VECTOR FIELDS IN RIEMANNIAN AND
HERMITIAN MANIFOLDS WITH BOUNDARY

By KenTARO YANO AND MITSUE AKO

The vector fields and tensor fields in a Riemannian manifold with boundary
have been studied by Bochner [3], Duff and Spencer [4], Hsiung [5], Nakae [8],
Takahashi [11] and one of the present authors [13].

The main purpose of the present paper is to study systematically vector fields
in a Riemannian manifold with boundary and to study, applying the results in a
Riemannian manifold, the contravariant and covariant almost analytic vector fields
in an almost Hermitian manifold. We shall use the fact that the boundary of an
almost Hermitian manifold admits the so-called almost contact structure studied by
Sasaki [10] and others.
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I. Vector fields in a Riemannian manifold with boundary.
1. Hypersurfaces in a Riemannian manifold.

We consider an m-dimensional differentiable Riemannian manifold M of class
C> covered by a system of neighbourhoods with local coordinates (&%), where and in
the sequel the indices 4, 14,7, &, -+, 7, s, t run over the range 1, 2, ---, m. We denote
by ¢;: the positive definite fundamental metric tensor, by p, the covariant dif-
ferentiation with respect to the Christoffel symbols {%} and by Ki;* the curvature
tensor

1.1) Kt =0e{ B} —0;(5 ) +H{& A — (G
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130 KENTARO YANO AND MITSUE AKO

where dx denotes partial differentiation with respect to the coordinate £. We denote
by Kj;; and K the Ricci tensor and curvature scalar:

1. 2) K=K, K=Kjg’?

respectively.
We consider a hypersurface B in the Riemannian manifold M and represent it
by parametric equations

1.3 §h=E"(n%),

where and in the sequel the indices a, b, ¢, d, ¢, f run over the range1, 2, ---, m—1.
We put

(1 4) Bahzaagh;

where 9, denotes partial differentiation with respect to 7% The B.*» represent
m—1 linearly independent contravariant vectors tangent to the hypersurface. The
metric of the hypersurface is given by the metric tensor

(1.5) "gev =018 By*.

Assuming that the Riemannian manifold and the hypersurface are both orientable,
we choose the unit normal N” to the hypersurface and coordinates »% on the
hypersurface in such a way that N*, B,*, ---, Bn_,* form the positive sense of A,
and Bi*, -, Bn—i* form the positive sense of B. We then have

1. 6) 05:IN? Byr=0, g;:N'Ni=1,

(L7 v QIN® Bat|=n/"g,

where |N*, B,*| denotes the determinant formed by N* and B:*, -+, Bn-1"* and
1.8 g=lgsl,  ‘g=I"gcr]

are determinants formed by g¢;; and ’‘g.s respectively.
Denoting by ’p. the symbol of covariant differentiation along the hypersurface,
we have the equations of Gauss

1.9 'peBy"=0cBy"+ Be/ By*{};} — Ba"'{cs} =HeoN",

where {2} are Christoffel symbols formed with ‘g, and He are components of

the second fundamental tensor of the hypersurface. We have also the equations of
Weingarten

(1. 10) 'peN*"=0.N"+ BJNi{ 1} =—H.*B.",
where H.2=H./g".
If we put
1.11) Be;= By g%gn,
we have

1.12) B*Byr=0d¢, B*;Ni=0(
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and

(1.13) NiN"+B%;B,"*=0d7
and equations of Gauss are written as

(1. 14) 'peB*=H:*N,.

We now state Stokes’ theorem in the following form:

STOKES' THEOREM. We consider a compact orientable Riemannian manifold
with compact orientable boundary B. Then, for an arbitrary vector field v*, we have
the integral formula

(1. 15) S Viv’do::S viNid's,
s B
where
(1. 16) do=x/ gdE'NAEEN - NAE™
is the volume element of M and
117 d'e=x/"g dp' Ndp? N\ Ndym?

is the surface element of B.

In the sequel we assume that the manifold M is compact orientable and the
boundary B is also compact orientable and so we can always apply Stokes’ theorem.

2. Killing vectors.

It is well known that an infinitesimal transformation »" defines an infinitesimal
motion when and only when it satisfies

@.1) Loji=ppityw,=0,

where £ denotes Lie differentiation with respect to »* (Yano [14]). A vector field
satisfyir?g this condition is called a Killing vector. A Killing vector satisfies
2.2) pr=0.
From (2. 1) we get
L{f}=p "+ Ki;i"v*=0,
from which ’
2.3) g7ip jp o+ Kt =0.

Now by a straightforward computation we can prove

3 ) 1 ) ) )
(¢7p g+ Krvtyon+ 5 v +p o) ppitpv)— o)t
@. 4)
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=pilpvitpo)v—v(Fodl,

which is valid for an arbitrary vector field v*, where pi=giip,. Integrating the
both members of (2.4) on the whole manifold M and applying Stokes’ theorem to
the right hand member, we get

g ) 1
S M[((I“ijv" + KM%, -+ 3 oy oit+-ro)— jvf)(mvl)]a’o
(2. 5) '
= SB [(Fvit+po)v—v(po)]Nd'e.

Suppose now that v* is a Killing vector field. Then it satisfies

gipipor+ KMr=0 and puo'=0 in M
and
Fvi+pv)Nv=0 on B.

Conversely, if a vector field v»* satisfies these conditions, then we have from
(2.5)

—

5\ Gk poNpc o=,
from which
pvitp,=0 in M,
ard consequently o* is a Killing vector field. Thus we have

THEOREM 2. 1. A necessary and sufficient condition for a vector field v* in M
with boundary B to be a Killing vector field is that
grp g+ KMr=0, por=0 in M,
2. 6) { !
(Psvit+pw)Nvr=0 on B.

This theorem has been obtained in [13] for a vector field tangential to /3. But
the theorem is true for any vector field »* not necessarily tangential to 5.

