
VECTOR FIELDS IN RIEMANNIAN AND
HERMITIAN MANIFOLDS WITH BOUNDARY

BY KENTARO YANO AND MITSUE AKO

The vector fields and tensor fields in a Riemannian manifold with boundary
have been studied by Bochner [3], Duff and Spencer [4], Hsiung [5], Nakae [8],
Takahashi [11] and one of the present authors [13].

The main purpose of the present paper is to study systematically vector fields
in a Riemannian manifold with boundary and to study, applying the results in a
Riemannian manifold, the contravariant and covariant almost analytic vector fields
in an almost Hermitian manifold. We shall use the fact that the boundary of an
almost Hermitian manifold admits the so-called almost contact structure studied by
Sasaki [10] and others.
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I. Vector fields in a Riemannian manifold with boundary.

1. Hypersurfaces in a Riemannian manifold.

We consider an m-dimensional differentiable Riemannian manifold M of class
C°° covered by a system of neighbourhoods with local coordinates (ξh), where and in
the sequel the indices h, i,j, k, --,r, s, t run over the range 1, 2, •••, m. We denote
by Qjί the positive definite fundamental metric tensor, by ψ3 the covariant dif-
ferentiation with respect to the Christoffel symbols {$} and by Kkμ

h the curvature
tensor

(1. 1)
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where dk denotes partial differentiation with respect to the coordinate ζk. We denote
by Kji and K the Ricci tensor and curvature scalar:

(1.2) Kji^Kφ', K=Kjig^

respectively.
We consider a hypersurface B in the Riemannian manifold M and represent it

by parametric equations

(1.3) £Λ=£Λ(?α),

where and in the sequel the indices a, b, c, d, e,f run over the range 1, 2, •••, m—1.
We put

(1.4) 5αΛ = 3αfΛ,

where da denotes partial differentiation with respect to ηa. The Ba

h represent
m—1 linearly independent contravariant vectors tangent to the hypersurface. The
metric of the hypersurface is given by the metric tensor

(1.5) 'gCb=gjiBc'Bb\

Assuming that the Riemannian manifold and the hypersurface are both orientable,
we choose the unit normal Nh to the hypersurface and coordinates ηa on the
hypersurface in such a way that Nh, Bx

h, •••, Bm-ih form the positive sense of M,
and Z?Λ ..., Bm-ιh form the positive sense of B. We then have

(1. 6) gjiWBΐ=0, gjiNW*=1,

(1.7) <s/~Q\N\Bah\=*/7Q,

where \Nh, Ba

h\ denotes the determinant formed by Nh and BS, •••, Bm-\h and

(1.8) g=|flfyi|, /fl=|/ί/c6|

are determinants formed by gμ and ̂ Cδ respectively.
Denoting by rψc the symbol of covariant differentiation along the hypersurface,

we have the equations of Gauss

(1. 9) 'pcB^^dcB^+BcWttHϊi}-Bahr{c,}-HchN\

where '{c

α

6} are Christoffel symbols formed with 'geb and Hch are components of

the second fundamental tensor of the hypersurface. We have also the equations of

Weingarten

(1.10) 'pcN
h=dcN

h+BcjNi{?i} = -HcaBah,

where Fc

α=i7c 6

/g'δ α.
If we put

(1. 11) Bai=Bb

h'gbagihy

we have

(1.12) BaiBb*=δξ, £W = 0
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and

(1.13) NiNh+B«iBa

h=dl

and equations of Gauss are written as

(1. 14) 'FcB«i=FIcaNz.

We now state Stokes' theorem in the following form:

STOKES' THEOREM. We consider a compact orientable Riemannian manifold
with compact orientable boundary B. Then, for an arbitrary vector field vh, we have
the integral formula

(1.15)

where

(1. 16) dσ=*/JdeΛdξ2Λ-Λdξm

is the volume element of M and

(1.17) dίσ=^/'Ydrί

1Adη2A "Adηm-1

is the surface element of B.

In the sequel we assume that the manifold M is compact orientable and the
boundary B is also compact orientable and so we can always apply Stokes' theorem.

2. Killing vectors.

It is well known that an infinitesimal transformation vh defines an infinitesimal
motion when and only when it satisfies

(2.1) £Qji=PjVi+piVj=O,
V

where £ denotes Lie differentiation with respect to vh (Yano [14]). A vector field

satisfying this condition is called a Killing vector. A Killing vector satisfies

(2.2) PiVl=0.

From (2.1) we get

from which

(2.3)

Now by a straightforward computation we can prove

1

(2.4)
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which is valid for an arbitrary vector field vh, where p^=gjψτ. Integrating the
both members of (2. 4) on the whole manifold M and applying Stokes' theorem to
the right hand member, we get

\ (Qi%FiVh+Kihvi)vh + — (pW+pιv>)(pfli+piVj)—ty^^ \dσ

(2. 5)

= \ [(VjVi+VtVjW—ΌjivΦ^N'd'σ.
JB

Suppose now that vh is a Killing vector field. Then it satisfies

gjifjfiVh-{-Kihvl==O and p ^ ι = 0 in M
and

tv^Q on B.

