0{n(log n)*}, k=0
v=1
as n—oo, then the series Y, {log (n+1)}*enan is summable |C,1|.

In 1962 Pati proved another theorem of |C,1] summability factors of infinite
series. His theorem is as following:

THEOREM B [6]. Let {en} be a convex sequence such that Y, n‘en<co. If ¥ an
is bounded [R,log n,1], then Y anen is summable |C,1|.

Very recently the author has generalized the above theorem of Pati by proving
the following:

TueEOREM C [9]. Let {en} be a convex sequence such that Y, 2z'en<loo. If

Ms

S
T ——O(ﬂn)

1

where pn=X%1 4%, then 3 anen is summable |V, 2|.
Mazhar? established the following theorem which generalizes Theorem B.

THEOREM D [3]. If {en} is @ convex sequence such that Y, n‘en<<oo, and
n | S, k
Zl |

v
then 3, anen is summable |C,1|s.

=0(logn), (k=1)

These theorems were subsequently generalized by the author in the following
form.

THEOREM E [11]. If {ex} is a convex sequence such that Y Az'en<oo, and

|s,|®
1 Xu

Ms

where pn=2"1 A7, then Y anen is summable |V, Alx.

Niranjan Singh has established the following theorem which generalizes Theo-
rem A and Theorem B.

THEOREM F [5]. If {ex} is a convex sequence such that Y, n~*e,<co, and

s
1 Y

M=

= O(IOg ”Tn), n—0

Il

v

where {r.} is a positive non-decreasing sequence such that

nynlog nd (%) =0(1), 7—>00

n

then 3 anenltn is summable |C,1|.

1) The same theorem has also been obtained by Misra [4].
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In his thesis for Ph. D. Umar has extended Theorem F as following:
THEOREM G [8]. If {ex} is a convex sequence such that Y, n ‘e,<oco and
n ] S,|k

b2
where {ys} is a positive non-decreasing sequence such that {1/B.} is a convex sequence
and

=0(log nyz)

nya log nd —rln— =0(1), N—00

then Y, anenlyn is summable |C, 1|, k=1.

The author has proved a theorem for |V, 4] summability factors which extends
theorem F. His theorem is as following:

THEOREM H [10]. If {ex} is a comvex sequence such that Y, 2z*en<co, and

2 ‘Igv_l‘ =O(ttnyn)

=1

c

where pn=72"1 271 and {ra} is a positive non-decreasing sequence such that
1
n

then 3, Guenlrn is summable |V, 2.
The object of this note is to extend our theorem H to summability |V, k.

3. In what follows we establish the following theorem which includes, as
special cases, all the previous theorems stated above.

THEOREM. If {ex} is @ comvex sequence such that Y, Az'en<oo, and

Is[*
1 Zv

M=

v

where pn=3"1 7' and {ra} is a positive non-decreasing sequence such that
1
AnTnptnd <—> =0(1), n—00
Tn

then Y @nenlrn is summable |V, Alx.
4. We need the following Lemma for the proof of the theorem.

LEMMA. If {ex} is a convex sequence such that 3, Az'en<<co, then
(1) {ea} is a non-negative decreasing sequence and enpn=0(1) as n—oo;

(ii) Mmpmden=0(1);
(i) 3 pnden=0(L);
n=1

and
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(iv) 3 npndPen=0(L)
as m—co, -
This Lemma is a special case of certain more general results due to Mazhar [2].
5. Proof of the theorem. Let
Tn=Vn11(4 en)— Va(2; &n)

where Va(4;e,) is the n-th de la Vallée Poussin means of the series 3 @nen/7n.
Then to prove the theorem it is sufficient to show that

0

2 A Tl # <o,

n=1

Let >/ be the summation over all # satisfying 2,,1=24,; and X}/’ the summation
over all » where A,.1>4.. We have

1 n+1 a.e,
Th=—" Z [(Ans1—2e)(v—n—1)~+ 2]
xnx'ru-l y=n—2+2 T
when A,,.1=4,, then we have
Tn: 1 n+1 ae,
2n+1 v=n—1p+2 T
_ 1 [ i S,,A(i>+ Sn+1€n41 _ Sn—xn+1€n—xn+2:l
2n+1 v=n—2,+2 7y Tn+1 Tn-ap+2
1 2 de, 1 ki <1> Sn+1€n+1 Sn—21p+18n—2,+2
== S—— T+ = sedl — )+ — n n
An v=n§n+2 Tv + An u=’n§n+2 o Tv Ani1ine1 An—2g 417 n—2y+2

=L"M+L{P+LM+L™,  say.
By Minkowski’s inequality it is therefore, sufficient to prove that
YA LME<Cco  for r=1,2,3,4.
1| g el
In |v=nTig+e T

S

y=n—12,+2 Ty

sy l] B pepde]l g depw

v=n—2p+2 It v=n—ip+2 T
1 n . de

- Z lsvl —

An v=nty+2 Tv

AEV v+2y—1 1

v=1 Tp n=y Xn

0 3 s,k 2o
v=1 v

D L= 3

=0(1) >}/
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Now,
P P 0 '21"“) o
L‘; ,um Azey-i— Z Ay de, 1 A( 1 >+ L";l—:twiymﬂ rm+1]
—0(1)[§ e, 3 des+ O Dt e |
=0(1)

as m—oo, by virtue of the

X L= 5
=2
=0(1)
=0(1)
=0(1)
=0(l)

=0(1)

.