If the vector »* vanishes on the boundary B, then the second condition in
(2. 6) is automatically satisfied. Thus we have

ProrosiTION 2. 1. A mnecessary and sufficient condition for an infinitesimal
transformation v in M with boundary B leaving B invaviant point by point to be a
motion is that

ot K =0,  par=0 in M.
Now we put, on the boundary B,
(2 7) = Bah’va_i_aNh,’

then we have
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2.8 Byw;="vy, Nw;=a.

Differentiating the first equation of (2. 8) covariantly along the boundary and
taking account of (2. 8), we find

a4 B! B jvi=" /s,
from which, transvecting with ‘g®® and taking account of B, B,¥g=gs*— NiNt,
2.9 aH 2+ () —(p 0) NI Ni=" /v

Differentiating next the second equation of (2. 8) covariantly along the boundary
and taking account of (2. 8), we obtain

“ch’vb +Bc]NZ(Vjvz): /Vca:
from which, transvecting with ‘»°,
(2. 10) —Ho" v 02+ (p 0 )0 Nt — o j0s) NI N = "0 o

by virtue of (2. 7).
Eliminating (p,v;)N'Nt from (2.9) and (2. 10), we obtain

2.11) W WINi=He v 0P+ Ho - a(p ) — 20(' o/ v*) ' (e’ v),
from which

(P vitpw) N
(2.12)

=) N +Hep' v v+ o H - a(p ) —2a('p o v4) 4 o(a’v®).
Thus we have

PrOPOSITION 2. 2. A mecessary and sufficient condition for a vector field v* n

M with boundary B to be a Killing vector field is that
grig g+ Ktor=0,  por=0 m M,

2.13) { _
(7 0:) N7v -+ Ho v "0+ 0 Ho o — 2a('p o v4) ' u(a’v*) =0 on B.

Now if the vector »* is tangential to B, then we have =0 and consequently
we have

PRrROPOSITION 2. 3. A mnecessary and sufficient condition for a vector field v* in
M tangential to the boundary B to be a Killing vector field is that
gipgot+Kiv=0, por=0 in M,
(2.14) {
(7)) Niv*+Hep've' 02 =0 on B.

If the vector field »* is normal to the boundary B, then we have ‘v*=0 and
vh=aN" and consequently

Fitrw)Nv =a(ppi+po;) NN
=2[e*Ho"+a(p "]
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by virtue of (2.9). Thus we have

ProprosiTiON 2.4. A mecessary and sufficient condition for a vector field v" in
M normal to the boundary B to be a Killing vector field is that

[ CTptLEI=0, =0 in M,

(2. 15)
{ aH,*=0 on B.

(Yano [13])
Now integrating the identity
(07 0" on+ v 00 =p’ [(F w:)v°]
on M and applying Stokes’ theorem, we find
(2. 16) SM[(G“Vij")vn+(vai)(l7ﬂ)i)]d0= SB (P Nvid'o.
From (2. 12) and (2. 16), we obtain
| lopramon -+ ds
2.17)
B S [(pvitpwpNv —He'v "' —a* Ho*—a(pvt) +2a('pa/v*)] d'o.
B

Thus, forming (2. 5)—(2. 17), we obtain

S [K,-wfvb—(rfuf)(mm)

M
1 . .
g (0 PO p.0) —( ) [do

:S [fﬂo'l)c’vb“i-azHaa—2“(/[7a'1)“)] d'v.
B
Thus, if v* is a Killing vector field, we have

SM[KﬁW—in)(mvi)] do

=S (o000 40 H o — 20 v")] .
B

On the other hand, for a Killing vector field »*, we have
BBy (p s +p ) ="p vs+"pove— 2aH =0
from which
'pavr=aH,"

Thus the above integral formula becomes
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2.18) S [Kjwv —(proi)(p v:)] do =S [Ho v v —a(’pq/v?)] d’o.
M B

From this we have

ProrosiTiON 2.5. If K;vvr<0 and if a Killing vector field v* satisfies one
of the following alternate sets of conditions on B,

(i) He've'vb =0, a=const.,
(ii) Hy'v'vr 20,  'pa've=0,
(iii) "pe=0,
then we have
K;vr=0, pivi=0 in M
and in cases (i) and (i),
Heo/ve'v =0 on B.

If K;wvr<0 (0"x0), then there is no such Killing vector field other than zero.
(Bochner [3])

Thus if K;vv0'<0 (v*x0) and H.'v*’v*=0, then there is no Killing vector
tangent to B other than zero. If K;»v*<0 (v*=0), then there is no Killing vector
normal to B other than zero.

3. Conformal Killing vectors.

It is well known that an infinitesimal transformation o defines an infinitesimal
conformal motion when and only when it satisfies

3. %gji:Vjvi+ViUJ:2¢gji

for a certain scalar function ¢. A vector field satisfying this condition is called a
conformal Killing vector. The function ¢ above is found to be (1/m)(pw*) and
consequently (3. 1) can also be written as

2
3.2 PiVit+pivi— WOJ'L(VLUL):O-

From (3.1) we get
LAY =p "+ Kiji v =03p:+0ip;— $"0 51,

where ¢;=p:¢. From this we get, by transvection with ¢/,
y -2
3.3) 97y sy "+ Ki"v - ‘mT pHr)=0.

Now by a straightforward computation we can prove
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m—2
[g“Vij“rKihv”r Vh(ViU’)]Un
3.4 + L[V]W*'Vzv]— “g“gji(Vtvt)][V Vit piv— ig. (7sv?)
. 2 i1 FAVES

2
=17f[(t7jvi+t7iv;)vl— P v;(mvl)],

which is valid for an arbitrary vector field o*. Integrating the both members of
(3.4) on M and applying Stokes’ theorem on the right hand member, we get

S [(g“VjViv’UrKi"v“r 2 17"172-0‘> On

M

(3_ 5) + i <V]vl+717)]_ ._2_. g]thvt> <V 'vi+7iv . ig ‘iV vs)]dq
2 m J J m Jw's

2 .
= S [(vai"’Vzvj)vl— — vj(ViD”)]Nfd’a.
B m

Suppose now that »* is a conformal Killing vector field. Then it satisfies

pp g Ko P2 pip g in M
and
L(Vjvi+7ivj)vL - 72{ UJ(VW")]NJ' =0 on B.

