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ON CONFORMALLY FLAT SPACES WITH
DEFINITE RICCI CURVATURE

BY SAMUEL I. GθLDBERGυ

1. Introduction. It is well-known that there are no harmonic ^-forms on a
compact conformally flat manifold Mof positive Ricci curvature, Q<p<d, d=άim M,
so if M is orientable, it is a rational homology sphere ([5], Theorem 4.1). By
applying a technique to obtain local versions of global results, it can be shown
that there are no covariant constant p-forms, 0<£<J, on a conformally flat mani-
fold with either positive or negative definite Ricci tensor (Proposition 1, Corollary
4). Recently, Tani [4] proved that a compact and orientable Riemannian manifold
admitting a conformally flat metric of positive Ricci curvature and constant scalar
curvature is a space form that is, a space of constant curvature. The technique
referred to above then yields the following local statement.

THEOREM 1. A conformally flat Riemannian manifold whose Ricci tensor is
parallel and either positive or negative definite is a space form.^

In fact, if a conformally flat manifold is reducible it is either flat, a product
MιXM2 where Mi and M2 have constant curvature of the same magnitude and
opposite sign, or MiXN where N is 1-dimensional [2],

Theorem 1 will be used to obtain the following generalization.

THEOREM 2. Let M be a conformally flat manifold with positive Ricci curvature.
If the scalar curvature and trace Q2, where Q is the Ricci operator, are both constant,
then M is a space form.

COROLLARY. A conformally flat homogeneous Riemannian manifold of positive
Ricci curvature is a space form.

If the Ricci curvature is only positive semi-definite, then the same method of
reasoning gives

THEOREM 3. Let M be a conformally flat manifold with positive semi-definite
Ricci curvature. Then, if the scalar curvature and trace Q2 are both constant, M is
locally symmetric.
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Thus, M is either a space form, a product ΛfιXM 2 where MI and M2 have
constant curvature of the same magnitude and opposite sign or the product MiXN
where dim N=l.

COROLLARY. A conformaίίy flat homogeneous Riemannian manifold with posi-
tive semi-definite Ricci curvature is symmetric.

On the other hand, an application of the generalized Gauss-Bonnet theorem
yields the following global statement hinted at by Kurita [2].

THEOREM 4. A compact and oriented conformally flat Riemannian manifold of
even dimension 2n whose sectional curvatures are all nonnegative has nonnegative
Euler-Poincare characteristic χ, and if the sectional curvatures are all nonpositive

Moreover, from the formula for the Pontrjagin classes, we obtain

THEOREM 5. The Pontrjagin classes of a compact and oriented conformally
flat Riemannian manifold all vanish.

2. Definitions and formulae. Let (M, g) be a Riemannian manifold with metric
tensor g. The curvature transformation R(X, Y) (X, Y^Mm - the tangent space at

and the metric g are related by

R(X, yr)=Γcx.n-[Γ2r,ΓF]

where V x is the operation of covariant differentiation with respect to X and

2g(X, FzY)=Zg(X1 Y)-Xg(Y, Z)+Yg(X, Z)

+g(Z, [X, Y])-g(X, [Y, Z])+g(Y, [X, Z\\

In terms of a basis {Xi, •••, Xd] of Mm we set

k, X?ι),

,, Xk)X}),

We denote the scalar curvature by r, that is r=tr Q where Q=(Rίj). The
manifold (M, g) is conformally flat if g is conformally related to a locally flat

metric. It follows that the Weyl conformal curvature tensor defined by

(2.

vanishes, so if (M, g) is conformally flat
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(2. 2) Λ«yA*= -

From (2. 1) and the second Bianchi identity ί7

iC
ίjjch=(d—3)CjjCh where

(2. 3) Cy*Λ= -j—^PhRjk-PkRjh) - 2(d_ 1)(^__ 2 (gjtPhr- g, /JV).

For ί/=3 it can be shown that if (M, g) is conformally flat then djk vanishes.

3. Harmonic forms of constant length. A p-form will be called harmonic if
it is annihilated by the differential and codifferential operators. Observe that com-
pactness is not required in the following result.

PROPOSITION 1. A harmonic p-form ξ of constant length on a Riemannian
manifold has vanishing covariant derivative if and only if the quadratic form

y> 1

_ Z

is nonnegative.

For,

~P\ Δ\ξ^

where Δ is the Laplacian and |<f | denotes the length of ζ.

We list some interesting consequences of this proposition which are easily
obtained.

COROLLARY 1. Let ξ be a harmonic p-form of constant length on the Riemann-
ian manifold (M, g). Then if F(ξ) is nonnegative it must vanish and Ff=0. Thus

// g is an Einstein metric, then

p—l ^ . . ^ kh rp\

so, for d>2

The curvature tensor defines a symmetric linear transformation of the space of
bivectors. Thus, if it is negative definite there are no harmonic />-forms of constant
length on M,
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COROLLARY 2. Let M be a Riemannian manifold whose Ricci curvature tensor
is positive semi-definite. Then, a harmonic l-form of constant length is covariant
constant. If the Ricci curvature is positive definite there are no harmonic vector
fields of constant length. In particular, there are no parallel vector fields if the
Ricci curvature is definite.

COROLLARY 3. There are no covariant constant p- forms, 0<£<d on a nonflat
manifold of constant curvature.