Hence
XA LPE=0(1).

n 1
R | <—>
2 Y

yv=n—2p+2
" 1
[s,,|"e,,A<
2 m
2

y=n—2,+2
n y=n—2p+2

5

Lemma.

13

il
Isvlksyd<-r—1v~>]
) E+]
()]
)

An

1
I

%

=n—1p+2

B

[~ oo

2. Is.|*e, 4
| v=1

£

2 Is.|*e

|_v=1

§2%

€y

#vrv

k
)4e)
5
()
e
A v
c +Z#u7‘»€y+14(
()
It
Zeuﬂu

A4 ( )
v=1

&

m+1 Isu]k
zv

Em+1

Pmi1lm+1 v=1

Em+1

[Jm+17'm+1]

=) |+ow
rr )]
(5)]

Pm+17m+1

+ Z e

v v=1

Zu.uv

m 1
v vA I
+ Zena(S)]
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by hypotheses and by virtue of the following
Fend(L)-Fea( L) 5L
y=1 ﬂv n

as m—oo. Therefore,
7 AL <oo,

oo |S11|k en

S A LP B A L0 3 :

Now,

m+1 Snk n m n S,,k n et m+1 S,,k
D b G e

In Tm+1 n=1 A

m den, m 1
=0(1){Z_I Hnln - + Z_:lﬁnrnenud(r—) +€m+1,um+1]

1 n

1
=O(1)[Z tnden+ Zl 7 2”#”7'”"( >+5m+1#m+1]

=0(1)
as m—oo, by hypotheses and by virtue of the Lemma. Hence,
X B LPE 4 B 27| L E=0(L).
Therefore,
2 A TalF=0(1).
When 2,,:>2,, then we have

1 n+1 a.e,
ITn|= T Z (An+v—n—1) :
nAN+1 |v=n—2,+2 v
1 n { &, Sni1hn€nil  Snoipi1€n—agez
= 43 Qn4+v—n—1 ——}-I— > — e
2n1n+1 u=n§n+2 ( Y ) Ty Tn+1 Tn—ip+2
1 7 & [Sni1lenia |Sn—2ps1l€n—2, 41
=1 s A{z 1 —} + — ntnenlonn
13; n=n—Z/tn+2l l ( Y ) Ty 2n+17'n+1 znxn—zn+17'n-l,,,+1

=M"+MP+M,  say.
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By Minkowski’s inequality it is therefore, sufficient to prove that
T M®|k<oo,  for r=1,2,3.

Since
lA{(zn 2 } §2u4<8—”>+-s"—,
ru Tu rv
we have
n n k
ZI/Xk—l]M(n)Ik_O(l)[Z// — 1{ Z Isvllz A( )} Z” k+1{ Z IS,,I &y } :I
/2 y=n—Ap+2 Ty 2 y=n—2,+2 v

=143 say.
1 % de, |*
N I

y=n—2p+2 v

1 n de 2 de, "
_ 1 k . :
o % ZET {u 2 Isl4 be }{u=n§n+22v }

=n—2p+2 v Tv
n 4 ”
=0 Y5 3 sl =
]n y=n-—2p+2 v
& e, r_t
:0(1)2 [s,|% 2, —— 2]
y=1 v n=k
~0m 5 s+ 2
=0()

as proved earlier.

1 n de, "
A T

v=n—2p+2 v

—0(1 Z/I 1 |: i Islkz A<1>:|[ i ZEA<1>]’(/IC/
=0(1) Pl P s v vmnipte .\ T

N Is.,|’°2,s,A(Tlv )

Ay v=n—in+e

:0(1);"21&1"%4( - ),,ZQ,”

=0(1) Z:”

=0(1)§lsvl’”5""< rl )
=0(1)

as already proved.
Hence,

=0 Zi+Zi]1=0Q1),
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1/ & G\ B e\
=0(1)ZII Z;CL+1 (v:n—ZI +2|sv,k Tv >(v=n§ +2 Tv)

1
=0(1) Z” 2+l

k
w“ 5 50w 5n/—1n+2
Z IS”, 2 Y
v=n—2p+2 v Tn-—ln+2

20(1)2”2—1% ¥ s S

v=n—in+2 Tu

—0(1)leu|’° > Z:"

Tv 73
=0(1) g 's; %—
=0Q).
Therefore,
2T I MPE=0(1).
Also,

Y 2 MEF=O0()

as proved in the previous case for L.

Z//lﬁ_l IMgn)]k 0(1) Z ‘Snl En
=1

nn

=0(1).

This completes the proof of the theorem.

The author would like to express his warmest thanks to Dr. S. M. Mazhar for
his kind encouragement and helpful suggestions.
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