Conversely if a vector field »* satisfies these conditions, then we have from (3. 5)

1 2 9
TS u(V Y= 7n‘fi“l7w‘> <Vjv¢+7iv/~ %.Jﬁms)d(,: 0,

from which
13

pivitpi— % g5:(p0t)=0 in M,

and consequently »* is a conformal Killing vector field. Thus we have

TureoreM 3. 1. A necessary and sufficient condition for a vector field v* in M
with boundary B to be a conformal Killing vector field is thal

m—2

@iy iy -+ Kiv+ ri(pv)=0 in M,
(3.6)

(V it pivi— % gﬁmvt>Niv*:0 on B.

If the vector »* vanishes on the boundary B, then the second condition of
(3. 6) is automatically satisfied. Thus we have
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ProrosiTioN 3. 1. A mnecessary and sufficient condition for an infinilesimal
transformation v* in M with boundary B leaving B invariant poini by point to be a
conformal motion is that

iy m—2 .
97y syt 4 Ko+ T ptyor=0 in M.
Now from (2. 12), we find

2 )
<17,~vi—|—7wj— nginU”>N’v‘

=( 0)N'v*+Hep'v*'v* + o Ho "+ m;z a(pv?) —2a(' 7o v4) ' o' v9).
Thus we have

ProrosiTION 3. 2. A necessary and sufficient condition for a vector field v* in
M with boundary B to be a conformal Killing vector is that

. m—
Gyt Kt —

ylpor=0 in M,

: —2 )
G.7 " a(p ')

(P v) Niv -+ Hyp've 08 -+ o2 H 0 o

—20('pa/ v+ pa’v?)=0  on B.

If the vector " is tangential to B, then wec have a=0 and consequently we
have

ProposiTiON 3. 3. A mecessary and sufficient condition for a vector field v*
M tangential to B to be a conformal Killing veclor field is that

g7 '+ Ko+ ﬁ”;_z Py =0 in M,
3.9

(7 0s) Nv*+Hep've' 02 =0 on B.
If the vector v* is normal to B, then ‘v¢=0 and v*=aN" and consequently
2 .
(vai+l7wj— il c?)‘) Novr

m—1
m

=a(p it o) N Ni— —%H(Vwi)=2tazfla“ +- a(Vwi)J
by virtue of (2.9). Thus we have

PropPOSITION 3. 4. A mecessary and sufficient condition for a vector field v" in
M normal to B to be a conformal Killing vector field is that



138 KENTARO YANO AND MITSUE AKO

0t syt + Kok T =0 in M

3.9
azHa“—l- m—l
m

a(pvH)=0 on B.

(Yano [13])
Now forming (3. 5)—(2. 17), we obtain

_2 X
S [Kﬁwv%— m—~(mevt)vj—(wvl)(mvi)
M m

1 2 .
+ T(va“rwvf— - gf’w‘) <l7ﬂ)i+l7wj— gﬁstS> ]do

=S [Hab’vc’vb—l—azHu“-i— "
B

) — ’ ’na ’
po» a(pv)—2a(’pdv )]da

or

2(m—1 , .
J [ =20 i)

1 2 7
—J|— -2—<VJZ)l_I_V’Lvl—— ..%g]l7ﬂ)5> (Vjvi+7ivj_ %WWWS)J(ZU
:S [He' v 0"+ a2 H*—2a('p o v*)d’ 0.
B
On the other hand, for a conformal Killing vector field »"*, we have

o 2
Bc’Bb‘(Vjvi—l—Vivj— %GjiVL0L>

='pvo+"po’ve—20He, — —57 "ges(pv?) =0,

from which
m—1

"7 vr=aH.*+
m

(7).
Thus for a conformal Killing vector v*, we have, from the above equation,

SM[KJWW_ L"’Zn—ﬁ v )y iv‘)]du

3. 10)
m—1
m

=\ [ Hororrv—atpiomy— Pt atga [,
B

from which we have

ProrosiTiON 3.5. If K;w1<0 and if a conformal Killing vector field v*
satisfies one of the following alternate sets of conditions on B

(i) Ha'v'v2 =20, a=0,
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.. I PR m—1 )
(ii) Ho'v'vr=0, (po/v9)+ 7([7;0’)20,

(iii) Tpe=0, pt=0,
then we have
Kjiwivr=0, p =0 mn M
and in cases (i) and (ii)
Hey v/ =0.

Thus if K;p0*<0 (v"=0), then there exists no such conformal Killing vector
field other than zevo.

Thus if K;p0°<0 (v*20) and He'vv*=0 then there is no conformal Killing
vector tangent to B other than zero. If K;»»*<0 (v*=0), then there is no con-
formal Killing vector normal to B such that p»*=0 on B other than zero.

4. Harmonic vectors.

A harmonic vector is defined as a vector satisfying
4.1 pi—pv;=0, pivr=0.
For a harmonic vector »;, we have

91 (v —p i) + (97 0:)=0,
{rom which
g v, — K wi=0

or
(4. 2) gjLV]Vivh_Kith:O.
By a straightforward computation, we can provce
(@7t —Kvont —= (70t —p o)y 0i—p ) + @ 277 o7
“4.3)

=pil(p wi—po)vi+vpo9],
which is valid for an arbitrary vector field »* So integrating the both members
of (4.3) on the whole M and applying Stokes’ theorem to the right hand member,
we get

, ) 1 . .