It is well-known that there are no harmonic p-ίorms on a compact conf ormally
flat manifold of positive Ricci curvature, 0<p<d. We state a corresponding local
result.

COROLLARY 4. There are no covariant constant forms on a conf ormally flat
manifold whose Ricci curvature tensor is definite.

This generalizes Corollary 3, for, a nonflat manifold of constant curvature is
conformally flat with definite Ricci tensor.

Since a holomorphic form on a Kaehler manifold is harmonic we obtain (cf. [5],
Theorem 8. 10)

COROLLARY 5. A holomorphic p-form, Q<p^d/2, of constant length on a Kaehler
manifold with positive semi-definite Ricci curvature is covariant constant. If the
Ricci curvature is positive definite, there are no holomorphic p-forms of constant
length.

4. Proofs of theorems. The proof of the following proposition due to Kurita
[4] is essentially due to R. L. Bishop. It is required in the proof of Theorem 1.

PROPOSITION 2. If M is reducible and conformally flat, then M is one of three
types, all of which have parallel curvature:

1. Flat]
2. MιXM2 where Mi and M2 have constant curvature of the same magnitude

and opposite sign',
3. MίXN where MI has constant curvature and N is l-dimensionaί.

Conversely, these three types are conformally flat.

Proof. In terms of a basis which diagonalizes R%J and is adapted to the product
structure the only nonzero components of the curvature tensor are the sectional
curvatures

=Rijij= ,__^ (Ru

If i is fixed and j runs through the indices of the product factors not the same as
those of i, all of these are 0, so RJJ is constant. Hence if there are 3 or more
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factors we can play them one against the others, showing that M is an Einstein
space. But then r=dRn and Klj=R11/(d—l). Since some of these are 0, Mis flat.

Thus we may assume that there are two factors, and we have shown that each
is an Einstein space.

Let the two values of Ru be A and B. There are two cases:
(a) Neither factor has dimension 1. Then for i, j belonging to different factors

d-l*

For k belonging to the same factor as i and / belonging to the same factor as j:

so

Thus the two factors have constant and opposite curvature.
(b) If one factor has dimension 1, then, say, B=Q and the formulas for

curvature show that the other factor has constant curvature.

Proof of Theorem 1. Since (M, g) is conformally flat and its Ricci tensor is
parallel, (M, g) is locally symmetric. Hence, if its holonomy group is irreducible, g
is an Einstein metric. Thus, a conformally flat irreducible manifold with parallel
Ricci tensor has constant curvature. Observing that none of the types in Pro-
position 2 has definite Ricci tensor we obtain the desired conclusion.

Proof of Theorem 2. We apply the following formula analogous to one due
to Lichnerowicz [3], p. 9 (see also [5], p. 170):

(4. 1) 4- A tr Q2=
Δ

where

and

(4. 2) K=Rik(friRjk+RVRljhk).

Now, since tr Q2 and r are constants, (4. 1) becomes

(4.3) gaΨaRlW^j+RίJgabPa(F^j-Fi

But M is conformally flat, so that from (2. 3) formula (4. 3) becomes
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(4.4) gaψaRW^j+K^.

Thus, K^O. Substituting (2. 2) into the right hand side of (4. 2) we obtain

(4.5) (d-ϊ)(d-2)K=d(d-r)trQ*-(2d-T)rtrQ2+ΐ*.

With respect to an orthonormal basis such that ^^=0, i*?j, formula (4. 5) becomes

(d-l)(d-2)K=d(d-l) Σ R3u-(2d-l) Σ Ru Σ ΦH-(Σ St

(4.6)

= 2 Σ Riί(Ru~Rjj)(Rίi~Rkk)'
lj<k

The Ricci tensor being positive definite, the right hand side of (4. 6) can be ex-
pressed as the sum of nonnegative terms (see [4]). Thus jK"=0, so that from (4. 4)
the Ricci tensor is parallel. Theorem 2 is then a consequence of Theorem 1.

REMARK. The condition that M be orientable in Tani's result may be removed
by an examination of the proof of Theorem 2. For, formula 4.1 becomes

JL^
2

from which since K is nonnegative, so is Δ tr Q2. The manifold M being compact,
JtrQ 2 must vanish. Hence, the Ricci tensor is parallel, and so by Theorem 1, M
is a space form.

THEOREM 6. A conformally flat compact manifold with metric of positive Ricci
curvature and constant scalar curvature is a space form.

We now prove Theorem 4. As in [1] the idea is to show that the Gauss-
Bonnet integrand is either a nonnegative or a nonpositive multiple of the volume
element depending on the case in question. For any basis, the integrand is either
a nonnegative or nonpositive multiple of the volume element times the sum

where εir..l2n is the Kronecker symbol. If the sectional curvatures are all non-
negative, then by choosing an orthonormal basis of Mm, meM, as in the proof of
Theorem 2, the expression (4. 7) is easily seen to be

and if they are all nonpositive

(-

The proof of Theorem 5 is almost an immediate consequence of the definition
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of the Pontrjagin classes by virtue of the normalization of the curvature tensor.
The Pontrjagin classes are defined by the closed forms

Λ 22*(£!)2

k ;

where the Ωij are the curvature forms and δ(iι, •••, i?&\ ji, " ,J2k) is 0 except when
ji, -',J2k is a permutation of ft, •••, z"2*) in which case it is +1 or —1 depending on
whether the permutation is even or odd, the sum being extended over all indices
from 1, •••, d.
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