Conversely, if a vector field vh satisfies these conditions, then we have from
(2.5)

from which

PjVίJt~f7ιVj = O in M,

aad consequently vh is a Killing vector field. Thus we have

THEOREM 2. 1. A necessary and sufficient condition for a vector field vh in M
with boundary B to be a Killing vector field is that

{ QJ'iPjf7iVh+Kihvl=0, fiVι=0 in M,
(2. 6)

1 ( ) N j 0 on B.

This theorem has been obtained in [13] for a vector field tangential to B. But
the theorem is true for any vector field vh not necessarily tangential to B.

If the vector vh vanishes on the boundary B, then the second condition in
(2. 6) is automatically satisfied. Thus we have

PROPOSITION 2.1. A necessary and sufficient condition for an infinitesimal
transformation vh in M with boundary B leaving B invariant point by point to be a
motion is that

gjίf?jγiVhJrKihvι=O, piVl=0 in M.

Now we put, on the boundary B,

(2.7) vh = Bah'

then we have
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(2. 8) Bb

lVi = %,

Differentiating the first equation of (2. 8) covariantly along the boundary and
taking account of (2. 8), we find

from which, transvecting with 'gcb and taking account of Bc

JBb

ί/gcb=gJι—NjNί,

(2.9) αff

Differentiating next the second equation of (2. 8) covariantly along the boundary
and taking account of (2. 8), we obtain

- Hcb'

from which, transvecting with V,

(2. 10) -HcbVcf

by virtue of (2. 7).

Eliminating ( p ^ ) Λ W from (2. 9) and (2. 10), we obtain

(2. 11) {y^Ό'W=Hcb

fvc/

from which

(2. 12)

Thus we have

PROPOSITION 2. 2. A necessary and sufficient condition for a vector field υh in
M with boundary B to be a Killing vector field is that

ί gJiPjl7iVh+Kihvl=u, pιvι=Q m M,
(2. 13)

1 (^i)NJvι+Heb

ίυc/vb+amaa-2a{/pafva)+ya(afva) = 0 on B.

Now if the vector vh is tangential to B, then we have α=0 and consequently
we have

PROPOSITION 2. 3. A necessary and sufficient condition for a vector field vh in
M tangential to the boundary B to be a Killing vector field is that

{ gJίPjf7iVh-\-Kihvι=Q, {7iVι=0 in M,

(2.14)
1 ()NjJHfc'vb=§ on B.

If the vector field vh is normal to the boundary B, then we have 'va=0 and
vh=aNh and consequently
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by virtue of (2. 9). Thus we have

PROPOSITION 2. 4. A necessary and sufficient condition for a vector field vh in
M normal to the boundary B to be a Killing vector field is that

{ QjiVjViVhJτKihvι=Q, fiVι=Q in M,
(2. 15)

l aHaa=0 on B.

(Yano [13])

Now integrating the identity

on M and applying Stokes' theorem, we find

(2.16) [ [{Q^VjViV^Vj^V^XfjV^dσ
JM

From (2. 12) and (2. 16), we obtain

\ [{Q3ifjVivh)vhJr{f:'vi){fjvl)} dσ
J M

(2. 17)

Thus, forming (2. 5)-(2. 17), we obtain

[Hcb

fvcfvb-\-a2Haa-2a{!fa

fv<ί)] dfa.

Thus, if vh is a Killing vector field, we have

[ [KjiVW-ipwXpjVifldσ
JM

= [ [Hcb

/vc/vb+a2Haa-2a(/f7Jva)] d'a.
JB

On the other hand, for a Killing vector field v]\ we have

Bc'BJipjVi+piVj)='pc'Vb+'pb'vc - 2aHcb=0

from which

fψa

fva = aHaa.

Thus the above integral formula becomes
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(2. 18) [ [KjiVW - (vWXpjVt)] do = [ [# c δ W - a{'pa'v
a)] dfσ.

From this we have

PROPOSITION 2. 5. If KjiV^vι^Q and if a Killing vector field vh satisfies one
of the following alternate sets of conditions on B,

( i ) FcδW^O, a=const.y

(ii) Hcb'v
c'vb^0, 'FαV*=O,

(iii) 'ι>α=0,

then we have

KjiVW=0, PjVi=O in M

and in cases (i) and (ii),

Hcb'vc'vb=0 on B.

If KjιVJvι<0 (vh^0), then there is no such Killing vector field other than zero.
(Bochner [3])

Thus if KjiVJvl<0 (vh^0) and i 7 c & W ^ 0 , then there is no Killing vector
tangent to B other than zero. If KjiV^vl<0 (vh^0), then there is no Killing vector
normal to B other than zero.

3. Conformal Killing vectors.

It is well known that an infinitesimal transformation vh defines an infinitesimal
conformal motion when and only when it satisfies

(3. 1) £ΰ ji=p'jVί+piV j=2φg ji

for a certain scalar function φ. A vector field satisfying this condition is called a
conformal Killing vector. The function φ above is found to be (l/m)(/7ί̂

ί) and
consequently (3. 1) can also be written as

2
(3. 2) pjVi+piVj- —•

From (3.1) we get

where φi=Piφ. From this we get, by transvection with g

(3. 3) gJipjpiυ
h+KihV'+ ph(piVl)=0.