[ | @rrar Koot o —popo—rpon @ oo fio

4.4
=S B [(Fpi—pwv+o(po)]Nid'e.

Suppose that v* is a harmonic vector field. Then it satisfies
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gy iyt —Kiv=0 in M
and
[(pvi—pw)v -+o,(p o) N'=0 on B.

Conversely if a vector field v* satisfies these conditions, then we have from (4. 4)

SM[—;— (v —pwi)(p v — Vivf)+(7fvj)(721)i):|d0=0,
from which
rivi—pw,=0,  pr=0 in M.
Thus we have

THEOREM 4. 1. A necessary and sufficient condition for a vector field v" in M
with boundary B to be a harmonic vector field is that

7'y s " — Ko =0 in M,
(. 5) { o
[((Fvi—pwv v (po)] N/ =0 on B.

If the vector field v* vanishes on the boundary B, then the second condition
of (4.5) is automatically satisfied. Thus we have

ProposITION 4. 1. A mnecessary and sufficient condition for a vector field v" in
M with boundary B vanishing on B to be a harmonic vector field is that

giip gt — Kt =0 in M.
From (2. 11), we find
[(Pwi—p@)v+v(po)]N?
=P 0 N'v*— Hoy' v 0" —a? Ho - 2a(' 7 o v4) —' p o(a v%).
Thus we have
ProposITION 4. 2. A necessary and sufficient condition for a veclor field v" in

M with boundary B to be a harmonic vector field is that

gtp vt — Ko =0 in M,
(4. 6) {

V)N — Hey' v 0P — a? Hoy 420 o v*) — " o(@'v4) =0 on B.
If the vector o* is tangential to B, then we have a=0 and consequently we have

ProrosiTiON 4. 3. A necessary and sufficient condition for a vector field v* in
M tangential to the boundary B to be a harmonic vector field is that

{ 97ip ip vt — K vr=0 in M,
W 0:) NPv*— Hop've 00 =0 on B.

4.7

(Yano [13])
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If the vector field o* is normal to the boundary B, then ‘v*=0 and v'=alN"
and consequently

(7 wi—p v +o 7o) N =a(p 7).

Thus we have

ProrosiTion 4. 4. A necessary and sufficient condition for a vector field v" in
M normal to the boundary B to be a harmonic vector is that

9Iip st — Kvr=0) m M,
4.8 {

alpv)=0 on B
(Yano [13])
From (2. 11) and (2. 16), we find

[ Ko amont goxp s
4.9 = ooy toiponnas

n SB [He v* 0 11, —2a('p o )] .
Forming (4. 9)—(4. 4), we obtain

| [Kam w5 o —porgo—ro)- o) |d
= SB [Heo'vo' v+t H,*—2a('p o v*)]d 0.
Thus for a harmonic vector v, we have
SM[qucval-F(va")(vaw:)] do
:L [Ho/0 0+ a1 —2a('p 0] d'o,

from which we have

ProposiTION 4. 5. If K;wv'=0 and if a harmonic vector field v* satisfies one
of the following alternate sets of conditions on B,

(i) He'v'v"<0,  a=0,
(ii) Hov'w=0, Ha=0, ‘p.v"=0,
(iii) fpe=0,  [1,2<0,

then we have
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Kwivr=0, 7 iv:i=0 in M,
and in cases (i) and (ii)
H/ v =0 on B.
Thus if K;pv'>0 (0"x0), then there is no such vector field other than zero.
(Bochner [3])

Thus, if K;pwi>0 @"x0) and H.'v*v*<0, then there is no harmonic vector
tangential to the boundary B other than zero. If K;w0*>0 (v"20) and H,*<0, then
there is no harmonic vector normal to the boundary B other than zero.

II. Vector fields in an almost Hermitian manifold.
5. Hermitian manifolds.

We consider a differentiable manifold of even dimension m=2n and of class
C* and suppose that the manifold admits a tensor field Fi* of type (1, 1) and of
class C* which satisfies

5. 1) FpFt=—An

where A? is the unit tensor. A tensor field F' satisfying (5. 1) is said to define an
almost complex structure and a manifold admitting an almost complex structure is
called an almost complex manifold.

It is now well-known (Newlander and Nirenberg [9]) that an almost complex
structure F is induced from a complex structure if and only if the Nijenhuis tensor

(5. 2) N =(F{0,Fi"— Fitd, F ") —(0,;Ft —0: F ) Fy

vanishes identically. The Nijenhuis tensor Nj;*, skew-symmetric in j and 7, satisfies
(5. 3) Nyt —Fi#Fy*Nysm=0,

(5. 4) N+ F{FS Nyt =0.

If we introduce tensors

5. 5) 0= - (AA—FoED)

. 6) 0= - (ALAVEFER),

equations (5. 3) and (5. 4) can be written as
5.7 O%N, =0 and *O%Ny"=0

respectively.
In general if a tensor 7% satisfies

ORT ;=0 or *ORT.;m=0,



VECTOR FIELDS IN RIEMANNIAN AND HERMITIAN MANIFOLDS 143
the tensor is said to be hybrid or pure in i and % respectively.
Equation (5. 1) can be written as
Fr+FsF2Fy=0 or *ORFy =0

and consequently the tensor Fy* is pure in ¢ and 4. Equations (5. 3) and (5. 4) show
that N, is hybrid in ¢ and % and pure in j and 7.
The tensors O and *O satisfy

0+¥0=4,
5.9
0-0=0, 0-¥0=0, *0-0=0, *0-*0=*0,

where A represents the tensor ASAZ Thus the conditions
0-T=0 and *OT7T=T

are equivalent and
*Q0.T=0 and O-T=T

are also equivalent.
Suppose that P7¢ is hybrid in j and 7, then we have

Pit=*0Ji pts,
If Q,; is pure in 7 and 4, then we have
jS=0%‘Qvu-

Using (5. 8) and these equations we can easily prove that if P4 is hybrid in j and
¢ and @y pure in j and ¢, then the contracted product P’iQ;; vanishes identically.

