A LIMIT THEOREM ON (J, X)-PROCESSES
By Hironisa HATORI

1. Let {(Ja, Xu); #=0,1,2, ---} be a two-dimensional stochastic process with
the state space I,XR, where I,={1,2, ---, 7} and R=(—oo, ), and let {Q(-);
j,k=1,2, -, 7} be a family of non-decreasing functions defined on R, where
Qi(—o0)=0 for 7, k=1, 2, ---, 7 and X, Qu(+o0)=1 for j=1,2,.--,7. If X,=0 and

(1) P{fn=ki Xnéxl(]o, XO)) B (]n—l, Xn—l)}zQJn_pk(x) (a- S')

for all (&, x)el, X R, then {(Ja, Xu); #=0,1,2, ---} is called a (J, X)-process, which
has been introduced by Pyke [2]. f being a real-valued Baire function defined on
I, X R, the random variable

= B X0~ B X))

is asymptotically normally distributed as #n—oo. Taga [3] has proved this fact in
the cases where f(k, x)=2 and f(k, x)=0,x, respectively. In this paper, we shall
give an alternative proof of this fact in a general from, which is also regarded as
an extension of the consequence in section 3 of [1].

2. Firstly, consider the X7 matrix P=(p;) where pjlcd;fij(‘l‘oo). When there
exists a natural number m such that every element of the matrix P™ is strictly
positive, then we have z=1 as a simple root of the equation det(/—zP)=0, where
I is the rXr identity matrix, and it is known that |a;|>1 (I=1, 2, ---, k), where
ay, -+, ar are the remainning roots of det(/—zP)=0. In what follows, we assume
that the equation det(/—zP)=0 has the simple roots 1, e, -+-, @1, Where
la| >1 (/=1, 2, ---, ¥—1). Secondly, we introduce a family

{Ru(4, &, t); jelIr, kel,, teR, n=1,2, -}

of real-valued random variables. And we set the following assumptions:

(i) the characteristic functions xjm(ﬁ):fE{e”R"(J'k-‘)} of Run(j, k, ), where
i=A/—1, are independent of # and dQ;-measurable on ¢ for any fixed (j, &, 0),

(ii) {Ra(4, &, ©); n=1, jel,, kel,, teR} and {(J», X»); #=0} are mutually
independent,

(iii) Ru(k, ki, t1), Ro(ky, ke, 1), - are mutually independent for every (%, ki, k2, -++;
tl, tz’ ),
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def
(iv) Ya=RuJu-1, Jn, Xn) is a random variable or a measurable function on the
probability space for every #=1, and
(v) the functions

def(* o0
10=" 100

where jel, and kel,, have continuous derivatives of the 2nd order in a neighborhood
of 0=0, respectively. Then, we have the following

THEOREM. Under the assumptions mentioned above, (Yi+-++ Yn—np)//n con-
verges in distribution to a normal distribution, where p is a constant.

def
Proof. Let ¢um(0)=FE{et?® ¥ “)Ifozlq} be the characteristic function of
Yi+---+ Y, given that J,=Fk, where 1=+/—1 and ¢ is a real-valued variable. Then,
from (1), (i), (ii), (iii) and (iv), we have

Gunl0)=Ele1®+¥0| [i=F)

k1y,kp=1

= }i SW S°° P{],=k., t,=X,<t,+dt, (v=1,2, -, )| Jy=Fk}
tp=—o0

t1==—00

X B Rkt Bntnskutnd)| [k, o=y, Xo=t, (v=1,2, +, )}
(2)

= Zk S'"Skokl(tl)kolkz(tz)”'kon_lkn<tn)chk1tl(a)XIclkztz(ﬁ)‘"ch"_lkntn(o)
= Zk ity (07, (0) Dty _ 110 (6)-

def
Introducing the X7 matrix H(0)=(y;(0)), the r-dimensional vectors

P1n(0) 1
def def

ea()=| and e=| : |,
©ra(0) 1
(2) may be described as ¢u(6)=H(0)"e and so
(3) e O)=HO)pn1(0)  (n=1,2, ),

where ¢o(@)=e. Since lim,,, H(0)=H(0)=PF, the equation det(/—zH(#))=0 has the
7 simple roots &(@), L), -+, {r-1(0), Which satisfy that