Now by a straightforward computation we can prove
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(3. 4) + ^ [ i 7 + F g % i 7 t η ^ 7 j ί i i 7 i j

= H (FjVi+ϊ7iVj)vι- —VjtyiV1) ,

which is valid for an arbitrary vector field vh. Integrating the both members of
(3. 4) on M and applying Stokes' theorem on the right hand member, we get

S Π /

M\_\ m

/o rx , 1 / 2 Λ/ 2 \ Ί ,
(v3. 5) H——(p 3v%-\-p ιv J g^ptv1)(ψ jVi-\-ψ%Vj gjίPsVs) \dσ

Δ \ m ) \ m ]J
f Γ, 2 / S~kr 7,

— \ ( F ^ i + F t ^ ) ^ 1 - - — Vj{ϋiV%) \NJd σ.
hL m J

Suppose now that vh is a conformal Killing vector field. Then it satisfies

g)tPjFiVh+Kihvl+ — phpiV%=0 in M
m

and
Γ 2 Ί

(FjVi+FίVj)vι VjψiV1) A^=0 on B.

L m A
Conversely if a vector field vh satisfies these conditions, then we have from (3. 5)

from

[ ( WΛ-
2 J M\

which

1

2
m •0 Vtv J\fjVi fίVj-

2
• gjitytV^Q

m

2
m

in M,

and consequently vh is a conformal Killing vector field. Thus we have

THEOREM 3. 1. A necessary and sufficient condition for a vector field vh in M
with boundary B to be a conformal Killing vector field is that

gJίPjPiVhJrKihvι-\ —— ^(ψiV1)^ 0 in M,

(3. 6)
2 \

— gjίPtVt)Njvι=O on B.
m I

If the vector vh vanishes on the boundary Bt then the second condition of
(3. 6) is automatically satisfied. Thus we have
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PROPOSITION 3. 1. A necessary and sufficient condition for an infinitesimal
transformation vh in M with boundary B leaving B invariant point by point to be a
conformal motion is that

m—2
QJίI7jl7iVh+KihvtJί (7hPιVz=0 in M.

m

Now from (2. 12), we find

2

j O

m

Thus we have

PROPOSITION 3. 2. A necessary and sufficient condition for a vector field vh in
M with boundary B to be a conformal Killing vector is that

(3.7)

γyj 2

OJψjγiVh+Kihvι+ ψhv%vι=-§ in M,
m

ψyi

m

-2aCl7a'va>)+/i7a(ci'va)=Q on B.

If the vector vh is tangential to B, then we have a—0 and consequently we
have

PROPOSITION 3. 3. A necessary and sufficient condition for a vector field υlb in
M tangential to B to be a conformal Killing vector field is that

I Q3iVjψΦhΛ-Kihv%-\ j7Λ/7iflι=0 in M,

m

(t7jVi)NJvι+Hcb'vc/vb=Q on B.

If the vector vh is normal to B, then /va=0 and vh=aNh and consequently

2

m

(f/ί)\ U +
m L m

by virtue of (2. 9). Thus we have

φ^) I
_j

PROPOSITION 3. 4. A necessary and sufficient condition for a vector field vh in
M normal to B to be a conformal Killing vector field is that
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(3.9)
i — 1

m

in M

on B.

(Yano [13])
Now forming (3. 5)—(2.17), we obtain

V KjiVJVι

+

η \dσ

or

=\ \Hcb'vc'vb

JBL

J ML-

m

2 \ / 2 \Π
— —9jiVtυΊ(fjVi+PiVj gjψsvή \dσ

On the other hand, for a conformal Killing vector field vlb, we have

—

from which

Thus for a conformal Killing vector vh, we have, from the above equation,

wι
(3. 10)

from which we have

m J

PROPOSITION 3. 5. If KjiV^vl^0 and if a conformal Killing vector field vh

satisfies one of the following alternate sets of conditions on B

( i ) # β 6 W ^ 0 , α=0,
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γyj 1

(ii) tfcδVV^O, (Wva)+-L-±^ί)=Of

(iii) V = 0 , ^ = 0 ,

KjiV>vι=Q, j7jVJ=0 in M

and in cases (i) and (ii)

z/ KjiVJvl<.0 (vh^0), then there exists no such conformal Killing vector
field other than zero.

Thus if KjiΌivι<O(ph*O) and ϋβ6'ι>
cV^0 then there is no conformal Killing

vector tangent to B other than zero. If KjιV^vι<0 (vh^0)f then there is no con-
formal Killing vector normal to B such that f?iVι=Q on B other than zero.

4. Harmonic vectors.

A harmonic vector is defined as a vector satisfying

(4.1) FjVi—piVj=O, piVl=Q.

For a harmonic vector vit we have

QjiVkψiVh-VhVΪ) +ph(gji?jVi)=0,
from which

or

(4.2) oJφJpiv
lι-Kilιvt=-O.