From an arbitrary positive definite Riemannian metric e; in }, we can con-
struct another Riemannian metric

1
9ji= o (ajit+aisFFFS),

which is also positive definite and satisfies

(5.9) 9 B FS =g .
This equation is also written as
(5.10) 0%3913=0

and shows that ¢;; is hybrid.

A Riemannian metric g;; on an almost complex manifold satisfying (5. 10) is
called a Hermitian metric. An almost complex manifold with a Hermitian metric
is called an almost Hermitian manifold and a complex manifold with a Hermitian
metric is called a Hermitian manifold. In an almost Hermitian manifold the tensor

(5.11) Fu=Fjq.

is skew-symmetric and of rank 2.
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If we denote by p. the covariant differentiation with respect to a Hermitian
metric ¢, then the Nijenhuis tensor N;;* can be written as follows:

6. 12) Nyt =(Fjtp Fit—Fitp F) —(p ;B —p P Fi.
We now define the tensors

(5. 13) Fiin=piFin+piFni+piFi

(5. 14) Fro=97p ;jFi=—piFu,

(5. 15) G =p i F+pF.

We call an almost Kidhler manifold an almost Hermitian manifold in which
Fjin=0 and a Kihler manifold a Hermitian manifold in which Fj;,=0.

The covariant components Njin=Njtg:n of the Nijenhuis tensor can be written
in the form

(5. 16) Njin=F;'Fiin—FitF1jn+2F# (PrFu),
from which, transvecting with F*,
(5.17) Fit P i 4-2F,=0

by virtue of
NjuFi*=0 and  F;t=0.

We see from (5. 17) that the vector F, vanishes in an almost K&dhler manifold
and consequently the tensor Fj;, satisfying Fj»=0 and F,=0, is a harmonic tensor.
We also see from (5. 16) that an almost Kihler manifold is a Kihler manifold
if and only if p;F;, vanishes identically.
We call an almost Tachibana manifold an almost Hermitian manifold in which
;"=0 and a Tachibana manifold a Hermitian manifold in which G;*=0.
The Nijenhuis tensor can also be written as

(5. 18) it=—A(p iFt)F+2G ;i Fit+ F G — FitGe i,

from which we see that, for a Tachibana manifold we have p;Fi*=0. Thus a
Tachibana manifold is a Kédhler manifold.
Coming back to a general almost Hermitian manifold, we denote covariant com-

ponents of the curvature tensor by

(5.19) Krjin=Kiji'gun
and put

(5. 20) Hy,= —é— KijinFit
and

(5. 21) K¥=—H,Iy.

From the Ricci identity
pp it —p et = K it — Kyt I
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we get
(5. 22) 7ol i = (Kye— K3 F—p iF,

which gives the expression for the difference K;—Kj. In a K&hler manifold, K%
coincides with Kj;.

6. Hypersurfaces in an almost Hermitian manifold.

We consider a hypersurface &£'=£&"(»*) in an almost complex manifold. The
transform F*B,* of B,* by Fi* can be expressed as a linear combination of B."*
and N*

(6. 1) F*Byr=f1*BJ"+fsN*,
where the coefficients f3,* and f, are defined by

(6. 2) frr=F"ByB,
and

(6. 3) Jo=F"By*N,
respectively.

The transform F*Nt of N* by F* is perpendicular to N' and consequently
tangent to the hypersurface, and hence we have the equation of the form

(6. 4) Fi"Ni=—h*B.",
where the coefficient 4¢ is defined by
(6. 5) he=—F"N*B%,.

Transforming again the both members of (6.1) by F and taking account of
(6. 1) and (6. 4), we find

— B =ft (£ B+ N —fult* Bal,

from which
(6. 6) Joof = —05 +1oh?,
6.7 foefe=0.

Transforming again the both members of (6.4) by F and taking account of (6. 1)
and (6. 4), we get

_.Nh — __hc(fcaBah +chh),

from which
(6. 8) Sfethe=0,
6.9) fehe=1.

The equations (6. 6), (6. 7), (6. 8) and (6. 9) show that the tensor f»* and vectors
fe, h¢ define the so-called almost contact structure. (Sasaki [10], Tashiro [12])
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We next suppose that the almost complex manifold is Hermitian, then we have
(6. 10) 9,i=0csF/FS.
Substituting this into
97iBe? By*="gs,

we get
glsttFisBchbl = ,gcb
.(Ils(fceBet +cht)(fde(ls+be'c):,ﬂrhy
from which
(6' 11) fcefbd/ge(l +fcfb:,gcb-

Transvecting equation (6. 11) with 4* and taking account of (6. 8) and (6. 9), we
find

(6. 12) fe="gcah?

and consequently we shall write /@ in place of 2% Thus equations (6. 6), (6. 7), (6. 8)
and (6. 9) become

fefot=—0¢+f S [ fu=0,

(6. 13)
fhaszoy fa,fa:]..
If we put
(6 14) fca =fcb/gbay
the equations (6. 2), (6. 3) and (6. 5) are written as
(6. 15) FinBy*Ba"=f1a
6. 16) FinBe*Nt=f,
(6 17) }'ﬂihZ\ﬁBa’L = —‘fa

respectively. Equation (6. 15) shows that f», is a skew symmetric tensor.
We differentiate (6. 1) covariantly along the hypersurface and obtain

(6.18) BBy (i F®)=(pcfo*+Heaf*—H f)) B +(pcfo+Hea f1*) N,
from which, transvecting with Bas,
(6.19) B By'Ba"([p iFin)="p cfoa+Hev fo—Hea S,
and, transvecting with N,
(6. 20) BBy NMp iFin)="pefo+Hea S
We next differentiate (6. 4) covariantly along the hypersurface and obtain
(6. 21) BN piFt)=—(pcf*—H f1*) Ba",
from which, transvecting with Bas,
(6. 22) BIN*BoMpiFin)=—(pcfa—Hc" foa).
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7. Contravariant almost analytic vectors.