L0)-1, &u@)—ay, - La(@)—ar  as 6—0
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and

o(0)
41())]

where p and 6, are some positive constants. Then, applying the method used in
section 3 of [1], we get

(4) l<p<1 for |0|<f#, and [=1,2, -, v—1,

S )
) o= L0y
and
(6) 7o(0)=e,

where 7(0) /=0, 1, ---,»—1) are r-dimensional vectors independent of z. Introducing
the vector w=[xny, -, w,] of initial probabilities, where m=P{/;=£~k} (k=1,2, -, 7), it
follows that

(7) on(0) aef E{eio®s-+¥my — Zr: Trorn(0) =1+ ul0)= 121_7_’(_0)7
k=1 i=o Cu(0)

and

(8) 7(0)=m -7:(0)=m-e=1,

where 7,(0)==-z.0) ({=0,1, ---,7—1). Now, from the assumption (v), we know
that (@) and z4(6) (/=0,1, ---, —1) have continuous derivatives of the 2nd order
in a neighborhood of #=0. Therefore, we have

oy OGO

(9) eO=21~Z@rt T Ty

which implies with (8) that

1 E{Y -+ Yo} :§07Iz(0)

= {_ n{(0):(0)

(10) =—nCiO) <0+ T + 70 }

T a”
= —nll0)+7)(0)  as n—oo.
Hence we know that ydf——fiw';.ﬁ(O) is a real number. Similarly, by deriving
Var(Yi+- -+ Ya)=E{(Yi+ -+ Ya)?} = (E{ Y14+ Yo} )?
am == (0)—(—ign(0))?
=n(8(0)—£3(0)) +75(0)* —=5"(0)
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as n—oo, we know that {;’(0)+p2 is a non-negative number. Now, we shall consider
the characteristic function ¢.(6) of the random variable (Y4 4 Yn—np)/a/n . By
(7), we have

put0) =g, ()

- {e’f"’/WCol(ﬂlx/%)}" {T" <~/ﬂn> 2(%5://2;) <«/n>’

For any fixed 0, we have |0/a/ % |<0, for all sufficiently large #, so that it follows
from (5) that

12)

I n) |
and so
Lo/ 7). e
13) (Cz(ﬁlx/%) ) -0 as 7 .

On the other hand, we have
S =500+ 624007

’(0)

=1—ipf+ ——0*+0(0% as 0—0,

which implies for any fixed 0 that

=<l+z#N/~—£0—2+o< )) (—z/zN/ +—:@)—ﬁ—l—o(1>)

=1t @O +o( o)
a on ' T\,
and
— 0 " 77 .
14) {e‘f“’N" CO(W)} — oG @+um02 as 7—co.
Hence we have by (8), (12), (13) and (14) that

(15) Pull) — e~ @ OrE gs oo,

which proves our theorem.
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3. If it holds that Y,=0 (a.s.) and Y+ Ye+---+ Yyp—o0 (a.s.), we can defined
a random variable N(#) for every positive number ¢ such that

(16) Y1+"'+YN(L)<l‘§ Y1+"'+YN(L)+1-

Noticing that P{N@)<n}=P{S,>¢}, we have immediately the following corollary,
which gives a property of renewal type. (See the proof of Theorem 4. 2. in [3])

COROLLARS{. Under the same assumptions of the foregoing theorem,
(N®O—tp)a/ t converges in distribution to a normal distribution as t—co.

REFERENCES

[1] HAaTori, H., On Markov chains with rewards. Kodai Math. Sem. Rep. 18 (1966),
184-192.

[2] PykE, R, Markov renewal process; definitions and preliminary properties. Ann.
Math. Stat. 32 (1961), 1231-1242.

[3]1 Taca, Y., On the limiting distributions in Markov renewal processes with finitely
many states, Ann. Inst. Statist. Math. 15 (1963), 1-10.

Tokyo COLLEGE OF SCIENCE.