By a straightforward computation, we can prove

(Q3iγtfiVh - KihVl)Vh + — tyW - j7ιVj)({7jV i -FiVj) + (PjVtypiV*)

(4.3)

=FJί(FJvi - F&JW+VjiFiV1)],

which is valid for an arbitrary vector field vh. So integrating the both members
of (4. 3) on the whole M and applying Stokes' theorem to the right hand member,
we get

\dσ

(4.4)

'jVi-FiVΰ + iPjV'XFiV1) \a

JB

Suppose that vh is a harmonic vector field. Then it satisfies
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gjίf7jγiVh-Kίhvι=0 in M

and
i - ψφj)υ%+vfaiΌ1)] iV>=0 on B.

Conversely if a vector field vh satisfies these conditions, then we have from (4. 4)

J L~2~ ^^%-Px^)iPPi- FiVύ+QrjvOiPiV*) \dσ=0,

from which

PjVi—f7iVj=0, [7iVι=0 in M.

Thus we have

THEOREM 4.1. A necessary and sufficient condition for a vector field vh in M
with boundary B to be a harmonic vector field is that

( gJψjγiVh~Kihvι=0 in M,
(4. 5)

1 [ ( ^ + i ^ W ^ O on B.

If the vector field vh vanishes on the boundary B, then the second condition
of (4. 5) is automatically satisfied. Thus we have

PROPOSITION 4. 1. A necessary and sufficient condition for a vector field vh in
M with boundary B vanishing on B to be a harmonic vector field is that

gjίPjPiVh—Kihvι=0 in M.

From (2. 11), we find

Thus we have

PROPOSITION 4. 2. A necessary and sufficient condition for a vector field vh in
M with boundary B to be a harmonic vector field is that

( gjψjγiVh—Kihvι=0 in M,
(4.6) J

I (PjVt)NJvι-Hcb'vc'vb-a2Haa+2a('f7a

/va)-'pa(a'va)=Q on B.

If the vector vh is tangential to B, then we have α=0 and consequently we have

PROPOSITION 4. 3. A necessary and sufficient condition for a vector field vh in
M tangential to the boundary B to be a harmonic vector field is that

( gJψjPiVh-Kihvz=0 in M,
(4. 7)

1 (pjVi)Nw-Hcb'v
c'vb=Q on B.

(Yano [13])
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If the vector field vh is normal to the boundary B, then 'va=0 and vh=aNh

and consequently

Thus we have

PROPOSITION 4. 4. A necessary and sufficient condition for a vector field vh in
M normal to the boundary B to be a harmonic vector is that

( gjψjγiVh—Kihvι=O in M,
(4. 8)

I a(piV%) = 0 on B.

(Yano [13])

From (2.11) and (2.16), we find

(4.9)

Forming (4. 9)—(4. 4), we obtain

JB

\ {vvVv)(VPiVivj) (V&)&&) \ d σ

[ i
JB

Thus for a harmonic vector vh, we have

= ί [Heb'v<"vb+a2Πaa-2a(Wva)] d'σ,
JB

from which we have

PROPOSITION 4. 5. If KjiVW^O and if a harmonic vector field vh satisfies one
of the following alternate sets of conditions on B,

( i ) ffc/rt^O, α=0,

(ϋ) / ^

(iii)

we have
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KjiWvl=Q, pjVi=0 in M,

and in cases (i) and (ii)

7 7 c 6 W = 0 on B.

Thus if KjiV^vl>0 (vh^0), then there is no such vector field other than zero.
(Bochner [3])

Thus, if KjiVWX) (vh^0) and Hcb'v
c'vb<:0, then there is no harmonic vector

tangential to the boundary B other than zero. If KjiV'vl>0 (vh^0) and Ha

a£0, then
there is no harmonic vector normal to the boundary B other than zero.

II. Vector fields in an almost Hermitian manifold.

5. Hermitian manifolds.

We consider a differentiable manifold of even dimension m—2n and of class
C°° and suppose that the manifold admits a tensor field Fιh of type (1, 1) and of
class C°° which satisfies

(5.1) F/Fih = -Ah

J,

where Ah

3 is the unit tensor. A tensor field F satisfying (5. 1) is said to define an
almost complex structure and a manifold admitting an almost complex structure is
called an almost complex manifold.

It is now well-known (Newlander and Nirenberg [9]) that an almost complex
structure F is induced from a complex structure if and only if the Nijenhuis tensor

(5.2) Nji

h=(Fj

tdtFih-Fi

t

vanishes identically. The Nijenhuis tensor iV/Λ skew-symmetric in j and i, satisfies

(5. 3) Njih-Fi*Fr

hNjS=O,

(5.4) N3i
h+Fj

tFigNt,h=0.

If we introduce tensors

(5.5) O$=±-(AiA£-Fi Frh),

(5. 6) *O%= ~ - {A\A^F^Frh\

equations (5. 3) and (5. 4) can be written as

(5.7) O g i V = 0 and *OJ{iVi,Λ = 0

respectively.
In general if a tensor T.::t

h:r satisfies

O$T.::,r:r=0 or *O$T.::8r:r=0,
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the tensor is said to be hybrid or pure in i and h respectively.
Equation (5. 1) can be written as

=0 or

and consequently the tensor Fth is pure in i and h. Equations (5. 3) and (5. 4) show
that Nμh is hybrid in i and h and pure in j and i.