When an infinitesimal transformation »* leaves the almost complex structure
invariant, that is, when it satisfies
7.1 LEM=0v'0,F"— Fdw"+ F*00'=0,
v

the vector »* is called a contravariant almost analytic vector field. If the almost
complex manifold is almost Hermitian, equation (7. 1) can be written as

(7.2 LEr=vtp Fr—Fitpw'+F gt =0,
from which ’

7.3) Sin=(LENGgrn=0'p Fin—Fitpwr—Fn'pv,=0
and ’

7. 4 S”‘=(ong’L)g“=v‘;7[Fi”+Fﬂ17‘v”—|—F/L177'v‘:O.
From (7. 3) and (7. 4), we find

(7.5 O05(Lgs=0 and  O%(Lg")=0
respectively. ’ ’

Now, by a straightforward computation, we can show that the tensor
—li-(FjLFtih-l-Fi‘sz")—Gji‘Ft"

is pure in j and 7. Since LF*=0 and L¢7 is hybrid in j and 7 for a contravariant
v v

almost analytic vector field v, we have, by the above remark,

[—%— (FfEy+FitFy ) — G]'itFth:l(eggji):O

or
(7. 6) %Fﬁ"({fFﬁ)=G,~i‘Ft"(vai),
On the other hand, applying the operator ¢7ip, to the both sides of (7. 2), we find
7.7 Frlgiip gt + Kivt—Fit L Fr—G s Fit (prv)] =0,
from which '
(7.8) 97y v+ Ko — FMLF ) —G s Fr(pv')=0
or, ’
@.9) G+ Ko~ FACF ) — o P (£F ) =0

by virtue of (7.6). This equation gives a necessary condition for a vector field »*
to be contravariant almost analytic.
Now by a straightforward computation we can prove
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o7y Ko — B L F)— % Fy(LF) on + % S,

(7.10)
=V’{Ff‘(£Fz")vh},

which is valid for an arbitrary vector field »”*, where
(7. 11) Sji=(dgth)gn.

Integrating the both members of (7.10) on the whole manifold M and applying
Stokes’ theorem to the right hand member, we get

jﬂ[{gﬂmmvthmhw—FihmFo — LB Fﬂ)]vh + —}sffsﬁ]da
(7. 12)
_ j (FHLFM) Nivd'o.
B v

Suppose now that »* is a contravariant almost analytic vector field. Then it satisfies

1
2

g7 st + Kot — FMLFY) — — Fi"(LF7")=0 in M

and
{FHLFM}Niv,=0 on B.
Conversely if a vector field v* satisfies these conditions, then we have, from (7. 12),

1 )
TSMS”Sﬁ do=0,

from which
Sj=0 or LE=0 in M,

and consequently " is a contravariant almost analytic vector. Thus we have

THEOREM 7. 1. A necessary and sufficient condition for a vector field v in M
with boundary B to be a contravariant almost analytic vector is that

Gt K= F(EF)— - Py (CF7)= 0 in M

(7. 13)
{FAMLFM}Nvp=0 on B.

If the vector »* vanishes on the boundary B, then the second condition in
(7. 13) is automatically satisfied. Thus we have

ProrosITION 7.1. A mnecessary and sufficient condition for an infinitesimal
transformation v* in M leaving the boundary B invariant point by point to be an
almost analytic transformation is that



VECTOR FIELDS IN RIEMANNIAN AND HERMITIAN MANIFOLDS 149
gfiVjViv"—l—Ki”v’—Fih(dCFi)———%—Fﬁ”(ﬁF”)zo in M.
v v
In the case of almost Kihler manifold, this condition reduces to
g7y 7 0"+ Kt =0 in M,
and consequently combining Propositions 2.1 and 7.1, we get

ProrosiTION 7. 2. An infinitesimal motion in an almost Kihler manifold leaving
the boundary invariant point by point is an automorphism.

ProrosiTION 7. 3. An infinitesimal almost analytic transformation in an almost
Kdéhler manifold leaving the volume invaviant and the boundary B wnvariant poini
by point is an automorphism. (Ba [2])

Suppose that an infinitesimal conformal transformation o* in M leaves the
boundary B invariant point by point, then we have, by Proposition 3. 1,

97 s w4 Ko+ mT_ZV’LVzvlzo in M.
On the other hand, in the case of an almost Kihler manifold, (7.12) reduces to
jM[{gjiVjVivh‘FKihvi}Un + —;“SjiSji]dO': 0

for a vector field »* vanishing on B. Thus substituting the above equation into
this integral formula, we get

[ m—2 1.,
jM T m {Vh(Vivl)}”h‘i"—Z—Sf‘Sji]do':O,

B —2 ) ) 1 . .
[ [-2=2rriawnon+ T+ 55 |do=0,

m m

m—

S m=—2 (V]U])(Vﬂﬂ)—]-—;-sﬂsn]dlf: 2 S {(Vi?}i)l)h}thl(I:Oy
B

m

from which
Sji=0 for m=2
and
par=0, S;i=0 for m>2.
Thus we have

PROPOSITION 7.4. An infinitessmal conformal transformation in M leaving lhe
boundary invariant point by point is almost analytic when m=2 and an automor-
Dhism when m>2. (Ba [2])

Now putting
=B et aN"
on the boundary, we have
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EHELEMINw=—{(LF)g5} Be' fovr
=—ALFu—F/ (L5} B fovr
= —[(ogFji)BchW—(.,Egsi)(fchb%ch-‘)f”vi]
=~ LF) B f—(Las)NTo.
Thus we have

ProrosiTIiON 7.5. A mecessary and sufficient condition for a vector field v n
M with boundary B to be a contravariant almost analytic vector is that

9 o+ Kot — Fr(LFY)— ; FiMLF#%)=0 m M,
(7. 14) '
[(LF)BS fe—(Lg5) N =0 on  B.