The tensors O and *O satisfy

(5.8)
0-0=0, 0*0=0, *O O=0, *0 *0=*0,

where A represents the tensor As

tA%. Thus the conditions

O Γ-0 and *OT=T

are equivalent and

*O Γ=0 and O T - T

are also equivalent.
Suppose that P^ is hybrid in j and i, then we have

P>*=*O

If Qji is pure in j and z, then we have

Using (5. 8) and these equations we can easily prove that if Pjί is hybrid in j and
i and Qμ pure in j and f, then the contracted product PJίQji vanishes identically.

From an arbitrary positive definite Riemannian metric aμ in M, we can con-
struct another Riemannian metric

0/*= Ύiβji+atsFjΨi8),

which is also positive definite and satisfies

(5.9) gt.F/Fi =gji.

This equation is also written as

(5. 10) O}iflrίβ=0

and shows that gμ is hybrid.
A Riemannian metric gμ on an almost complex manifold satisfying (5. 10) is

called a Hermitian metric. An almost complex manifold with a Hermitian metric
is called an almost Hermitian manifold and a complex manifold with a Hermitian
metric is called a Hermitian manifold. In an almost Hermitian manifold the tensor

(5. 11) Fμ=F/gtι

is skew-symmetric and of rank 2n.
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If we denote by p% the covariant differentiation with respect to a Hermitian

metric g^, then the Nijenhuis tensor Njih can be written as follows:

(5.12) Nj^FfvtFf-FίytFft-tyjFi'-ψiFfiFtK

We now define the tensors

(5. 13) FJih=:pjFih+piFhj+phFji,

(5. 14) Fh=g^pjFih=-piFh\

(5. 15) Gjih=pjFih+piF/>.

We call an almost Kahler manifold an almost Hermitian manifold in which

Fjih=0 and a Kahler manifold a Hermitian manifold in which Fjih=0.

The covariant components Njih=Njitgth of the Nijenhuis tensor can be written

in the form

(5. 16) NJih=FjtFtih-FitFm+2Fj

t (phFu),

from which, transvecting with Fih,

(5.17) FJ

tFtijιF
ίh+2FJ=0

by virtue of

NJihF
ih=0 and Ft/=0.

We see from (5. 17) that the vector F3 vanishes in an almost Kahler manifold

and consequently the tensor FJU satisfying Fjih=0 and F,=0, is a harmonic tensor.

We also see from (5. 16) that an almost Kahler manifold is a Kahler manifold

if and only if pjFih vanishes identically.

We call an almost Tachibana manifold an almost Hermitian manifold in which

Gjih=0 and a Tachibana manifold a Hermitian manifold in which Gjih=0.

The Nijenhuis tensor can also be written as

(5. 18) Nnh= -A(pjFit)Ft

h+2GjitFt

h+F/Gtih-FitGtj

h,

from which we see that, for a Tachibana manifold we have pjF/^O. Thus a

Tachibana manifold is a Kahler manifold.

Coming back to a general almost Hermitian manifold, we denote covariant com-

ponents of the curvature tensor by

(5. 19) Kkji^Kkji'gth

and put

(5.20) HkJ=-^KkjihF
ih

and

(5.21) K% = -HjrFir.

From the Ricci identity
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we get

(5. 22)

which gives the expression for the difference Kji—K%. In a Kahler manifold, K%
coincides with Kjt.

6. Hypersurfaces in an almost Hermitian manifold.

We consider a hypersurface ξh=ξh(ηa) in an almost complex manifold. The
transform FihBa

x of Ba

% by Fih can be expressed as a linear combination of Ba

h

and Nh:

(6.1) FihBΐ =fb

aB

where the coefficients fb

a and /& are defined by

(6.2) ff)

a=FihBsBa

h

and

(6.3) fb=FihBb*Nh

respectively.

The transform FihNl of JV* by F/1 is perpendicular to Nι and consequently
tangent to the hypersurface, and hence we have the equation of the form

(6.4) F^N^-^Ba11,

where the coefficient ha is defined by

(6.5) ha = -Fi

hNiBa

h.

Transforming again the both members of (6. 1) by F and taking account of
(6. 1) and (6. 4), we find

- Bb

h =fuC(fcaBah +fcNh) -fbk
aBah,

from which

(6.6) ftefca=-δ$+ft>ha,

(6.7) Λ β / c =0.

Transforming again the both members of (6. 4) by F and taking account of (6. 1)
and (6. 4), we get

from which

(6.8) fcah*=Of

(6.9) fche = l.

The equations (6. 6), (6. 7), (6. 8) and (6. 9) show that the tensor fb

a and vectors
fey h

c define the so-called almost contact structure. (Sasaki [10], Tashiro [12])
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We next suppose that the almost complex manifold is Hermitian, then we have

(6.10) gji=gtsF/Fis.

Substituting this into

we get

from which

(6.11) fcefι>d/gea+fcfb='gcυ.

Transvecting equation (6. 11) with hh and taking account of (6. 8) and (6. 9), we
find

(6. 12) fc='gcahd

and consequently we shall write fa in place of ha. Thus equations (6. 6), (6. 7), (6. 8)
and (6. 9) become

fcbfba=-δ}+fcfa, fb

afa = Q,
(6. 13)

Λ α /*=o, / α Λ = i .
If we put

(6.14) fca=fcb/gba,

the equations (6. 2), (6. 3) and (6. 5) are written as

(6. 15) FίhBSBah=fba

(6.16) FihBΐNh=f»

(6.17) FtnWBa^-fa

respectively. Equation (6. 15) shows that fba is a skew symmetric tensor.
We differentiate (6. 1) covariantly along the hypersurface and obtain

(6.18) BjBAVjFih)^{!ψcff+Hchf«-HcafύBahΛ-{!VcfυΛ-H^

from which, transvecting with Bah,

(6. 19) BcJBSB

and, transvecting with Nh,

(6.20) Bc>

We next differentiate (6. 4) covariantly along the hypersurface and obtain

(6.21) Bcm
i{VjFih) = -{fVcfa-Hc

bf^)Bah,

from which, transvecting with Bah,

(6.22) BcjN
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7. Contravariant almost analytic vectors.

When an infinitesimal transformation υh leaves the almost complex structure
invariant, that is, when it satisfies

(7. 1) £Fih=vtdtFih-Fitdtv
h-\-Fthdiv

t = O,
V

the vector vh is called a contravariant almost analytic vector field. If the almost
complex manifold is almost Hermitian, equation (7. 1) can be written as

(7.2) £Fih=vtf7tFih-Fit[7tVh^rFt

hf7iVt=0,

from which

(7.3) Sih

and

(7.4) Sih

From (7. 3) and (7. 4), we find

(7.5) OK(£ff,r) = 0 and

respectively.
Now, by a straightforward computation, we can show that the tensor

(FΨ

is pure in j and i. Since £Fih=Q and £gji is hybrid in j and i for a contravariant
V V

almost analytic vector field vh, we have, by the above remark,

or

(7.6) -l~F

On the other hand, applying the operator gjίpj to the both sides of (7. 2), we find

(7.7) Fth[gJipJpiv
t+Kitυ*--Fit£F*-Gji'Fst(p'vi)]=O,

from which

(7.8) g'ipjPiVh+Kihv*-Fιh(£Fi)-GJi
tFth(p>vi)=O

or,

(7.9) giirjP&h+Kihv*-Fih(£Fi)--±-Fjih(£Fii)=Q
v Δ v

by virtue of (7. 6). This equation gives a necessary condition for a vector field vh

to be contravariant almost analytic.
Now by a straightforward computation we can prove
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W#<0*+JδV-.FVk(£F*)—LF^W) L + ±-
[ v Δ υ \ I

(7.10)

which is valid for an arbitrary vector field vh, where

(7. 11) Sji

Integrating the both members of (7. 10) on the whole manifold M and applying
Stokes' theorem to the right hand member, we get

ί \\
(7. 12)

f
B V

Suppose now that vh is a contravariant almost analytic vector field. Then it satisfies

γ l Γ = 0 in M

and
{F/(£Ft

h)}NJvh=0 on B.
V

Conversely if a vector field vh satisfies these conditions, then we have, from (7.12),

from which
Sji=0 or £Fih=0 in M,

V

and consequently vh is a contravariant almost analytic vector. Thus we have

THEOREM 7. 1. A necessary and sufficient condition for a vector field vh in M
with boundary B to be a contravariant almost analytic vector is that

in My

(7.13)
{F/(£Ft

h)}Wvh=Q on B.
V

If the vector vh vanishes on the boundary B, then the second condition in
(7. 13) is automatically satisfied. Thus we have

PROPOSITION 7. 1. A necessary and sufficient condition for an infinitesimal
transformation vh in M leaving the boundary B invariant point by point to be an
almost analytic transformation is that
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^ O in M.
Z

In the case of almost Kahler manifold, this condition reduces to

gJiPjPiVh+Kihv%=0 in M,

and consequently combining Propositions 2. 1 and 7. 1, we get

PROPOSITION 7. 2. An infinitesimal motion in an almost Kahler manifold leaving
the boundary invariant point by point is an automorphism.

PROPOSITION 7. 3. An infinitesimal almost analytic transformation in an almost
Kahler manifold leaving the volume invariant and the boundary B invariant point
by point is an automorphism. (Ba [2])

Suppose that an infinitesimal conformal transformation vh in M leaves the
boundary B invariant point by point, then we have, by Proposition 3. 1,

m—2
QμVjγiVh+Kihυ%-\ phpιv

%=0 in M.

On the other hand, in the case of an almost Kahler manifold, (7. 12) reduces to

u + -^-S^S^dσ^ 0

for a vector field vh vanishing on B. Thus substituting the above equation into
this integral formula, we get

f Γ--^= =^{rΛ(Γ^ t)}^ + 4-S^ i

J ML m Δ

J ML. Wl Wl Δ J

J m

from which
Sji=O for m=2

and
PiVι=Q, Sji=O for m>2.