In the case of almost Kdhler manifold, these conditions reduce to

gyt Kitv =0 in M,
(7. 15) {
(CF)B f—(p0i+pw,)N o =0 on [,

and consequently combining Theorem 2. 1 and Proposition 7.5, we get

ProrosiTION 7. 6. An infinitesimal motion in an almost Kihler manifold leaving
the fundamental form Fj on the boundary invariant is an automorphism.

PrROPOSITION 7. 7. An infinitesimal almost analytic transformation in an almost
Kaihler manifold leaving the volume invariant in M and the fundamental tensors Fj;
and 9;; invariant on B is an automorphism. (Ba [1])

Now, if the vector v* is tangential to the boundary B, then we have
(,CFji)Bc’Bb‘—_—(U‘Vszi"l-FanU‘-|—FJzViUL)Bc]Bb‘=;Cfco
and consequently
[(gFji)Bc’f”_(€Gji)N’]UL
=(£fcb)f°'v”—({;gﬁ)NW-
Hence we have

ProrosiTiON 7. 8. A necessary and sufficient condition for a vectov field v" in
M tangential to the boundary B io be a contravariant almost analytic vector is that
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gﬂ‘ijv’L+Ki”vl—Fi"(£F1)~%Fjih(,CFﬁ):O in M,
(7. 16)
(L) [0 —(Lg5)Nv'=0 on B.
In the case of almost Kihler manifold, these conditions reduce to
97ty iyt 4+ K =0 in M,
(7. 17) { !
(;.gf ) J ”’vb~(.$gﬁ)N’U’=0 on B.
On the other hand, for a conformal Killing vector tangential to B, we have
97t i v+ KMo+ m—2 iy w)=0 in M,
(Lg;)Nv=0 on B.

Substituting these into integral formula (7. 12), we find
S [— m-z {Vh(Vivi)}vn-l—J—S’isji]dcT:—S (L feo)fe'vd o
M m 2 B v
or
@18 § ["22 gongan+ oo &raras
M m Z B v
by virtue of

P { (g wi)on}ldo+- S M(Vjvf)”do

M

- SM Py ) ondo=— S
=— SB (pvi)o;Nd'a+ S s

= S (pv9)do.
M
From (7. 18) we can see that L fer=0 implies

pr=0 and S;=0, for m>2, and S;=0 for m=2.
Thus we have

PROPOSITION 7.9. Awn infinitesimal conformal transformation in an almost
Kdahler manifold tangential to the boundary B and leaving fe» invariant along B is
an automorphism for m>2, and analytic for m=2. (Ba [2])

Suppose next that an infinitesimal transformation is conformal and at the same
time almost analytic, then we have, from (3. 6) and (7. 17) p*=constant. But if
v* is tangential to B, we have

S medo=S »Nid'5 =0
M B
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and consequently p@*=0. Thus the transformation is an automorphism. Hence
we have

ProrosiTiON 7.10. If an infinitesimal transformation in an almost Kdéihler
manifold leaving invaviant the boundary B is conformal and almost analytic, then
it is an automorphism. (Ba [2])

We now consider a very special infinitesimal transformation »* which is tangent
to the boundary B and whose transform by F.* is normal to the boundary. If we
represent the transformation by

vh=B.""ve,
then, by assumption
Filvr=F"Bo"v = (fo* B+ foN") v®
must be in the direction of N*, from which we have
(7. 19) Tpe=3fa,

Thus, from Proposition 7. 8, we have

ProprosiTION 7. 11. A necessary and sufficient condition for a vector field v* in
M tangential to the boundary B and whose transform by F is normal to the boundary
to be contravarviant almost analytic is that

[ aﬁmmv“rKihv’—Fz”(fFO—%Fﬂ(,cFﬁ):o in M,
(7. 20) v v
1 (Lyj)Nw=0 on 5.

From this we have

PrOPOSITION 7. 12. An infinitesimal almost analytic transformation in an almost
Kidhler manifold M tangential to the boundary B, whose transform by F is novmal
to the boundary B and which preserves the volume is an automorphism. (Ba [2])

We also have, from Proposition 7.9,

ProPOSITION 7. 13. An infinitesimal conformal transformation in an almost
Kahler manifold tangential to the boundary B and whose transform by F is normal
to the boundary B is an automorphism. (Ba [2])

8. Covariant almost analytic vectors.
When a covariant vector field w; satisfies
(8 1) (G,FI‘—azF,‘)w,*F,”(?twl—k[ﬂ’a]w,:0,

the vector w; is called a covariant almost analytic vector field. If the almost
complex manifold is almost Hermitian, the equation (8. 1) can be written as



VECTOR FIELDS IN RIEMANNIAN AND HERMITIAN MANIFOLDS 153

8.2 iFt—pF we— Fytpavs+ Fitp w, =0,

from which, by taking the symetric part with respect to j and i, we get
8.3) *OL(p s —p swe) =0.

We also have, transvecting piF'/¢ to (8. 2),

8.9 Pl )W iFiyw,=0.

If we put

Py=iFi'—pFihw,  Qu=Fjpuwwi—Fitp e,
then we have, for a covariant almost analytic veclor w;,
Pji=Qji
P, P1t=2F;{(pIF *)wuws,
Py =F(pawi+pawd)(GI5 — 2741 )ws.

Suppose now that the manifold is an almost Kéihler manifold, then we have
P;;P7i=0 and consequently Pj;=0, Q;;=0 for a covariant almost analytic vector w;.
But in an almost Kéhler manifold, P;;=0 is equivalent to w'p Fj;=0.