Thus we have

PROPOSITION 7. 4. An infinitesimal conformal transformation in M leaving the
boundary invariant point by point is almost analytic when m=2 and an automor-
phism when m>2. (Ba [2])

Now putting
vh = Ba

h'va+aNh

on the boundary, we have
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Thus we have

PROPOSITION 7. 5. A necessary and sufficient condition for a vector field vh in
M with boundary B to be a contravariant almost analytic vector is that

(7. 14)
[(£FJi)Bc>fc-(£gji)Nηv*=Q on B.

In the case of almost Kahler manifold, these conditions reduce to

gjψjγiVh+Kihvι=0 In M,

[(£Fjί)Bc>fc-(pjVί+[7ιvJ)NJ]v^ΰ on β,
(7. 15) {

and consequently combining Theorem 2. 1 and Proposition 7. 5, we get

PROPOSITION 7. 6. An infinitesimal motion in an almost Kahler manifold leaving
the fundamental form Fji on the boundary invariant is an automorphism.

PROPOSITION 7. 7. An infinitesimal almost analytic transformation in an almost
Kdhler manifold leaving the volume invariant in M and the fundamental tensors Fji
and Qji invariant on B is an automorphism. (Ba [1])

Now, if the vector vh is tangential to the boundary B, then we have

and consequently

Hence we have

PROPOSITION 7. 8. A necessary and sufficient condition for a vector field vh in
M tangential to the boundary B to be a contravariant almost analytic vector is that



(7.16)
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V Z V

(£fo)fc'vt'-(£gji)Nw=0 on B.

In the case of almost Kahler manifold, these conditions reduce to

f gίtpjFiVh+Kιhυι=O in M,
(7.17)

1 (£fct,)fc'vt>-(£gji)Nw=O on B.
'v

On the other hand, for a conformal Killing vector tangential to B, we have

QJiPjPiVh+Kτ

hΌι+ m~~ vKfiV1)=0 in M,

(£ΰji)Nw=0 on B.
V

Substituting these into integral formula (7. 12), we find

Γ -
or

(7.18) C [ ^ 1 2 ^ ^ ^ * ) + Sy*s ] d f f = _

by virtue of

From (7. 18) we can see that £fCb=0 implies

PiVl=0 and S/<=0, for m>2, and Sy*=0 for m=2.

Thus we have

PROPOSITION 7. 9. ^U infinitesimal conformal transformation in an almost
Kahler manifold tangential to the boundary B and leaving /c& invariant along B is
an automorphism for m>2, and analytic for m=2. (Ba [2])

Suppose next that an infinitesimal transformation is conformal and at the same
time almost analytic, then we have, from (3. 6) and (7. 17) p^ ι=constant. But if
vh is tangential to B, we have

\ fiVιdσ=\ vιNid'σ=
JM JB
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and consequently f7iVι=0. Thus the transformation is an automorphism. Hence
we have

PROPOSITION 7. 10. If an infinitesimal transformation in an almost Kάhler
manifold leaving invariant the boundary B is conformal and almost analytic, then
it is an automorphism. (Ba [2])

We now consider a very special infinitesimal transformation vh which is tangent
to the boundary B and whose transform by Fι

h is normal to the boundary. If we
represent the transformation by

vh=Ba

h'va,

then, by assumption

FihΌ*=FihB*i'υ°>=(facBc

h +/JVΛ)Ί>α

must be in the direction of Nh, from which we have

(7. 19) 'va=λf*.

Thus, from Proposition 7. 8, we have

PROPOSITION 7. 11. A necessary and sufficient condition for a vector field vh in
M tangential to the boundary B and whose transform by F is normal to the boundary
to be contravariant almost analytic is that

\ gjψjPiVh+Kί

hv*-Fί

h(£F*)-~Fjί

h(£F^) = O in M,

(7.20) j Δ

I (£(jji)Nw=0 on B.
V

From this we have

PROPOSITION 7. 12. An infinitesimal almost analytic transformation in an almost
Kάhler manifold M tangential to the boundary B, whose transform by F is normal
to the boundary B and which preserves the volume is an automorphism. (Ba [2])

We also have, from Proposition 7. 9,

PROPOSITION 7. 13. An infinitesimal conformal transformation in an almost
Kάhler manifold tangential to the boundary B and whose transform by F is normal
to the boundary B is an automorphism. (Ba [2])

8. Covariant almost analytic vectors.

When a covariant vector field Wi satisfies

(8. 1) (dJFit-diFJ

t)wt-FjtdtWi+Fi

tdjWL = Oi

the vector wL is called a covariant almost analytic vector field. If the almost
complex manifold is almost Hermitian, the equation (8. 1) can be written as
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(8.2) {VjFi'-ViFfiwt-F^tWiΛ-F^jWt^,

from which, by taking the symetric part with respect to j and i, we get

(8.3) *Oti(ptWs-psWt)=0.

We also have, transvecting ψkF^ to (8. 2),

(8.4) (ΓkFJWjFfiwt^O.

Tf we put

then we have, for a covariant almost analytic vector wu

Suppose now that the manifold is an almost Kahler manifold, then we have
PjiP^=0 and consequently Pji=Oy Qji=0 for a covariant almost analytic vector Wι.
But in an almost Kahler manifold, Pji=Q is equivalent to wtρr

tFji=0.
Suppose next that the manifold is an almost Tachibana manifold, then,

being skew symmetric in all indices, we have from (8. 4)

and consequently
w'yiFji^Q,

from which Pji=0 and Qji=0, for a covariant almost analytic vector field wι.
Thus we see that a necessary and sufficient condition for a vector field Wι in an
almost Kahler or Tachibana manifold to be covariant almost analytic is

(8.5) waf7aFji=0 and FjtftWi-FitfjWt=O.

Coming back to a general almost Hermitian manifold, we can show, by a
straightforward calculation that

or

(8.6) Njihwh=0

and

(pjFi'-ΓiFjWutWt^- -Y-N

from which

(8. 7) (FjFit~piFJ

t)(pJwi)Fthwll - 0

for a covariant almost analytic vector field wu
We next apply the operator Fhψτ to (8. 2) and change the indices, then we get
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(8.8)

On the other hand, by a straightforward computation, we can get

[gkψjcFjWi-(2K%-Kji)wJ+FiY(FtSrwr)

(8.9) +(ptws)GtSrFi

r+Fί

s(wti7tFs+Fφtws)

where

(8. 10) Tji^ipjFit-piFfiwt-Fj'pt

Integrating the both members of (8. 9) on the whole manifold M and applying
Stokes' theorem to the right hand member, we get

(8. 11)

-(FιF9r-p,Ftr)(FLw*)Fιηw>+ -*- T^Tj

= -[ T^sNWd'σ.

Suppose now that Wι is a covariant almost analytic vector field. Then it
satisfies (8. 7) and (8. 8) on M and

TjiFr

lN'wr=0 on B.

Conversely, if (8. 7) and (8. 8) are satisfied on M and the condition above is satisfied
on By then, we have from (8. 11)

from which
Tji=0 on M,

and consequently w% is a covariant almost analytic vector field. Thus we have

THEOREM 8. 1. A necessary and sufficient condition for a vector field wι in M
with boundary B to be a covariant almost analytic vector is that

(8. 12)

on M,



+(Ftws)GtsrFi

r+Fί

s(wti7tFs+Fti7tWs)==0 on M,

0 on B.

If the vector w% vanishes on the boundary B, then the last condition in (8. 12)
is automatically satisfied. Thus we have

PROPOSITION 8. 1. A necessary and sufficient condition for a vector field wι in
M vanishing on the boundary B to be covariant almost analytic is that

(FjFit-piFjt)(p>wί)Fthwh=O on M,

+ (ptws)GtsrFir+Fi

s(wtptFsJrFti7tws)=Q on M.

In the case of almost Kahler manifold, these conditions reduce to

(PtFJί)^wi)Fh

ίwh=0 on M
(8. 13)

gkψjcpjWi-(2Kfi-Kji)w^(ptws)GtsrFί

r^0 on M.

On the other hand, taking account of

derived from (5. 22) and of the first equation of (8. 5), we have

and consequently, from the second equation of (8. 13)

{gkψkVjWi - KjiWJ)Wl = - FftyM) (FtFjr - fjFtr)Wι = 0

by virtue of (8. 7). Thus, from (4. 4) in which ^ = 0 on B, we have

from which
PjWi—piWj=0, [7iWl=0 on M.

Thus we have

PROPOSITION 8. 2. A covariant almost analytic vector field on an almost Kahler
manifold vanishing on the boundary B is harmonic.

In the case of almost Tachibana manifold, we have

FtsrWr = 3(PrFts)Wr=0
and

- (K% - Kji)w> = {pjFts) (FίFts)wJ - 0,
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and consequently, the condition of Proposition 8. 1 reduces to

on M,

Ffjj3 = 0 on M.
Thus we have

PROPOSITION 8. 3. A covariant almost analytic vector field in an almost Tachi-
bana manifold vanishing on the boundary B is harmonic.

Now, putting

and supposing

that is,

on the boundary B, we have

- 2a('Fa'w
a) + 'ra(a'wa) + a2fc

afa

bHb

c+aP'wb{'paf
a).

Thus, following Proposition 4. 2, we have

PROPOSITION 8. 4. A covariant almost analytic vector field wh in an almost
Hermitian manifold M which is tangent to ίhe boundary B and has the direction of
fa on B is harmonic.

If we suppose that the manifold M is Kahlerian, then we have

a2fcafabHbc+afb'wb('raf
a)= 4 " «2£*tt

where Lcb is the so-called Levi tensor defined by

Lcb=fca('f7bfa—'l7afb)

and consequently we have

PROPOSITION 8. 5. A covariant almost analytic vector field wh whose projection
on the boundary B has the direction of fa is harmonic if the contracted Levi tensor
of the boundary B vanishes identically.
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