Suppose next that the manifold is an almost Tachibana manifold, then, p;Fu
being skew symmetric in all indices, we have from (8. 4)

W'y L) (wip s 1179 =0

and consequently
thLFji,-_— Q,

from which P;=0 and Q;;=0, for a covariant almost analytic vector field w;.
Thus we see that a necessary and sufficient condition for a vector field w; in an
almost Kihler or Tachibana manifold to be covariant almost analytic is

(8. 5) Wy F=0 and Fpaw;—F'yw.=0.

Coming back to a general almost Hermitian manifold, we can show, by a
straightforward calculation that

Nji"wn=—2*03(p aws—p sw:)

or
8. 6) Nysiton =0
and
Wil —p ) w)F ot = — —;—Nji’L(V]ZUi),
from which
() W iFit—piF (@ w) Flaw, =0

for a covariant almost analytic vector field w..
We next apply the operator Fu/p* to (8.2) and change the indices, then we get
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gEpup jwi— K — K )yw! + Fit s (Fusew)

8.8
+(Pw)G s F+F iy s+ Foptws) =0.

On the other hand, by a straightforward computation, we can get
[gk]Vkawi_<2Kﬁ'_-K}i)w]+FitVs(Ftsrwr)
8.9 + @ w)Gis BT+ F Wty Fs+ Fuptws)

G F o P F G wF -+~ TRy (L),
where
(8. 10) Ty=piFit—pFiYw —Fitpavs+Fitp aor.
Integrating the both members of (8.9) on the whole manifold M and applying
Stokes’ theorem to the right hand member, we get
SM[{Q"JVijwi—(ZK,*-;—Kﬁ)wL—I—Fi‘VS(chrw’)

-+ (Vlws)Gterir‘I‘Fis(wLVth +Ftl7tws)
@.11)
—FFsr—p ) (pwd) L w+ ~;~ 17 TﬁJdU

——\ N
B
Suppose now that w; is a covariant almost analytic vector field. Then it
satisfies (8.7) and (8.8) on M and
Ti:iF*Now =0 on B.

Conversely, if (8.7) and (8. 8) are satisfied on M and the condition above is satisfied
on B, then, we have from (8. 11)

ig 77 7Tdo=0
2 Ju

from which
T:=0 on M,

and consequently w; is a covariant almost analytic vector field. Thus we have

THEOREM 8. 1. A necessary and sufficient condition for a vector field w; in M
with boundary B to be a covariant almost analytic vector is that

(VjF;t—ViF]L)(V]wC)Fchwh:0 on M,

Ry jw;— QK — Kjw? + Fitps(Fusmw")
8.12)
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+(PrwS)Gesr i+ F s (g F s+ Fuptws) =0 on M,
Ty Fr* Niw =0 on B.

If the vector w; vanishes on the boundary B, then the last condition in (8. 12)
is automatically satisfied. Thus we have

ProPOSITION 8. 1. A necessary and sufficient condition for a vector field w; in
M vanishing on the boundary B to be covariant almost analytic is that

Wit —pFMpwd)Ftw, =0 on M,
gop iy wi— QK — Kiw +Fitps(F5,007)
+ )Gy i+ Fs (W' JFs+ Fiplws) =0 on M.
In the case of almost Kidhler manifold, these conditions reduce to
W F5)(pruw?) Frltuw=0 on M
(8. 13) {
gErpp iwi— QK — Kpyw? 4+ w*)Grsr £77 =0 on M.

On the other hand, taking account of
vl =(Kp—KH)Fi
derived from (5. 22) and of the first equation of (8.5), we have
—2KF— Kjyw! + [ w)Gusr i
=—2F g iFYw + Fi (p'w)Ge,yr
=2F4p iF o) wn) + Fr (g w) (P o s+ il )
=F7r ([ w)§ o p—rpiFe)
and consequently, from the second equation of (8. 13)
(0¥ pup jwi— Kjwhyw = — Fi7(pw?) (o F g — p i e )w* =0
by virtue of (8.7). Thus, from (4.4) in which w;=0 on B, we have

1 )
SM[—Z- Pw—pw)(p swi—paw;) -+ ,-wf)(mwl)]da=0,
from which
piwi—paw;=0, puwr=0 on M.
Thus we have

ProposITION 8. 2. A covariant almost analytic vector field on an almost Kahier
manifold vanishing on the boundary B is harmonic.

In the case of almost Tachibana manifold, we have

Ftsrwr = B(Vf‘Fts)wr: 0
and
—(Kfi— Ki)w = ;F ) iFis)w =0,
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and consequently, the condition of Proposition 8.1 reduces to
iFNprw) Fw,=0 on M,

gy ws— Kjuw? =0 on M.
Thus we have

ProrosiTIiON 8.3. A covariant almost analytic vector field in an almost Tachi-
bana manifold vanishing on the boundary B is havmonic.

Now, putting
wthahlwa_i_aNh
and supposing
Jo¥wa=0
that is,
,wa:(fc’wc)fu,
on the boundary B3, we have
TiFrNiw'=— NIw'(y jw,) + Heo' ' w’ +a*H .
—2a('paw*)+'po(@ W)+ £ fo P Hy +af Yw('pof®).
Thus, following Proposition 4. 2, we have

ProOPOSITION 8. 4. A covariant almost analytic vector field w" in an almost
Hermitian manifold M which is tangent to the boundary B and has the dirvection of
f® on B is harmonic.

If we suppose that the manifold M is Kéhlerian, then we have

@ f fOH o af V(' Puf )= % Lt

where L., is the so-called Levi tensor defined by

ch =fca(/7bfa'— ,Vafb)
and consequently we have

ProposITION 8.5. A covariant almost analytic vector field wn whose projection
on the boundary B has the direction of f* is harmonic if the coniracted Levi tensor
of the boundary B vanishes identically.
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